diff --git a/fluid/PaddleRec/ctr/network_conf.py b/fluid/PaddleRec/ctr/network_conf.py index fa7dc11b00941c75453ef6165a74f61ad772d1bf..54dd855928d0a25dff99c0b5165c1b1343732138 100644 --- a/fluid/PaddleRec/ctr/network_conf.py +++ b/fluid/PaddleRec/ctr/network_conf.py @@ -78,7 +78,7 @@ def ctr_deepfm_model(factor_size, sparse_feature_dim, dense_feature_dim, sparse_ param_attr=sparse_fm_param_attr, is_sparse=True) return fluid.layers.sequence_pool(input=emb, pool_type='average') - sparse_embed_seq = map(embedding_layer, sparse_input_ids) + sparse_embed_seq = list(map(embedding_layer, sparse_input_ids)) concated = fluid.layers.concat(sparse_embed_seq + [dense_input], axis=1) fc1 = fluid.layers.fc(input=concated, size=400, act='relu', param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal( @@ -134,7 +134,7 @@ def ctr_dnn_model(embedding_size, sparse_feature_dim): use_double_buffer=True) words = fluid.layers.read_file(py_reader) - sparse_embed_seq = map(embedding_layer, words[1:-1]) + sparse_embed_seq = list(map(embedding_layer, words[1:-1])) concated = fluid.layers.concat(sparse_embed_seq + words[0:1], axis=1) fc1 = fluid.layers.fc(input=concated, size=400, act='relu',