diff --git a/ctr/README.cn.md b/ctr/README.cn.md index 1b2a73757575404dfd7790440bf9f27617084c1d..a4cb6d17144a9d78a2764e8a49d3abaeb918b7b6 100644 --- a/ctr/README.cn.md +++ b/ctr/README.cn.md @@ -146,8 +146,8 @@ Wide & Deep Learning Model\[[3](#参考文献)\] 可以作为一种相对成熟 Figure 2. Wide & Deep Model

-模型左边的 Wide 部分,可以容纳大规模系数特征,并且对一些特定的信息(比如 ID)有一定的记忆能力; -而模型右边的 Deep 部分,能够学习特征间的隐含关系,在相同数量的特征下有更好的学习和推导能力。 +模型上边的 Wide 部分,可以容纳大规模系数特征,并且对一些特定的信息(比如 ID)有一定的记忆能力; +而模型下边的 Deep 部分,能够学习特征间的隐含关系,在相同数量的特征下有更好的学习和推导能力。 ### 编写模型输入 diff --git a/ctr/README.md b/ctr/README.md index 391c842edb4e4d16badd23a4f3c2545dbb16df89..6f11ac60734b4a549a9c84d7fbba8ed283a97284 100644 --- a/ctr/README.md +++ b/ctr/README.md @@ -120,7 +120,7 @@ The model structure is as follows: Figure 2. Wide & Deep Model

-The wide part of the left side of the model can accommodate large-scale coefficient features and has some memory for some specific information (such as ID); and the Deep part of the right side of the model can learn the implicit relationship between features. +The wide part of the top side of the model can accommodate large-scale coefficient features and has some memory for some specific information (such as ID); and the Deep part of the bottom side of the model can learn the implicit relationship between features. ### Model Input diff --git a/ctr/images/wide_deep.png b/ctr/images/wide_deep.png index 03c4afcfc6cea0b5abf4c4554ecf9810843e75e2..616f88cb22607c1c6bcbe4312644f632ef284e8e 100644 Binary files a/ctr/images/wide_deep.png and b/ctr/images/wide_deep.png differ