Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b650ad01
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b650ad01
编写于
1月 22, 2020
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update to fluid 1.7 api
上级
60f3d986
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
22 addition
and
39 deletion
+22
-39
dygraph/tsm/model.py
dygraph/tsm/model.py
+16
-35
dygraph/tsm/train.py
dygraph/tsm/train.py
+6
-4
未找到文件。
dygraph/tsm/model.py
浏览文件 @
b650ad01
...
...
@@ -17,24 +17,22 @@ import time
import
sys
import
paddle.fluid
as
fluid
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
import
math
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
self
.
full_name
(),
# num_channels = num_channels,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
...
...
@@ -45,7 +43,6 @@ class ConvBNLayer(fluid.dygraph.Layer):
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(),
...
...
@@ -60,29 +57,25 @@ class ConvBNLayer(fluid.dygraph.Layer):
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
stride
,
shortcut
=
True
,
seg_num
=
8
):
super
(
BottleneckBlock
,
self
).
__init__
(
name_scope
)
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
1
,
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
stride
,
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
...
...
@@ -90,7 +83,6 @@ class BottleneckBlock(fluid.dygraph.Layer):
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
...
...
@@ -127,18 +119,9 @@ class TSM_ResNet(fluid.dygraph.Layer):
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
Pool2D
(
self
.
full_name
(),
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
num_channels
=
64
...
...
@@ -149,7 +132,6 @@ class TSM_ResNet(fluid.dygraph.Layer):
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
...
...
@@ -159,32 +141,31 @@ class TSM_ResNet(fluid.dygraph.Layer):
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
FC
(
self
.
full_name
(),
size
=
self
.
class_dim
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
learning_rate
=
2.0
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
)))
self
.
out
=
Linear
(
2048
,
self
.
class_dim
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)),
bias_attr
=
fluid
.
param_attr
.
ParamAttr
(
learning_rate
=
2.0
,
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.
)))
def
forward
(
self
,
inputs
):
y
=
fluid
.
layers
.
reshape
(
inputs
,
[
-
1
,
inputs
.
shape
[
2
],
inputs
.
shape
[
3
],
inputs
.
shape
[
4
]])
y
=
self
.
conv
(
y
)
y
=
self
.
pool2d_max
(
y
)
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
dropout
(
y
,
dropout_prob
=
0.5
)
y
=
fluid
.
layers
.
reshape
(
y
,
[
-
1
,
self
.
seg_num
,
y
.
shape
[
1
]])
y
=
fluid
.
layers
.
reduce_mean
(
y
,
dim
=
1
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
2048
])
y
=
self
.
out
(
y
)
return
y
dygraph/tsm/train.py
浏览文件 @
b650ad01
...
...
@@ -21,7 +21,6 @@ import logging
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.base
import
to_variable
from
model
import
TSM_ResNet
from
config_utils
import
*
from
reader
import
KineticsReader
...
...
@@ -107,7 +106,7 @@ def val(epoch, model, cfg, args):
total_sample
))
def
create_optimizer
(
cfg
):
def
create_optimizer
(
cfg
,
params
):
total_videos
=
cfg
.
total_videos
step
=
int
(
total_videos
/
cfg
.
batch_size
+
1
)
bd
=
[
e
*
step
for
e
in
cfg
.
decay_epochs
]
...
...
@@ -121,7 +120,8 @@ def create_optimizer(cfg):
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
momentum
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_weight_decay
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_weight_decay
),
parameter_list
=
params
)
return
optimizer
...
...
@@ -142,7 +142,9 @@ def train(args):
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
video_model
=
TSM_ResNet
(
"TSM"
,
train_config
)
optimizer
=
create_optimizer
(
train_config
.
TRAIN
)
optimizer
=
create_optimizer
(
train_config
.
TRAIN
,
video_model
.
parameters
())
if
use_data_parallel
:
video_model
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
video_model
,
strategy
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录