Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
bdffa40e
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bdffa40e
编写于
6月 15, 2017
作者:
W
wwhu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add xmap for image list and modify the image reader of infer.py
上级
e9b94cab
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
59 addition
and
81 deletion
+59
-81
image_classification/README.md
image_classification/README.md
+6
-20
image_classification/alexnet.py
image_classification/alexnet.py
+1
-1
image_classification/googlenet.py
image_classification/googlenet.py
+12
-12
image_classification/infer.py
image_classification/infer.py
+2
-17
image_classification/reader.py
image_classification/reader.py
+30
-23
image_classification/resnet.py
image_classification/resnet.py
+2
-2
image_classification/train.py
image_classification/train.py
+2
-2
image_classification/vgg.py
image_classification/vgg.py
+4
-4
未找到文件。
image_classification/README.md
浏览文件 @
bdffa40e
...
...
@@ -147,11 +147,11 @@ dataset_100/train_images/n02643566_75.jpeg 8
```
python
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
t
est
_reader
(
'train.list'
),
reader
.
t
rain
_reader
(
'train.list'
),
buf_size
=
1000
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
reader
.
t
rain
_reader
(
'val.list'
),
reader
.
t
est
_reader
(
'val.list'
),
batch_size
=
BATCH_SIZE
)
```
...
...
@@ -209,24 +209,10 @@ trainer.train(
with
gzip
.
open
(
'params_pass_10.tar.gz'
,
'r'
)
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
def
load_image
(
file
):
im
=
Image
.
open
(
file
)
im
=
im
.
resize
((
224
,
224
),
Image
.
ANTIALIAS
)
im
=
np
.
array
(
im
).
astype
(
np
.
float32
)
# The storage order of the loaded image is W(widht),
# H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them.
im
=
im
.
transpose
((
2
,
0
,
1
))
# CHW
# In the training phase, the channel order of CIFAR
# image is B(Blue), G(green), R(Red). But PIL open
# image in RGB mode. It must swap the channel order.
im
=
im
[(
2
,
1
,
0
),
:,
:]
# BGR
im
=
im
.
flatten
()
im
=
im
/
255.0
return
im
file_list
=
[
line
.
strip
()
for
line
in
open
(
image_list_file
)]
test_data
=
[(
load_image
(
image_file
),)
for
image_file
in
file_list
]
test_data
=
[(
paddle
.
image
.
load_and_transform
(
image_file
,
256
,
224
,
False
)
.
flatten
().
astype
(
'float32'
),
)
for
image_file
in
file_list
]
probs
=
paddle
.
infer
(
output_layer
=
out
,
parameters
=
parameters
,
input
=
test_data
)
lab
=
np
.
argsort
(
-
probs
)
...
...
@@ -234,4 +220,4 @@ for file_name, result in zip(file_list, lab):
print
"Label of %s is: %d"
%
(
file_name
,
result
[
0
])
```
首先从文件中加载训练好的模型(代码里以第10轮迭代的结果为例),然后读取
`image_list_file`
中的图像。
`image_list_file`
是一个文本文件,每一行为一个图像路径。
`load_image`
是一个加载图像的函数。
代码使用
`paddle.infer`
判断
`image_list_file`
中每个图像的类别,并进行输出。
首先从文件中加载训练好的模型(代码里以第10轮迭代的结果为例),然后读取
`image_list_file`
中的图像。
`image_list_file`
是一个文本文件,每一行为一个图像路径。代码使用
`paddle.infer`
判断
`image_list_file`
中每个图像的类别,并进行输出。
image_classification/alexnet.py
浏览文件 @
bdffa40e
...
...
@@ -3,7 +3,7 @@ import paddle.v2 as paddle
__all__
=
[
'alexnet'
]
def
alexnet
(
input
,
class_dim
=
100
):
def
alexnet
(
input
,
class_dim
):
conv1
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
11
,
...
...
image_classification/googlenet.py
浏览文件 @
bdffa40e
...
...
@@ -3,7 +3,7 @@ import paddle.v2 as paddle
__all__
=
[
'googlenet'
]
def
inception
2
(
name
,
input
,
channels
,
filter1
,
filter3R
,
filter3
,
filter5R
,
def
inception
(
name
,
input
,
channels
,
filter1
,
filter3R
,
filter3
,
filter5R
,
filter5
,
proj
):
cov1
=
paddle
.
layer
.
img_conv
(
name
=
name
+
'_1'
,
...
...
@@ -65,7 +65,7 @@ def inception2(name, input, channels, filter1, filter3R, filter3, filter5R,
return
cat
def
googlenet
(
input
,
class_dim
=
100
):
def
googlenet
(
input
,
class_dim
):
# stage 1
conv1
=
paddle
.
layer
.
img_conv
(
name
=
"conv1"
,
...
...
@@ -97,23 +97,23 @@ def googlenet(input, class_dim=100):
name
=
"pool2"
,
input
=
conv2_2
,
pool_size
=
3
,
num_channels
=
192
,
stride
=
2
)
# stage 3
ince3a
=
inception
2
(
"ince3a"
,
pool2
,
192
,
64
,
96
,
128
,
16
,
32
,
32
)
ince3b
=
inception
2
(
"ince3b"
,
ince3a
,
256
,
128
,
128
,
192
,
32
,
96
,
64
)
ince3a
=
inception
(
"ince3a"
,
pool2
,
192
,
64
,
96
,
128
,
16
,
32
,
32
)
ince3b
=
inception
(
"ince3b"
,
ince3a
,
256
,
128
,
128
,
192
,
32
,
96
,
64
)
pool3
=
paddle
.
layer
.
img_pool
(
name
=
"pool3"
,
input
=
ince3b
,
num_channels
=
480
,
pool_size
=
3
,
stride
=
2
)
# stage 4
ince4a
=
inception
2
(
"ince4a"
,
pool3
,
480
,
192
,
96
,
208
,
16
,
48
,
64
)
ince4b
=
inception
2
(
"ince4b"
,
ince4a
,
512
,
160
,
112
,
224
,
24
,
64
,
64
)
ince4c
=
inception
2
(
"ince4c"
,
ince4b
,
512
,
128
,
128
,
256
,
24
,
64
,
64
)
ince4d
=
inception
2
(
"ince4d"
,
ince4c
,
512
,
112
,
144
,
288
,
32
,
64
,
64
)
ince4e
=
inception
2
(
"ince4e"
,
ince4d
,
528
,
256
,
160
,
320
,
32
,
128
,
128
)
ince4a
=
inception
(
"ince4a"
,
pool3
,
480
,
192
,
96
,
208
,
16
,
48
,
64
)
ince4b
=
inception
(
"ince4b"
,
ince4a
,
512
,
160
,
112
,
224
,
24
,
64
,
64
)
ince4c
=
inception
(
"ince4c"
,
ince4b
,
512
,
128
,
128
,
256
,
24
,
64
,
64
)
ince4d
=
inception
(
"ince4d"
,
ince4c
,
512
,
112
,
144
,
288
,
32
,
64
,
64
)
ince4e
=
inception
(
"ince4e"
,
ince4d
,
528
,
256
,
160
,
320
,
32
,
128
,
128
)
pool4
=
paddle
.
layer
.
img_pool
(
name
=
"pool4"
,
input
=
ince4e
,
num_channels
=
832
,
pool_size
=
3
,
stride
=
2
)
# stage 5
ince5a
=
inception
2
(
"ince5a"
,
pool4
,
832
,
256
,
160
,
320
,
32
,
128
,
128
)
ince5b
=
inception
2
(
"ince5b"
,
ince5a
,
832
,
384
,
192
,
384
,
48
,
128
,
128
)
ince5a
=
inception
(
"ince5a"
,
pool4
,
832
,
256
,
160
,
320
,
32
,
128
,
128
)
ince5b
=
inception
(
"ince5b"
,
ince5a
,
832
,
384
,
192
,
384
,
48
,
128
,
128
)
pool5
=
paddle
.
layer
.
img_pool
(
name
=
"pool5"
,
input
=
ince5b
,
...
...
image_classification/infer.py
浏览文件 @
bdffa40e
...
...
@@ -54,24 +54,9 @@ def main():
with
gzip
.
open
(
args
.
params_path
,
'r'
)
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
def
load_image
(
file
):
im
=
Image
.
open
(
file
)
im
=
im
.
resize
((
WIDTH
,
HEIGHT
),
Image
.
ANTIALIAS
)
im
=
np
.
array
(
im
).
astype
(
np
.
float32
)
# The storage order of the loaded image is W(widht),
# H(height), C(channel). PaddlePaddle requires
# the CHW order, so transpose them.
im
=
im
.
transpose
((
2
,
0
,
1
))
# CHW
# In the training phase, the channel order of CIFAR
# image is B(Blue), G(green), R(Red). But PIL open
# image in RGB mode. It must swap the channel order.
im
=
im
[(
2
,
1
,
0
),
:,
:]
# BGR
im
=
im
.
flatten
()
im
=
im
/
255.0
return
im
file_list
=
[
line
.
strip
()
for
line
in
open
(
args
.
data_list
)]
test_data
=
[(
load_image
(
image_file
),
)
for
image_file
in
file_list
]
test_data
=
[(
paddle
.
image
.
load_and_transform
(
image_file
,
256
,
224
,
False
)
.
flatten
().
astype
(
'float32'
),
)
for
image_file
in
file_list
]
probs
=
paddle
.
infer
(
output_layer
=
out
,
parameters
=
parameters
,
input
=
test_data
)
lab
=
np
.
argsort
(
-
probs
)
...
...
image_classification/reader.py
浏览文件 @
bdffa40e
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import
random
from
paddle.v2.image
import
load_and_transform
import
paddle.v2
as
paddle
from
multiprocessing
import
cpu_count
def
train_mapper
(
sample
):
'''
map image path to type needed by model input layer for the training set
'''
img
,
label
=
sample
img
=
paddle
.
image
.
load_image
(
img
)
img
=
paddle
.
image
.
simple_transform
(
img
,
256
,
224
,
True
)
return
img
.
flatten
().
astype
(
'float32'
),
label
def
test_mapper
(
sample
):
'''
map image path to type needed by model input layer for the test set
'''
img
,
label
=
sample
img
=
paddle
.
image
.
load_image
(
img
)
img
=
paddle
.
image
.
simple_transform
(
img
,
256
,
224
,
True
)
return
img
.
flatten
().
astype
(
'float32'
),
label
def
train_reader
(
train_list
):
def
train_reader
(
train_list
,
buffered_size
=
1024
):
def
reader
():
with
open
(
train_list
,
'r'
)
as
f
:
lines
=
[
line
.
strip
()
for
line
in
f
]
random
.
shuffle
(
lines
)
for
line
in
lines
:
img_path
,
lab
=
line
.
strip
().
split
(
'
\t
'
)
im
=
load_and_transform
(
img_path
,
256
,
224
,
True
)
yield
im
.
flatten
().
astype
(
'float32'
),
int
(
lab
)
yield
img_path
,
int
(
lab
)
return
reader
return
paddle
.
reader
.
xmap_readers
(
train_mapper
,
reader
,
cpu_count
(),
buffered_size
)
def
test_reader
(
test_list
):
def
test_reader
(
test_list
,
buffered_size
=
1024
):
def
reader
():
with
open
(
test_list
,
'r'
)
as
f
:
lines
=
[
line
.
strip
()
for
line
in
f
]
for
line
in
lines
:
img_path
,
lab
=
line
.
strip
().
split
(
'
\t
'
)
im
=
load_and_transform
(
img_path
,
256
,
224
,
False
)
yield
im
.
flatten
().
astype
(
'float32'
),
int
(
lab
)
yield
img_path
,
int
(
lab
)
return
reader
return
paddle
.
reader
.
xmap_readers
(
test_mapper
,
reader
,
cpu_count
(),
buffered_size
)
if
__name__
==
'__main__'
:
...
...
image_classification/resnet.py
浏览文件 @
bdffa40e
...
...
@@ -55,7 +55,7 @@ def layer_warp(block_func, input, ch_in, ch_out, count, stride):
return
conv
def
resnet_imagenet
(
input
,
depth
=
50
,
class_dim
=
10
0
):
def
resnet_imagenet
(
input
,
class_dim
,
depth
=
5
0
):
cfg
=
{
18
:
([
2
,
2
,
2
,
1
],
basicblock
),
34
:
([
3
,
4
,
6
,
3
],
basicblock
),
...
...
@@ -78,7 +78,7 @@ def resnet_imagenet(input, depth=50, class_dim=100):
return
out
def
resnet_cifar10
(
input
,
depth
=
32
,
class_dim
=
10
):
def
resnet_cifar10
(
input
,
class_dim
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
...
...
image_classification/train.py
浏览文件 @
bdffa40e
...
...
@@ -72,13 +72,13 @@ def main():
paddle
.
reader
.
shuffle
(
flowers
.
train
(),
# To use other data, replace the above line with:
# reader.t
est
_reader('train.list'),
# reader.t
rain
_reader('train.list'),
buf_size
=
1000
),
batch_size
=
BATCH_SIZE
)
test_reader
=
paddle
.
batch
(
flowers
.
valid
(),
# To use other data, replace the above line with:
# reader.t
rain
_reader('val.list'),
# reader.t
est
_reader('val.list'),
batch_size
=
BATCH_SIZE
)
# End batch and end pass event handler
...
...
image_classification/vgg.py
浏览文件 @
bdffa40e
...
...
@@ -17,7 +17,7 @@ import paddle.v2 as paddle
__all__
=
[
'vgg13'
,
'vgg16'
,
'vgg19'
]
def
vgg
(
input
,
nums
,
class_dim
=
100
):
def
vgg
(
input
,
nums
,
class_dim
):
def
conv_block
(
input
,
num_filter
,
groups
,
num_channels
=
None
):
return
paddle
.
networks
.
img_conv_group
(
input
=
input
,
...
...
@@ -53,16 +53,16 @@ def vgg(input, nums, class_dim=100):
return
out
def
vgg13
(
input
,
class_dim
=
100
):
def
vgg13
(
input
,
class_dim
):
nums
=
[
2
,
2
,
2
,
2
,
2
]
return
vgg
(
input
,
nums
,
class_dim
)
def
vgg16
(
input
,
class_dim
=
100
):
def
vgg16
(
input
,
class_dim
):
nums
=
[
2
,
2
,
3
,
3
,
3
]
return
vgg
(
input
,
nums
,
class_dim
)
def
vgg19
(
input
,
class_dim
=
100
):
def
vgg19
(
input
,
class_dim
):
nums
=
[
2
,
2
,
4
,
4
,
4
]
return
vgg
(
input
,
nums
,
class_dim
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录