未验证 提交 b1c37965 编写于 作者: Y Yang yaming 提交者: GitHub

Merge pull request #635 from pkuyym/fix-630

Change to parallel reader
"""This model read the sample from disk. """This module contains data processing related logic.
use multiprocessing to reading samples
push samples from one block to multiprocessing queue
Todos:
1. multiprocess read block from disk
""" """
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import random import random
import struct
import Queue import Queue
import time
import numpy as np import numpy as np
import struct from threading import Thread
from multiprocessing import Manager, Process
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
class OneBlock(object): class SampleInfo(object):
""" struct for one block : """SampleInfo holds the necessary information to load a sample from disk.
contain label, label desc, feature, feature_desc
Attributes: Args:
label(str) : label path of one block feature_bin_path (str): File containing the feature data.
label_desc(str) : label description path of one block feature_start (int): Start position of the sample's feature data.
feature(str) : feature path of on block feature_size (int): Byte count of the sample's feature data.
feature_desc(str) : feature description path of on block feature_frame_num (int): Time length of the sample.
feature_dim (int): Feature dimension of one frame.
label_bin_path (str): File containing the label data.
label_size (int): Byte count of the sample's label data.
label_frame_num (int): Label number of the sample.
""" """
def __init__(self): def __init__(self, feature_bin_path, feature_start, feature_size,
"""the constructor.""" feature_frame_num, feature_dim, label_bin_path, label_start,
label_size, label_frame_num):
self.label = "label" self.feature_bin_path = feature_bin_path
self.label_desc = "label_desc" self.feature_start = feature_start
self.feature = "feature" self.feature_size = feature_size
self.feature_desc = "feature_desc" self.feature_frame_num = feature_frame_num
self.feature_dim = feature_dim
class DataRead(object): self.label_bin_path = label_bin_path
self.label_start = label_start
self.label_size = label_size
self.label_frame_num = label_frame_num
class SampleInfoBucket(object):
"""SampleInfoBucket contains paths of several description files. Feature
description file contains necessary information (including path of binary
data, sample start position, sample byte number etc.) to access samples'
feature data and the same with the label description file. SampleInfoBucket
is the minimum unit to do shuffle.
Args:
feature_bin_paths (list|tuple): Files containing the binary feature
data.
feature_desc_paths (list|tuple): Files containing the description of
samples' feature data.
label_bin_paths (list|tuple): Files containing the binary label data.
label_desc_paths (list|tuple): Files containing the description of
samples' label data.
""" """
Attributes:
_lblock(obj:`OneBlock`) : the list of OneBlock def __init__(self, feature_bin_paths, feature_desc_paths, label_bin_paths,
_ndrop_sentence_len(int): dropout the sentence which's frame_num large than _ndrop_sentence_len label_desc_paths):
_que_sample(obj:`Queue`): sample buffer block_num = len(label_bin_paths)
_nframe_dim(int): the batch sample frame_dim(todo remove) assert len(label_desc_paths) == block_num
_nstart_block_idx(int): the start block id assert len(feature_bin_paths) == block_num
_nload_block_num(int): the block num assert len(feature_desc_paths) == block_num
self._block_num = block_num
self._feature_bin_paths = feature_bin_paths
self._feature_desc_paths = feature_desc_paths
self._label_bin_paths = label_bin_paths
self._label_desc_paths = label_desc_paths
def generate_sample_info_list(self):
sample_info_list = []
for block_idx in xrange(self._block_num):
label_bin_path = self._label_bin_paths[block_idx]
label_desc_path = self._label_desc_paths[block_idx]
feature_bin_path = self._feature_bin_paths[block_idx]
feature_desc_path = self._feature_desc_paths[block_idx]
label_desc_lines = open(label_desc_path).readlines()
feature_desc_lines = open(feature_desc_path).readlines()
sample_num = int(label_desc_lines[0].split()[1])
assert sample_num == int(feature_desc_lines[0].split()[1])
for i in xrange(sample_num):
feature_desc_split = feature_desc_lines[i + 1].split()
feature_start = int(feature_desc_split[2])
feature_size = int(feature_desc_split[3])
feature_frame_num = int(feature_desc_split[4])
feature_dim = int(feature_desc_split[5])
label_desc_split = label_desc_lines[i + 1].split()
label_start = int(label_desc_split[2])
label_size = int(label_desc_split[3])
label_frame_num = int(label_desc_split[4])
sample_info_list.append(
SampleInfo(feature_bin_path, feature_start, feature_size,
feature_frame_num, feature_dim, label_bin_path,
label_start, label_size, label_frame_num))
return sample_info_list
class EpochEndSignal():
pass
class DataReader(object):
"""DataReader provides basic audio sample preprocessing pipeline including
data loading and data augmentation.
Args:
feature_file_list (str): File containing paths of feature data file and
corresponding description file.
label_file_list (str): File containing paths of label data file and
corresponding description file.
frame_dim (int): The final feature dimension of one frame after all
augmentation applied.
drop_frame_len (int): Samples whose label length above the value will be
dropped.
process_num (int): Number of processes for processing data.
sample_buffer_size (int): Buffer size to indicate the maximum samples
cached.
sample_info_buffer_size (int): Buffer size to indicate the maximum
sample information cached.
batch_buffer_size (int): Buffer size to indicate the maximum batch
cached.
shuffle_block_num (int): Block number indicating the minimum unit to do
shuffle.
random_seed (int): Random seed.
""" """
def __init__(self, sfeature_lst, slabel_lst, ndrop_sentence_len=512): def __init__(
""" self,
Args: feature_file_list,
sfeature_lst(str):feature lst path label_file_list,
slabel_lst(str):label lst path frame_dim=120 * 11, # @TODO augmentor is responsible for the value
Returns: drop_frame_len=512,
None process_num=10,
""" sample_buffer_size=1024,
self._lblock = [] sample_info_buffer_size=1024,
self._ndrop_sentence_len = ndrop_sentence_len batch_buffer_size=1024,
self._que_sample = Queue.Queue() shuffle_block_num=1,
self._nframe_dim = 120 * 11 random_seed=0):
self._nstart_block_idx = 0 self._feature_file_list = feature_file_list
self._nload_block_num = 1 self._label_file_list = label_file_list
self._ndrop_frame_len = 256 self._frame_dim = frame_dim
self._drop_frame_len = drop_frame_len
self._load_list(sfeature_lst, slabel_lst) self._shuffle_block_num = shuffle_block_num
self._block_info_list = None
def _load_list(self, sfeature_lst, slabel_lst): self._rng = random.Random(random_seed)
""" load list and shuffle self._bucket_list = None
Args: self.generate_bucket_list(True)
sfeature_lst(str):feature lst path self._order_id = 0
slabel_lst(str):label lst path self._manager = Manager()
Returns: self._sample_buffer_size = sample_buffer_size
None self._sample_info_buffer_size = sample_info_buffer_size
""" self._batch_buffer_size = batch_buffer_size
lfeature = open(sfeature_lst).readlines() self._process_num = process_num
llabel = open(slabel_lst).readlines()
assert len(llabel) == len(lfeature) def generate_bucket_list(self, is_shuffle):
for i in range(0, len(lfeature), 2): if self._block_info_list is None:
one_block = OneBlock() block_feature_info_lines = open(self._feature_file_list).readlines()
block_label_info_lines = open(self._label_file_list).readlines()
one_block.label = llabel[i] assert len(block_feature_info_lines) == len(block_label_info_lines)
one_block.label_desc = llabel[i + 1] self._block_info_list = []
one_block.feature = lfeature[i] for i in xrange(0, len(block_feature_info_lines), 2):
one_block.feature_desc = lfeature[i + 1] block_info = (block_feature_info_lines[i],
self._lblock.append(one_block) block_feature_info_lines[i + 1],
block_label_info_lines[i],
random.shuffle(self._lblock) block_label_info_lines[i + 1])
self._block_info_list.append(
def _load_one_block(self, lsample, id): map(lambda line: line.strip(), block_info))
"""read one block by id and push load sample in list lsample
Args: if is_shuffle:
lsample(list): return sample list self._rng.shuffle(self._block_info_list)
id(int): block id
Returns: self._bucket_list = []
None for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
""" bucket_block_info = self._block_info_list[i:i +
if id >= len(self._lblock): self._shuffle_block_num]
return self._bucket_list.append(
SampleInfoBucket(
slabel_path = self._lblock[id].label.strip() map(lambda info: info[0], bucket_block_info),
slabel_desc_path = self._lblock[id].label_desc.strip() map(lambda info: info[1], bucket_block_info),
sfeature_path = self._lblock[id].feature.strip() map(lambda info: info[2], bucket_block_info),
sfeature_desc_path = self._lblock[id].feature_desc.strip() map(lambda info: info[3], bucket_block_info)))
llabel_line = open(slabel_desc_path).readlines() # @TODO make this configurable
lfeature_line = open(sfeature_desc_path).readlines() def set_transformers(self, transformers):
self._transformers = transformers
file_lable_bin = open(slabel_path, "r")
file_feature_bin = open(sfeature_path, "r") def _sample_generator(self):
sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
sample_num = int(llabel_line[0].split()[1]) sample_queue = self._manager.Queue(self._sample_buffer_size)
assert sample_num == int(lfeature_line[0].split()[1]) self._order_id = 0
llabel_line = llabel_line[1:] def ordered_feeding_task(sample_info_queue):
lfeature_line = lfeature_line[1:] for sample_info_bucket in self._bucket_list:
sample_info_list = sample_info_bucket.generate_sample_info_list(
for i in range(sample_num): )
# read label self._rng.shuffle(sample_info_list) # do shuffle here
llabel_split = llabel_line[i].split() for sample_info in sample_info_list:
nlabel_start = int(llabel_split[2]) sample_info_queue.put((sample_info, self._order_id))
nlabel_size = int(llabel_split[3]) self._order_id += 1
nlabel_frame_num = int(llabel_split[4])
for i in xrange(self._process_num):
file_lable_bin.seek(nlabel_start, 0) sample_info_queue.put(EpochEndSignal())
label_bytes = file_lable_bin.read(nlabel_size)
assert nlabel_frame_num * 4 == len(label_bytes) feeding_thread = Thread(
label_array = struct.unpack('I' * nlabel_frame_num, label_bytes) target=ordered_feeding_task, args=(sample_info_queue, ))
label_data = np.array(label_array, dtype="int64") feeding_thread.daemon = True
label_data = label_data.reshape((nlabel_frame_num, 1)) feeding_thread.start()
# read feature def ordered_processing_task(sample_info_queue, sample_queue, out_order):
lfeature_split = lfeature_line[i].split() def read_bytes(fpath, start, size):
nfeature_start = int(lfeature_split[2]) f = open(fpath, 'r')
nfeature_size = int(lfeature_split[3]) f.seek(start, 0)
nfeature_frame_num = int(lfeature_split[4]) binary_bytes = f.read(size)
nfeature_frame_dim = int(lfeature_split[5]) f.close()
return binary_bytes
file_feature_bin.seek(nfeature_start, 0)
feature_bytes = file_feature_bin.read(nfeature_size) ins = sample_info_queue.get()
assert nfeature_frame_num * nfeature_frame_dim * 4 == len(
feature_bytes) while not isinstance(ins, EpochEndSignal):
feature_array = struct.unpack('f' * nfeature_frame_num * sample_info, order_id = ins
nfeature_frame_dim, feature_bytes)
feature_data = np.array(feature_array, dtype="float32") feature_bytes = read_bytes(sample_info.feature_bin_path,
feature_data = feature_data.reshape( sample_info.feature_start,
(nfeature_frame_num, nfeature_frame_dim)) sample_info.feature_size)
#drop long sentence label_bytes = read_bytes(sample_info.label_bin_path,
if self._ndrop_frame_len < feature_data.shape[0]: sample_info.label_start,
sample_info.label_size)
assert sample_info.label_frame_num * 4 == len(label_bytes)
label_array = struct.unpack('I' * sample_info.label_frame_num,
label_bytes)
label_data = np.array(
label_array, dtype='int64').reshape(
(sample_info.label_frame_num, 1))
feature_frame_num = sample_info.feature_frame_num
feature_dim = sample_info.feature_dim
assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
feature_array = struct.unpack('f' * feature_frame_num *
feature_dim, feature_bytes)
feature_data = np.array(
feature_array, dtype='float32').reshape((
sample_info.feature_frame_num, sample_info.feature_dim))
sample_data = (feature_data, label_data)
for transformer in self._transformers:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data = transformer.perform_trans(sample_data)
while order_id != out_order[0]:
time.sleep(0.001)
# drop long sentence
if self._drop_frame_len >= sample_data[0].shape[0]:
sample_queue.put(sample_data)
out_order[0] += 1
ins = sample_info_queue.get()
sample_queue.put(EpochEndSignal())
out_order = self._manager.list([0])
args = (sample_info_queue, sample_queue, out_order)
workers = [
Process(
target=ordered_processing_task, args=args)
for _ in xrange(self._process_num)
]
for w in workers:
w.daemon = True
w.start()
finished_process_num = 0
while finished_process_num < self._process_num:
sample = sample_queue.get()
if isinstance(sample, EpochEndSignal):
finished_process_num += 1
continue continue
lsample.append((feature_data, label_data)) yield sample
def get_one_batch(self, nbatch_size): feeding_thread.join()
"""construct one batch(feature, label), batch size is nbatch_size for w in workers:
Args: w.join()
nbatch_size(int): batch size
Returns: def batch_iterator(self, batch_size, minimum_batch_size):
None def batch_to_ndarray(batch_samples, lod):
""" batch_feature = np.zeros(
if self._que_sample.empty(): (lod[-1], self._frame_dim), dtype="float32")
lsample = self._load_block( batch_label = np.zeros((lod[-1], 1), dtype="int64")
range(self._nstart_block_idx, self._nstart_block_idx + start = 0
self._nload_block_num, 1)) for sample in batch_samples:
self._move_sample(lsample) frame_num = sample[0].shape[0]
self._nstart_block_idx += self._nload_block_num batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
if self._que_sample.empty(): start += frame_num
self._nstart_block_idx = 0 return (batch_feature, batch_label)
return None
#cal all frame num def batch_assembling_task(sample_generator, batch_queue):
ncur_len = 0 batch_samples = []
lod = [0] lod = [0]
samples = [] for sample in sample_generator():
bat_feature = np.zeros((nbatch_size, self._nframe_dim)) batch_samples.append(sample)
for i in range(nbatch_size): lod.append(lod[-1] + sample[0].shape[0])
# empty clear zero if len(batch_samples) == batch_size:
if self._que_sample.empty(): (batch_feature, batch_label) = batch_to_ndarray(
self._nstart_block_idx = 0 batch_samples, lod)
# copy batch_queue.put((batch_feature, batch_label, lod))
else: batch_samples = []
(one_feature, one_label) = self._que_sample.get() lod = [0]
samples.append((one_feature, one_label))
ncur_len += one_feature.shape[0] if len(batch_samples) >= minimum_batch_size:
lod.append(ncur_len) (batch_feature, batch_label) = batch_to_ndarray(batch_samples,
lod)
bat_feature = np.zeros((ncur_len, self._nframe_dim), dtype="float32") batch_queue.put((batch_feature, batch_label, lod))
bat_label = np.zeros((ncur_len, 1), dtype="int64")
ncur_len = 0 batch_queue.put(EpochEndSignal())
for sample in samples:
one_feature = sample[0] batch_queue = Queue.Queue(self._batch_buffer_size)
one_label = sample[1]
nframe_num = one_feature.shape[0] assembling_thread = Thread(
nstart = ncur_len target=batch_assembling_task,
nend = ncur_len + nframe_num args=(self._sample_generator, batch_queue))
bat_feature[nstart:nend, :] = one_feature assembling_thread.daemon = True
bat_label[nstart:nend, :] = one_label assembling_thread.start()
ncur_len += nframe_num
return (bat_feature, bat_label, lod) batch_data = batch_queue.get()
while not isinstance(batch_data, EpochEndSignal):
def set_trans(self, ltrans): yield batch_data
""" set transform list batch_data = batch_queue.get()
Args:
ltrans(list): data tranform list assembling_thread.join()
Returns:
None
"""
self._ltrans = ltrans
def _load_block(self, lblock_id):
"""read blocks
"""
lsample = []
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def load_block(self, lblock_id):
"""read blocks
Args:
lblock_id(list):the block list id
Returns:
None
"""
lsample = []
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def _move_sample(self, lsample):
"""move sample to queue
Args:
lsample(list): one block of samples read from disk
Returns:
None
"""
# random
random.shuffle(lsample)
for sample in lsample:
self._que_sample.put(sample)
...@@ -9,9 +9,9 @@ import time ...@@ -9,9 +9,9 @@ import time
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import paddle.v2.fluid.profiler as profiler import paddle.v2.fluid.profiler as profiler
import data_utils.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.trans_splice as trans_splice import data_utils.augmentor.trans_splice as trans_splice
import data_utils.data_reader as reader import data_utils.data_reader as reader
...@@ -22,6 +22,12 @@ def parse_args(): ...@@ -22,6 +22,12 @@ def parse_args():
type=int, type=int,
default=32, default=32,
help='The sequence number of a batch data. (default: %(default)d)') help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--minimum_batch_size',
type=int,
default=1,
help='The minimum sequence number of a batch data. (default: %(default)d)'
)
parser.add_argument( parser.add_argument(
'--stacked_num', '--stacked_num',
type=int, type=int,
...@@ -160,14 +166,15 @@ def train(args): ...@@ -160,14 +166,15 @@ def train(args):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
# @TODO datareader should take the responsibility (parsing from config file)
ltrans = [ ltrans = [
trans_add_delta.TransAddDelta(2, 2), trans_add_delta.TransAddDelta(2, 2),
trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
trans_splice.TransSplice() trans_splice.TransSplice()
] ]
data_reader = reader.DataRead(args.feature_lst, args.label_lst) data_reader = reader.DataReader(args.feature_lst, args.label_lst)
data_reader.set_trans(ltrans) data_reader.set_transformers(ltrans)
res_feature = fluid.LoDTensor() res_feature = fluid.LoDTensor()
res_label = fluid.LoDTensor() res_label = fluid.LoDTensor()
...@@ -175,22 +182,15 @@ def train(args): ...@@ -175,22 +182,15 @@ def train(args):
pass_start_time = time.time() pass_start_time = time.time()
words_seen = 0 words_seen = 0
accuracy.reset(exe) accuracy.reset(exe)
batch_id = 0 for batch_id, batch_data in enumerate(
while True: data_reader.batch_iterator(args.batch_size,
# load_data args.minimum_batch_size)):
one_batch = data_reader.get_one_batch(args.batch_size) (bat_feature, bat_label, lod) = batch_data
if one_batch == None:
break
(bat_feature, bat_label, lod) = one_batch
res_feature.set(bat_feature, place) res_feature.set(bat_feature, place)
res_feature.set_lod([lod]) res_feature.set_lod([lod])
res_label.set(bat_label, place) res_label.set(bat_label, place)
res_label.set_lod([lod]) res_label.set_lod([lod])
batch_id += 1
words_seen += lod[-1] words_seen += lod[-1]
loss, acc = exe.run( loss, acc = exe.run(
fluid.default_main_program(), fluid.default_main_program(),
feed={"feature": res_feature, feed={"feature": res_feature,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册