diff --git a/PaddleCV/gan/cycle_gan/infer.py b/PaddleCV/gan/cycle_gan/infer.py index 666e6859b64482de12bcd0b13d15a76c63963e2f..51772e3a5879f3b5f316fc086a4e30b9231e214d 100644 --- a/PaddleCV/gan/cycle_gan/infer.py +++ b/PaddleCV/gan/cycle_gan/infer.py @@ -2,7 +2,6 @@ import argparse import functools import os from PIL import Image -from paddle.fluid import core import paddle.fluid as fluid import paddle import numpy as np @@ -51,7 +50,7 @@ def infer(args): if len(image.shape) != 3: continue data = image.transpose([2, 0, 1])[np.newaxis, :].astype("float32") - tensor = core.LoDTensor() + tensor = fluid.LoDTensor() tensor.set(data, place) fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor}) diff --git a/PaddleCV/gan/cycle_gan/train.py b/PaddleCV/gan/cycle_gan/train.py index 561b1effc48477efb0454f63859e1664128e2a3a..29bd7b054cc0198930977ebafab635adc6b807b3 100644 --- a/PaddleCV/gan/cycle_gan/train.py +++ b/PaddleCV/gan/cycle_gan/train.py @@ -12,7 +12,6 @@ import numpy as np from scipy.misc import imsave import paddle.fluid as fluid import paddle.fluid.profiler as profiler -from paddle.fluid import core import data_reader from utility import add_arguments, print_arguments, ImagePool from trainer import * @@ -82,8 +81,8 @@ def train(args): for data_A, data_B in zip(A_test_reader(), B_test_reader()): A_name = data_A[1] B_name = data_B[1] - tensor_A = core.LoDTensor() - tensor_B = core.LoDTensor() + tensor_A = fluid.LoDTensor() + tensor_B = fluid.LoDTensor() tensor_A.set(data_A[0], place) tensor_B.set(data_B[0], place) fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = exe.run( @@ -168,8 +167,8 @@ def train(args): for i in range(max_images_num): data_A = next(A_reader) data_B = next(B_reader) - tensor_A = core.LoDTensor() - tensor_B = core.LoDTensor() + tensor_A = fluid.LoDTensor() + tensor_B = fluid.LoDTensor() tensor_A.set(data_A, place) tensor_B.set(data_B, place) s_time = time.time() diff --git a/PaddleCV/icnet/infer.py b/PaddleCV/icnet/infer.py index fddc375af223962add58cb6ddf7c0d319b318c99..1686adcc45b40b6306fbe8b5d0fc80aa757c74ab 100644 --- a/PaddleCV/icnet/infer.py +++ b/PaddleCV/icnet/infer.py @@ -115,7 +115,7 @@ def infer(args): image_file, is_color=True).astype("float32") image -= IMG_MEAN img = paddle.dataset.image.to_chw(image)[np.newaxis, :] - image_t = fluid.core.LoDTensor() + image_t = fluid.LoDTensor() image_t.set(img, place) result = exe.run(inference_program, feed={"image": image_t}, diff --git a/PaddleCV/icnet/utils.py b/PaddleCV/icnet/utils.py index 7d58060eb96fd95a04f377f8c852eda02e59b5f6..2796b95d3aa5c36d31b49901c8b5f5a8f91866aa 100644 --- a/PaddleCV/icnet/utils.py +++ b/PaddleCV/icnet/utils.py @@ -18,7 +18,6 @@ from __future__ import division from __future__ import print_function import distutils.util import numpy as np -from paddle.fluid import core import six @@ -72,7 +71,7 @@ def to_lodtensor(data, place): lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int32") flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = core.LoDTensor() + res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res @@ -80,17 +79,17 @@ def to_lodtensor(data, place): def get_feeder_data(data, place, for_test=False): feed_dict = {} - image_t = core.LoDTensor() + image_t = fluid.LoDTensor() image_t.set(data[0], place) feed_dict["image"] = image_t if not for_test: - labels_sub1_t = core.LoDTensor() - labels_sub2_t = core.LoDTensor() - labels_sub4_t = core.LoDTensor() - mask_sub1_t = core.LoDTensor() - mask_sub2_t = core.LoDTensor() - mask_sub4_t = core.LoDTensor() + labels_sub1_t = fluid.LoDTensor() + labels_sub2_t = fluid.LoDTensor() + labels_sub4_t = fluid.LoDTensor() + mask_sub1_t = fluid.LoDTensor() + mask_sub2_t = fluid.LoDTensor() + mask_sub4_t = fluid.LoDTensor() labels_sub1_t.set(data[1], place) labels_sub2_t.set(data[3], place) @@ -105,8 +104,8 @@ def get_feeder_data(data, place, for_test=False): feed_dict["label_sub4"] = labels_sub4_t feed_dict["mask_sub4"] = mask_sub4_t else: - label_t = core.LoDTensor() - mask_t = core.LoDTensor() + label_t = fluid.LoDTensor() + mask_t = fluid.LoDTensor() label_t.set(data[1], place) mask_t.set(data[2], place) feed_dict["label"] = label_t diff --git a/PaddleCV/ocr_recognition/utility.py b/PaddleCV/ocr_recognition/utility.py index 3d0adb7781631e410302d9b1b25aa8353470d867..a22a744128e01f97026d1535278566ec8c8f7a66 100755 --- a/PaddleCV/ocr_recognition/utility.py +++ b/PaddleCV/ocr_recognition/utility.py @@ -18,7 +18,6 @@ from __future__ import division from __future__ import print_function import distutils.util import numpy as np -from paddle.fluid import core import paddle.fluid as fluid import six @@ -73,14 +72,14 @@ def to_lodtensor(data, place): lod.append(cur_len) flattened_data = np.concatenate(data, axis=0).astype("int32") flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = core.LoDTensor() + res = fluid.LoDTensor() res.set(flattened_data, place) res.set_lod([lod]) return res def get_ctc_feeder_data(data, place, need_label=True): - pixel_tensor = core.LoDTensor() + pixel_tensor = fluid.LoDTensor() pixel_data = None pixel_data = np.concatenate( list(map(lambda x: x[0][np.newaxis, :], data)), @@ -98,7 +97,7 @@ def get_ctc_feeder_for_infer(data, place): def get_attention_feeder_data(data, place, need_label=True): - pixel_tensor = core.LoDTensor() + pixel_tensor = fluid.LoDTensor() pixel_data = None pixel_data = np.concatenate( list(map(lambda x: x[0][np.newaxis, :], data)), @@ -130,7 +129,7 @@ def get_attention_feeder_for_infer(data, place): init_scores = fluid.create_lod_tensor(init_scores_data, init_recursive_seq_lens, place) - pixel_tensor = core.LoDTensor() + pixel_tensor = fluid.LoDTensor() pixel_data = None pixel_data = np.concatenate( list(map(lambda x: x[0][np.newaxis, :], data)),