Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b430a921
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b430a921
编写于
9月 16, 2019
作者:
C
cuicheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update TensorRT 1.5.2 inference time
上级
89d4f259
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
142 addition
and
142 deletion
+142
-142
PaddleCV/image_classification/README.md
PaddleCV/image_classification/README.md
+71
-71
PaddleCV/image_classification/README_en.md
PaddleCV/image_classification/README_en.md
+71
-71
未找到文件。
PaddleCV/image_classification/README.md
浏览文件 @
b430a921
...
...
@@ -236,128 +236,128 @@ PaddlePaddle/Models ImageClassification 支持自定义数据
### AlexNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
AlexNet
](
http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar
)
| 56.72% | 79.17% | 3.083 | 2.
728
|
|
[
AlexNet
](
http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar
)
| 56.72% | 79.17% | 3.083 | 2.
566
|
### SqueezeNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
SqueezeNet1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar
)
| 59.60% | 81.66% | 2.740 | 1.
688
|
|
[
SqueezeNet1_1
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar
)
| 60.08% | 81.85% | 2.751 | 1.2
70
|
|
[
SqueezeNet1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar
)
| 59.60% | 81.66% | 2.740 | 1.
719
|
|
[
SqueezeNet1_1
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar
)
| 60.08% | 81.85% | 2.751 | 1.2
82
|
### VGG Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar
)
| 69.28% | 89.09% | 8.223 | 6.
821
|
|
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar
)
| 70.02% | 89.42% | 9.512 | 7.
783
|
|
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar
)
| 72.00% | 90.69% | 11.315 |
9.067
|
|
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar
)
| 72.56% | 90.93% | 13.096 |
10.388
|
|
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar
)
| 69.28% | 89.09% | 8.223 | 6.
619
|
|
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar
)
| 70.02% | 89.42% | 9.512 | 7.
566
|
|
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar
)
| 72.00% | 90.69% | 11.315 |
8.985
|
|
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar
)
| 72.56% | 90.93% | 13.096 |
9.997
|
### MobileNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar
)
| 51.43% | 75.46% | 2.283 | 0.8
66
|
|
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar
)
| 63.52% | 84.73% | 2.378 | 1.05
8
|
|
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar
)
| 68.81% | 88.23% | 2.540 | 1.3
8
6 |
|
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar
)
| 51.43% | 75.46% | 2.283 | 0.8
38
|
|
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar
)
| 63.52% | 84.73% | 2.378 | 1.05
2
|
|
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar
)
| 68.81% | 88.23% | 2.540 | 1.3
7
6 |
|
[
MobileNetV1
](
http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar
)
| 70.99% | 89.68% | 2.609 |1.615 |
|
[
MobileNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar
)
| 53.21% | 76.52% | 4.267 |
3.777
|
|
[
MobileNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar
)
| 65.03% | 85.72% | 4.514 |
4.150
|
|
[
MobileNetV2_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar
)
| 69.83% | 89.01% | 4.313 | 3.
720
|
|
[
MobileNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar
)
| 72.15% | 90.65% | 4.546 |
5.278
|
|
[
MobileNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar
)
| 74.12% | 91.67% | 5.235 |
6.909
|
|
[
MobileNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar
)
| 75.23% | 92.58% | 6.680 |
7.658
|
|
[
MobileNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar
)
| 53.21% | 76.52% | 4.267 |
2.791
|
|
[
MobileNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar
)
| 65.03% | 85.72% | 4.514 |
3.008
|
|
[
MobileNetV2_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar
)
| 69.83% | 89.01% | 4.313 | 3.
504
|
|
[
MobileNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar
)
| 72.15% | 90.65% | 4.546 |
3.874
|
|
[
MobileNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar
)
| 74.12% | 91.67% | 5.235 |
4.771
|
|
[
MobileNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar
)
| 75.23% | 92.58% | 6.680 |
5.649
|
|
[
MobileNetV3_small_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar
)
| 67.46% | 87.12% | 6.809 | |
### ShuffleNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 68.80% | 88.45% | 6.101 | 3.616 |
|
[
ShuffleNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar
)
| 49.90% | 73.79% | 5.956 | 2.
961
|
|
[
ShuffleNetV2_x0_33
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar
)
| 53.73% | 77.05% | 5.896 | 2.
941
|
|
[
ShuffleNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar
)
| 60.32% | 82.26% | 6.048 |
3.088
|
|
[
ShuffleNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar
)
| 71.63% | 90.15% | 6.113 | 3.
699
|
|
[
ShuffleNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
| 73.15% | 91.20% | 6.430 |
4.553
|
|
[
ShuffleNetV2_swish
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
| 70.03% | 89.17% | 6.078 |
6.282
|
|
[
ShuffleNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar
)
| 49.90% | 73.79% | 5.956 | 2.
505
|
|
[
ShuffleNetV2_x0_33
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar
)
| 53.73% | 77.05% | 5.896 | 2.
519
|
|
[
ShuffleNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar
)
| 60.32% | 82.26% | 6.048 |
2.642
|
|
[
ShuffleNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar
)
| 71.63% | 90.15% | 6.113 | 3.
164
|
|
[
ShuffleNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
| 73.15% | 91.20% | 6.430 |
3.954
|
|
[
ShuffleNetV2_swish
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
| 70.03% | 89.17% | 6.078 |
4.976
|
### ResNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar
)
| 70.98% | 89.92% | 3.456 | 2.
484
|
|
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
| 72.26% | 90.80% | 3.847 | 2.4
73
|
|
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
)
| 74.57% | 92.14% | 5.668 | 3.
767
|
|
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
| 75.98% | 92.98% | 6.089 | 3.5
31
|
|
[
ResNet50
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
| 76.50% | 93.00% | 8.787 | 5.
434
|
|
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
|78.35% | 94.03% | 9.013 | 5.
463
|
|
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
| 79.12% | 94.44% | 9.058 | 5.
510
|
|
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
| 79.84% | 94.93% | 9.058 | 5.
510
|
|
[
ResNet101
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
)
| 77.56% | 93.64% | 15.447 | 8.
779
|
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 80.17% | 94.97% | 15.685 | 8.
878
|
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26% | 93.96% | 21.816 | 1
2.148
|
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59% | 95.30% | 22.041 | 1
2.259
|
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
)
| 80.93% | 95.33% | 28.015 | 1
5.278
|
|
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar
)
| 70.98% | 89.92% | 3.456 | 2.
261
|
|
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
| 72.26% | 90.80% | 3.847 | 2.4
04
|
|
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
)
| 74.57% | 92.14% | 5.668 | 3.
424
|
|
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
| 75.98% | 92.98% | 6.089 | 3.5
44
|
|
[
ResNet50
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
| 76.50% | 93.00% | 8.787 | 5.
137
|
|
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
|78.35% | 94.03% | 9.013 | 5.
285
|
|
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
| 79.12% | 94.44% | 9.058 | 5.
259
|
|
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
| 79.84% | 94.93% | 9.058 | 5.
259
|
|
[
ResNet101
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
)
| 77.56% | 93.64% | 15.447 | 8.
473
|
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 80.17% | 94.97% | 15.685 | 8.
574
|
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26% | 93.96% | 21.816 | 1
1.646
|
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59% | 95.30% | 22.041 | 1
1.858
|
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
)
| 80.93% | 95.33% | 28.015 | 1
4.896
|
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar
)
| 77.75% | 93.82% | 12.863 | 9.
837
|
|
[
ResNeXt50_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar
)
| 79.56% | 94.62% | 13.673 | 9.
991
|
|
[
ResNeXt50_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 28.162 | 1
8.271
|
|
[
ResNeXt50_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar
)
| 80.12% | 94.86% | 20.888 | 1
7.687
|
|
[
ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar
)
| 78.65% | 94.19% | 24.154 |
21.387
|
|
[
ResNeXt101_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar
)
| 80.33% | 95.12% | 24.701 | 1
8.032
|
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 41.073 | 3
8.736
|
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78% | 95.20% | 42.277 |
40.929
|
|
[
ResNeXt152_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar
)
| 78.98% | 94.33% | 37.007 |
31.30
1 |
|
[
ResNeXt152_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar
)
| 79.51% | 94.71% | 58.966 |
57.267
|
|
[
ResNeXt152_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar
)
| 81.08% | 95.34% | 60.947 | 4
9.117
|
|
[
ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar
)
| 77.75% | 93.82% | 12.863 | 9.
241
|
|
[
ResNeXt50_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar
)
| 79.56% | 94.62% | 13.673 | 9.
162
|
|
[
ResNeXt50_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 28.162 | 1
5.935
|
|
[
ResNeXt50_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar
)
| 80.12% | 94.86% | 20.888 | 1
5.938
|
|
[
ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar
)
| 78.65% | 94.19% | 24.154 |
17.661
|
|
[
ResNeXt101_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar
)
| 80.33% | 95.12% | 24.701 | 1
7.249
|
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 41.073 | 3
1.288
|
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78% | 95.20% | 42.277 |
32.620
|
|
[
ResNeXt152_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar
)
| 78.98% | 94.33% | 37.007 |
26.98
1 |
|
[
ResNeXt152_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar
)
| 79.51% | 94.71% | 58.966 |
47.915
|
|
[
ResNeXt152_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar
)
| 81.08% | 95.34% | 60.947 | 4
7.406
|
### DenseNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DenseNet121
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar
)
| 75.66% | 92.58% | 12.437 | 5.
813
|
|
[
DenseNet161
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar
)
| 78.57% | 94.14% | 27.717 | 12.
861
|
|
[
DenseNet169
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar
)
| 76.81% | 93.31% | 18.941 |
8.146
|
|
[
DenseNet201
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar
)
| 77.63% | 93.66% | 26.583 | 10.
549
|
|
[
DenseNet264
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar
)
| 77.96% | 93.85% | 41.495 | 1
5.574
|
|
[
DenseNet121
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar
)
| 75.66% | 92.58% | 12.437 | 5.
592
|
|
[
DenseNet161
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar
)
| 78.57% | 94.14% | 27.717 | 12.
254
|
|
[
DenseNet169
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar
)
| 76.81% | 93.31% | 18.941 |
7.742
|
|
[
DenseNet201
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar
)
| 77.63% | 93.66% | 26.583 | 10.
066
|
|
[
DenseNet264
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar
)
| 77.96% | 93.85% | 41.495 | 1
4.740
|
### DPN Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DPN68
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar
)
| 76.78% | 93.43% | 18.446 | 6.
324
|
|
[
DPN92
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar
)
| 79.85% | 94.80% | 25.748 | 2
2.182
|
|
[
DPN98
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar
)
| 80.59% | 95.10% | 29.421 | 13.
657
|
|
[
DPN107
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar
)
| 80.89% | 95.32% | 41.071 | 1
9.11
5 |
|
[
DPN131
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar
)
| 80.70% | 95.14% | 41.179 | 18.2
78
|
|
[
DPN68
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar
)
| 76.78% | 93.43% | 18.446 | 6.
199
|
|
[
DPN92
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar
)
| 79.85% | 94.80% | 25.748 | 2
1.029
|
|
[
DPN98
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar
)
| 80.59% | 95.10% | 29.421 | 13.
411
|
|
[
DPN107
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar
)
| 80.89% | 95.32% | 41.071 | 1
8.88
5 |
|
[
DPN131
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar
)
| 80.70% | 95.14% | 41.179 | 18.2
46
|
### SENet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
SE_ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar
)
| 79.52% | 94.75% | 10.345 | 7.6
62
|
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44% | 93.96% | 14.916 | 12.
126
|
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12% | 94.20% | 30.085 | 2
4.110
|
|
[
SENet
_154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet_154_vd_pretrained.tar
)
| 81.40% | 95.48% | 71.892 | 64.855
|
|
[
SE_ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar
)
| 79.52% | 94.75% | 10.345 | 7.6
31
|
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44% | 93.96% | 14.916 | 12.
305
|
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12% | 94.20% | 30.085 | 2
3.218
|
|
[
SENet
154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
)
| 81.40% | 95.48% | 71.892 | 53.131
|
### Inception Series
| Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
GoogLeNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar
)
| 70.70% | 89.66% | 6.528 |
3.076
|
|
[
Xception41
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar
)
| 79.30% | 94.53% | 13.757 |
10.831
|
|
[
Xception41_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar
)
| 79.55% | 94.38% | 14.268 |
10.301
|
|
[
Xception65
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar
)
| 81.00% | 95.49% | 19.216 | 1
5.981
|
|
[
Xception65_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar
)
| 80.32% | 94.49% | 19.536 | 1
6.365
|
|
[
Xception71
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar
)
| 81.11% | 95.45% | 23.291 | 1
8.97
4 |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.77% | 95.26% | 32.413 | 1
8.154
|
|
[
GoogLeNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar
)
| 70.70% | 89.66% | 6.528 |
2.919
|
|
[
Xception41
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar
)
| 79.30% | 94.53% | 13.757 |
7.885
|
|
[
Xception41_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar
)
| 79.55% | 94.38% | 14.268 |
7.257
|
|
[
Xception65
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar
)
| 81.00% | 95.49% | 19.216 | 1
0.742
|
|
[
Xception65_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar
)
| 80.32% | 94.49% | 19.536 | 1
0.713
|
|
[
Xception71
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar
)
| 81.11% | 95.45% | 23.291 | 1
2.15
4 |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.77% | 95.26% | 32.413 | 1
7.728
|
### DarkNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DarkNet53
](
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar
)
| 78.04% | 94.05% | 11.969 |
7.153
|
|
[
DarkNet53
](
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar
)
| 78.04% | 94.05% | 11.969 |
6.300
|
### ResNeXt101_wsl Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ResNeXt101_32x8d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar
)
| 82.55% | 96.74% | 33.310 | 27.6
4
8 |
|
[
ResNeXt101_32x16d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar
)
| 84.24% | 97.26% | 54.320 | 4
6.064
|
|
[
ResNeXt101_32x32d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar
)
| 84.97% | 97.59% | 97.734 | 8
7.961
|
|
[
ResNeXt101_32x8d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar
)
| 82.55% | 96.74% | 33.310 | 27.6
2
8 |
|
[
ResNeXt101_32x16d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar
)
| 84.24% | 97.26% | 54.320 | 4
7.599
|
|
[
ResNeXt101_32x32d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar
)
| 84.97% | 97.59% | 97.734 | 8
1.660
|
|
[
ResNeXt101_32x48d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar
)
| 85.37% | 97.69% | 161.722 | |
|
[
Fix_ResNeXt101_32x48d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar
)
| 86.26% | 97.97% | 236.091 | |
...
...
PaddleCV/image_classification/README_en.md
浏览文件 @
b430a921
...
...
@@ -218,128 +218,128 @@ Pretrained models can be downloaded by clicking related model names.
### AlexNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
AlexNet
](
http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar
)
| 56.72% | 79.17% | 3.083 | 2.
728
|
|
[
AlexNet
](
http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar
)
| 56.72% | 79.17% | 3.083 | 2.
566
|
### SqueezeNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
SqueezeNet1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar
)
| 59.60% | 81.66% | 2.740 | 1.
688
|
|
[
SqueezeNet1_1
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar
)
| 60.08% | 81.85% | 2.751 | 1.2
70
|
|
[
SqueezeNet1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_0_pretrained.tar
)
| 59.60% | 81.66% | 2.740 | 1.
719
|
|
[
SqueezeNet1_1
](
https://paddle-imagenet-models-name.bj.bcebos.com/SqueezeNet1_1_pretrained.tar
)
| 60.08% | 81.85% | 2.751 | 1.2
82
|
### VGG Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar
)
| 69.28% | 89.09% | 8.223 | 6.
821
|
|
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar
)
| 70.02% | 89.42% | 9.512 | 7.
783
|
|
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar
)
| 72.00% | 90.69% | 11.315 |
9.067
|
|
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar
)
| 72.56% | 90.93% | 13.096 |
10.388
|
|
[
VGG11
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG11_pretrained.tar
)
| 69.28% | 89.09% | 8.223 | 6.
619
|
|
[
VGG13
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG13_pretrained.tar
)
| 70.02% | 89.42% | 9.512 | 7.
566
|
|
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.tar
)
| 72.00% | 90.69% | 11.315 |
8.985
|
|
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.tar
)
| 72.56% | 90.93% | 13.096 |
9.997
|
### MobileNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar
)
| 51.43% | 75.46% | 2.283 | 0.8
66
|
|
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar
)
| 63.52% | 84.73% | 2.378 | 1.05
8
|
|
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar
)
| 68.81% | 88.23% | 2.540 | 1.3
8
6 |
|
[
MobileNetV1_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar
)
| 51.43% | 75.46% | 2.283 | 0.8
38
|
|
[
MobileNetV1_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar
)
| 63.52% | 84.73% | 2.378 | 1.05
2
|
|
[
MobileNetV1_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_75_pretrained.tar
)
| 68.81% | 88.23% | 2.540 | 1.3
7
6 |
|
[
MobileNetV1
](
http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar
)
| 70.99% | 89.68% | 2.609 |1.615 |
|
[
MobileNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar
)
| 53.21% | 76.52% | 4.267 |
3.777
|
|
[
MobileNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar
)
| 65.03% | 85.72% | 4.514 |
4.150
|
|
[
MobileNetV2_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar
)
| 69.83% | 89.01% | 4.313 | 3.
720
|
|
[
MobileNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar
)
| 72.15% | 90.65% | 4.546 |
5.278
|
|
[
MobileNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar
)
| 74.12% | 91.67% | 5.235 |
6.909
|
|
[
MobileNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar
)
| 75.23% | 92.58% | 6.680 |
7.658
|
|
[
MobileNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar
)
| 53.21% | 76.52% | 4.267 |
2.791
|
|
[
MobileNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar
)
| 65.03% | 85.72% | 4.514 |
3.008
|
|
[
MobileNetV2_x0_75
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_75_pretrained.tar
)
| 69.83% | 89.01% | 4.313 | 3.
504
|
|
[
MobileNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar
)
| 72.15% | 90.65% | 4.546 |
3.874
|
|
[
MobileNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x1_5_pretrained.tar
)
| 74.12% | 91.67% | 5.235 |
4.771
|
|
[
MobileNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x2_0_pretrained.tar
)
| 75.23% | 92.58% | 6.680 |
5.649
|
|
[
MobileNetV3_small_x1_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_pretrained.tar
)
| 67.46% | 87.12% | 6.809 | |
### ShuffleNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ShuffleNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_pretrained.tar
)
| 68.80% | 88.45% | 6.101 | 3.616 |
|
[
ShuffleNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar
)
| 49.90% | 73.79% | 5.956 | 2.
961
|
|
[
ShuffleNetV2_x0_33
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar
)
| 53.73% | 77.05% | 5.896 | 2.
941
|
|
[
ShuffleNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar
)
| 60.32% | 82.26% | 6.048 |
3.088
|
|
[
ShuffleNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar
)
| 71.63% | 90.15% | 6.113 | 3.
699
|
|
[
ShuffleNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
| 73.15% | 91.20% | 6.430 |
4.553
|
|
[
ShuffleNetV2_swish
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
| 70.03% | 89.17% | 6.078 |
6.282
|
|
[
ShuffleNetV2_x0_25
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_25_pretrained.tar
)
| 49.90% | 73.79% | 5.956 | 2.
505
|
|
[
ShuffleNetV2_x0_33
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_33_pretrained.tar
)
| 53.73% | 77.05% | 5.896 | 2.
519
|
|
[
ShuffleNetV2_x0_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x0_5_pretrained.tar
)
| 60.32% | 82.26% | 6.048 |
2.642
|
|
[
ShuffleNetV2_x1_5
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_5_pretrained.tar
)
| 71.63% | 90.15% | 6.113 | 3.
164
|
|
[
ShuffleNetV2_x2_0
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x2_0_pretrained.tar
)
| 73.15% | 91.20% | 6.430 |
3.954
|
|
[
ShuffleNetV2_swish
](
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_swish_pretrained.tar
)
| 70.03% | 89.17% | 6.078 |
4.976
|
### ResNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar
)
| 70.98% | 89.92% | 3.456 | 2.
484
|
|
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
| 72.26% | 90.80% | 3.847 | 2.4
73
|
|
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
)
| 74.57% | 92.14% | 5.668 | 3.
767
|
|
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
| 75.98% | 92.98% | 6.089 | 3.5
31
|
|
[
ResNet50
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
| 76.50% | 93.00% | 8.787 | 5.
434
|
|
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
|78.35% | 94.03% | 9.013 | 5.
463
|
|
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
| 79.12% | 94.44% | 9.058 | 5.
510
|
|
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
| 79.84% | 94.93% | 9.058 | 5.
510
|
|
[
ResNet101
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
)
| 77.56% | 93.64% | 15.447 | 8.
779
|
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 80.17% | 94.97% | 15.685 | 8.
878
|
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26% | 93.96% | 21.816 | 1
2.148
|
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59% | 95.30% | 22.041 | 1
2.259
|
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
)
| 80.93% | 95.33% | 28.015 | 1
5.278
|
|
[
ResNet18
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_pretrained.tar
)
| 70.98% | 89.92% | 3.456 | 2.
261
|
|
[
ResNet18_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
)
| 72.26% | 90.80% | 3.847 | 2.4
04
|
|
[
ResNet34
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
)
| 74.57% | 92.14% | 5.668 | 3.
424
|
|
[
ResNet34_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
)
| 75.98% | 92.98% | 6.089 | 3.5
44
|
|
[
ResNet50
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar
)
| 76.50% | 93.00% | 8.787 | 5.
137
|
|
[
ResNet50_vc
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vc_pretrained.tar
)
|78.35% | 94.03% | 9.013 | 5.
285
|
|
[
ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
)
| 79.12% | 94.44% | 9.058 | 5.
259
|
|
[
ResNet50_vd_v2
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_v2_pretrained.tar
)
| 79.84% | 94.93% | 9.058 | 5.
259
|
|
[
ResNet101
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
)
| 77.56% | 93.64% | 15.447 | 8.
473
|
|
[
ResNet101_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
)
| 80.17% | 94.97% | 15.685 | 8.
574
|
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.tar
)
| 78.26% | 93.96% | 21.816 | 1
1.646
|
|
[
ResNet152_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar
)
| 80.59% | 95.30% | 22.041 | 1
1.858
|
|
[
ResNet200_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
)
| 80.93% | 95.33% | 28.015 | 1
4.896
|
### ResNeXt Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar
)
| 77.75% | 93.82% | 12.863 | 9.
837
|
|
[
ResNeXt50_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar
)
| 79.56% | 94.62% | 13.673 | 9.
991
|
|
[
ResNeXt50_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 28.162 | 1
8.271
|
|
[
ResNeXt50_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar
)
| 80.12% | 94.86% | 20.888 | 1
7.687
|
|
[
ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar
)
| 78.65% | 94.19% | 24.154 |
21.387
|
|
[
ResNeXt101_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar
)
| 80.33% | 95.12% | 24.701 | 1
8.032
|
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 41.073 | 3
8.736
|
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78% | 95.20% | 42.277 |
40.929
|
|
[
ResNeXt152_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar
)
| 78.98% | 94.33% | 37.007 |
31.30
1 |
|
[
ResNeXt152_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar
)
| 79.51% | 94.71% | 58.966 |
57.267
|
|
[
ResNeXt152_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar
)
| 81.08% | 95.34% | 60.947 | 4
9.117
|
|
[
ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_32x4d_pretrained.tar
)
| 77.75% | 93.82% | 12.863 | 9.
241
|
|
[
ResNeXt50_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_32x4d_pretrained.tar
)
| 79.56% | 94.62% | 13.673 | 9.
162
|
|
[
ResNeXt50_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 28.162 | 1
5.935
|
|
[
ResNeXt50_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_vd_64x4d_pretrained.tar
)
| 80.12% | 94.86% | 20.888 | 1
5.938
|
|
[
ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x4d_pretrained.tar
)
| 78.65% | 94.19% | 24.154 |
17.661
|
|
[
ResNeXt101_vd_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_32x4d_pretrained.tar
)
| 80.33% | 95.12% | 24.701 | 1
7.249
|
|
[
ResNeXt101_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt50_64x4d_pretrained.tar
)
| 78.43% | 94.13% | 41.073 | 3
1.288
|
|
[
ResNeXt101_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
)
| 80.78% | 95.20% | 42.277 |
32.620
|
|
[
ResNeXt152_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_32x4d_pretrained.tar
)
| 78.98% | 94.33% | 37.007 |
26.98
1 |
|
[
ResNeXt152_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_64x4d_pretrained.tar
)
| 79.51% | 94.71% | 58.966 |
47.915
|
|
[
ResNeXt152_vd_64x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt152_vd_64x4d_pretrained.tar
)
| 81.08% | 95.34% | 60.947 | 4
7.406
|
### DenseNet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DenseNet121
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar
)
| 75.66% | 92.58% | 12.437 | 5.
813
|
|
[
DenseNet161
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar
)
| 78.57% | 94.14% | 27.717 | 12.
861
|
|
[
DenseNet169
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar
)
| 76.81% | 93.31% | 18.941 |
8.146
|
|
[
DenseNet201
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar
)
| 77.63% | 93.66% | 26.583 | 10.
549
|
|
[
DenseNet264
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar
)
| 77.96% | 93.85% | 41.495 | 1
5.574
|
|
[
DenseNet121
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet121_pretrained.tar
)
| 75.66% | 92.58% | 12.437 | 5.
592
|
|
[
DenseNet161
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet161_pretrained.tar
)
| 78.57% | 94.14% | 27.717 | 12.
254
|
|
[
DenseNet169
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet169_pretrained.tar
)
| 76.81% | 93.31% | 18.941 |
7.742
|
|
[
DenseNet201
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet201_pretrained.tar
)
| 77.63% | 93.66% | 26.583 | 10.
066
|
|
[
DenseNet264
](
https://paddle-imagenet-models-name.bj.bcebos.com/DenseNet264_pretrained.tar
)
| 77.96% | 93.85% | 41.495 | 1
4.740
|
### DPN Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DPN68
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar
)
| 76.78% | 93.43% | 18.446 | 6.
324
|
|
[
DPN92
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar
)
| 79.85% | 94.80% | 25.748 | 2
2.182
|
|
[
DPN98
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar
)
| 80.59% | 95.10% | 29.421 | 13.
657
|
|
[
DPN107
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar
)
| 80.89% | 95.32% | 41.071 | 1
9.11
5 |
|
[
DPN131
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar
)
| 80.70% | 95.14% | 41.179 | 18.2
78
|
|
[
DPN68
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN68_pretrained.tar
)
| 76.78% | 93.43% | 18.446 | 6.
199
|
|
[
DPN92
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN92_pretrained.tar
)
| 79.85% | 94.80% | 25.748 | 2
1.029
|
|
[
DPN98
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN98_pretrained.tar
)
| 80.59% | 95.10% | 29.421 | 13.
411
|
|
[
DPN107
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN107_pretrained.tar
)
| 80.89% | 95.32% | 41.071 | 1
8.88
5 |
|
[
DPN131
](
https://paddle-imagenet-models-name.bj.bcebos.com/DPN131_pretrained.tar
)
| 80.70% | 95.14% | 41.179 | 18.2
46
|
### SENet Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
SE_ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar
)
| 79.52% | 94.75% | 10.345 | 7.6
62
|
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44% | 93.96% | 14.916 | 12.
126
|
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12% | 94.20% | 30.085 | 2
4.110
|
|
[
SENet
_154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet_154_vd_pretrained.tar
)
| 81.40% | 95.48% | 71.892 | 64.855
|
|
[
SE_ResNet50_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNet50_vd_pretrained.tar
)
| 79.52% | 94.75% | 10.345 | 7.6
31
|
|
[
SE_ResNeXt50_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt50_32x4d_pretrained.tar
)
| 78.44% | 93.96% | 14.916 | 12.
305
|
|
[
SE_ResNeXt101_32x4d
](
https://paddle-imagenet-models-name.bj.bcebos.com/SE_ResNeXt101_32x4d_pretrained.tar
)
| 79.12% | 94.20% | 30.085 | 2
3.218
|
|
[
SENet
154_vd
](
https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
)
| 81.40% | 95.48% | 71.892 | 53.131
|
### Inception Series
| Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
GoogLeNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar
)
| 70.70% | 89.66% | 6.528 |
3.076
|
|
[
Xception41
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar
)
| 79.30% | 94.53% | 13.757 |
10.831
|
|
[
Xception41_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar
)
| 79.55% | 94.38% | 14.268 |
10.301
|
|
[
Xception65
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar
)
| 81.00% | 95.49% | 19.216 | 1
5.981
|
|
[
Xception65_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar
)
| 80.32% | 94.49% | 19.536 | 1
6.365
|
|
[
Xception71
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar
)
| 81.11% | 95.45% | 23.291 | 1
8.97
4 |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.77% | 95.26% | 32.413 | 1
8.154
|
|
[
GoogLeNet
](
https://paddle-imagenet-models-name.bj.bcebos.com/GoogLeNet_pretrained.tar
)
| 70.70% | 89.66% | 6.528 |
2.919
|
|
[
Xception41
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_pretrained.tar
)
| 79.30% | 94.53% | 13.757 |
7.885
|
|
[
Xception41_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception41_deeplab_pretrained.tar
)
| 79.55% | 94.38% | 14.268 |
7.257
|
|
[
Xception65
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_pretrained.tar
)
| 81.00% | 95.49% | 19.216 | 1
0.742
|
|
[
Xception65_deeplab
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception65_deeplab_pretrained.tar
)
| 80.32% | 94.49% | 19.536 | 1
0.713
|
|
[
Xception71
](
https://paddle-imagenet-models-name.bj.bcebos.com/Xception71_pretrained.tar
)
| 81.11% | 95.45% | 23.291 | 1
2.15
4 |
|
[
InceptionV4
](
https://paddle-imagenet-models-name.bj.bcebos.com/InceptionV4_pretrained.tar
)
| 80.77% | 95.26% | 32.413 | 1
7.728
|
### DarkNet
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
DarkNet53
](
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar
)
| 78.04% | 94.05% | 11.969 |
7.153
|
|
[
DarkNet53
](
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_ImageNet1k_pretrained.tar
)
| 78.04% | 94.05% | 11.969 |
6.300
|
### ResNeXt101_wsl Series
|Model | Top-1 | Top-5 | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) |
|- |:-: |:-: |:-: |:-: |
|
[
ResNeXt101_32x8d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar
)
| 82.55% | 96.74% | 33.310 | 27.6
4
8 |
|
[
ResNeXt101_32x16d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar
)
| 84.24% | 97.26% | 54.320 | 4
6.064
|
|
[
ResNeXt101_32x32d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar
)
| 84.97% | 97.59% | 97.734 | 8
7.961
|
|
[
ResNeXt101_32x8d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x8d_wsl_pretrained.tar
)
| 82.55% | 96.74% | 33.310 | 27.6
2
8 |
|
[
ResNeXt101_32x16d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x16d_wsl_pretrained.tar
)
| 84.24% | 97.26% | 54.320 | 4
7.599
|
|
[
ResNeXt101_32x32d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x32d_wsl_pretrained.tar
)
| 84.97% | 97.59% | 97.734 | 8
1.660
|
|
[
ResNeXt101_32x48d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_32x48d_wsl_pretrained.tar
)
| 85.37% | 97.69% | 161.722 | |
|
[
Fix_ResNeXt101_32x48d_wsl
](
https://paddle-imagenet-models-name.bj.bcebos.com/Fix_ResNeXt101_32x48d_wsl_pretrained.tar
)
| 86.26% | 97.97% | 236.091 | |
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录