未验证 提交 b28b862f 编写于 作者: Z Zeyu Chen 提交者: GitHub

Update README.md

上级 94631f03
简体中文 | [English](./README_en.md)
# PaddleNLP
<p align="center">
<img src="./docs/imgs/paddlenlp.png" width="520" height ="100" align="middle" />
</p>
PaddleNLP旨在帮助开发者提高文本建模的效率,通过丰富的模型库、简洁易用的API,提供飞桨2.0的最佳实践并加速NLP领域应用产业落地效率。
![License](https://img.shields.io/badge/license-Apache%202-red.svg)
![python version](https://img.shields.io/badge/python-3.6+-orange.svg)
![support os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-yellow.svg)
## Introduction
PaddleNLP aims to accelerate NLP applications through powerful model zoo, easy-to-use API with detailed tutorials, It's also the NLP best practice for PaddlePaddle 2.0 API system.
# 特性
- **丰富的模型库**
- 涵盖了NLP主流应用相关的前沿模型,包括中文词向量、预训练模型、词法分析、文本分类、文本匹配、文本生成、机器翻译、通用对话、问答系统等。
- **简洁易用的API**
- 深度兼容飞桨2.0的高层API体系,提供更多可复用的文本建模模块,可大幅度减少数据处理、组网、训练环节的代码开发,提高开发效率。
**This project is still UNDER ACTIVE DEVELOPMENT.**
- **高性能分布式训练**
## Features
- 通过高度优化的Transformer网络实现,结合混合精度与Fleet分布式训练API,可充分利用GPU集群资源,高效完成预训练模型的分布式训练。
* **Rich and Powerful Model Zoo**
- Our Model Zoo covers mainstream NLP applications, including Lexical Analysis, Syntactic Parsing, Machine Translation, Text Classification, Text Generation, Text Matching, General Dialogue and Question Answering etc.
* **Easy-to-use API**
- The API is fully integrated with PaddlePaddle high-level API system. It minimizes the number of user actions required for common use cases like data loading, text pre-processing, training and evaluation. which enables you to deal with text problems more productively.
* **High Performance and Large-scale Training**
- We provide a highly optimized ditributed training implementation for BERT with Fleet API, it can fully utilize GPU clusters for large-scale model pre-training. Please refer to our [benchmark](./benchmark/bert) for more information.
* **Detailed Tutorials and Industrial Practices**
- We offers detailed and interactable notebook tutorials to show you the best practices of PaddlePaddle 2.0.
## Installation
### Prerequisites
# 安装
* python >= 3.6
* paddlepaddle >= 2.0.0-rc1
## 环境依赖
- python >= 3.6
- paddlepaddle >= 2.0.0-rc1
```
pip install paddlenlp>=2.0.0a
pip install paddlenlp==2.0.0b
```
## Quick Start
### Quick Dataset Loading
# 快速开始
## 数据集快速加载
```python
from paddlenlp.datasets import ChnSentiCrop
train_ds, test_ds = ChnSentiCorp.get_datasets(['train','test'])
train_dataset, dev_dataset, test_dataset= ChnSentiCorp.get_datasets(['train', 'dev', 'test'])
```
For more Dataset API usage, please refer to [Dataset API](./docs/datasets.md).
可参考[Dataset文档](./docs/datasets.md)查看更多数据集。
### Chinese Text Emebdding Loading
## 一键加载中文词向量
```python
from paddlenlp.embeddings import TokenEmbedding
wordemb = TokenEmbedding("w2v.baidu_encyclopedia.target.word-word.dim300")
......@@ -59,9 +64,9 @@ wordemb.cosine_sim("艺术", "火车")
>>> 0.14792643
```
For more token embedding usage, please refer to [examples/word_embedding](./example/../examples/word_embedding/README.md).
内置50+中文词向量,更多使用方法请参考 [Embedding文档](./examples/word_embedding/README.md)
### One-Line Classical Model Building
## 一键加载经典模型
```python
from paddlenlp.models import Ernie, Senta, SimNet
......@@ -71,49 +76,65 @@ ernie = Ernie("ernie-1.0", num_classes=2, task="seq-cls")
senta = Senta(network="bow", vocab_size=1024, num_classes=2)
simnet = SimNet(network="gru", vocab_size=1024, num_classes=2)
```
### Rich Chinsese Pre-trained Models
更多使用方法请参考[Models API](./docs/models.md)
## 一键加载高质量中文预训练模型
```python
from paddlenlp.transformers import ErnieModel, BertModel, RobertaModel, ElectraModel
ernie = ErnieModel.from_pretrained('ernie-1.0')
bert = BertModel.from_pretrained('bert-wwm-chinese')
roberta = RobertaModel.from_pretrained('roberta-wwm-ext')
electra = ElectraModel.from_pretrained('chinese-electra-small')
```
For more pretrained model selection, please refer to [Pretrained-Models](./docs/transformers.md)
请参考 [Pretrained-Models](./docs/transformers.md)查看目前支持的预训练模型。
# API 使用文档
- [Transformer API](./docs/transformers.md)
- [Dataset API](./docs/datasets.md)
- [Embedding API](./docs/embeddings.md)
- [Metrics API](./docs/embeddings.md)
## API Usage
- [Models API](./docs/models.md)
* [Transformer API](./docs/transformers.md)
* [Dataset API](./docs/datasets.md)
* [Embedding API](./docs/embeddings.md)
* [Metrics API](./docs/embeddings.md)
* [Models API](./docs/models.md)
## Tutorials
Please refer to our official AI Studio account for more interactive tutorials: [PaddleNLP on AI Studio](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995)
# 可交互式Notebook教程
* [paddlenlp.seq2vec是什么? 瞧瞧它怎么完成情感分析教程](https://aistudio.baidu.com/aistudio/projectdetail/1294333) shows how to use lstm to do sentiment analysis.
- [使用seq2vec模块进行句子情感分类](https://aistudio.baidu.com/aistudio/projectdetail/1283423)
- [如何将预训练模型Fine-tune下游任务](https://aistudio.baidu.com/aistudio/projectdetail/1294333)
- [使用Bi-GRU+CRF完成快递单信息抽取](https://aistudio.baidu.com/aistudio/projectdetail/1317771)
- [使用预训练模型ERNIE优化快递单信息抽取](https://aistudio.baidu.com/aistudio/projectdetail/1329361)
- [使用Seq2Seq模型完成自动对联模型](https://aistudio.baidu.com/aistudio/projectdetail/1321118)
- [使用预训练模型ERNIE-GEN实现智能写诗](https://aistudio.baidu.com/aistudio/projectdetail/1339888)
- [使用TCN网络完成新冠疫情病例数预测](https://aistudio.baidu.com/aistudio/projectdetail/1290873)
* [使用PaddleNLP语义预训练模型ERNIE优化情感分析教程](https://aistudio.baidu.com/aistudio/projectdetail/1283423) shows how to exploit the pretrained ERNIE to make sentiment analysis better.
更多教程参见[PaddleNLP on AI Studio](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995)
* [基于Bi-GRU+CRF的快递单信息抽取](https://aistudio.baidu.com/aistudio/projectdetail/1317771) shows how to make use of bigru and crf to do information extraction.
* [使用PaddleNLP预训练模型ERNIE优化快递单信息抽取](https://aistudio.baidu.com/aistudio/projectdetail/1329361) shows how to exploit the pretrained ERNIE to do information extraction better.
# 社区贡献与技术交流
- 欢迎您加入PaddleNLP的SIG社区,贡献优秀的模型实现、公开数据集、教程与案例、外围小工具。
- 现在就加入我们的QQ技术交流群,一起交流NLP技术!⬇️
## Community
<div align="center">
<img src="./docs/imgs/qq.png" width="200" height="200" />
</div>
* SIG for Pretrained Model Contribution
* SIG for Dataset Integration
* SIG for Tutorial Writing
## License
# License
PaddleNLP is provided under the [Apache-2.0 License](./LICENSE).
PaddleNLP遵循[Apache-2.0开源协议](./LICENSE)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册