Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ad1a917f
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ad1a917f
编写于
9月 19, 2019
作者:
L
lvmengsi
提交者:
ruri
9月 19, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix spade typo (#3365)
上级
c82ab203
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
76 addition
and
47 deletion
+76
-47
PaddleCV/PaddleGAN/trainer/SPADE.py
PaddleCV/PaddleGAN/trainer/SPADE.py
+76
-47
未找到文件。
PaddleCV/PaddleGAN/trainer/SPADE.py
浏览文件 @
ad1a917f
...
...
@@ -23,6 +23,8 @@ import time
import
network.vgg
as
vgg
import
pickle
as
pkl
import
numpy
as
np
class
GTrainer
():
def
__init__
(
self
,
input_label
,
input_img
,
input_ins
,
cfg
,
step_per_epoch
):
self
.
cfg
=
cfg
...
...
@@ -43,8 +45,10 @@ class GTrainer():
self
.
pred_fake
=
[]
self
.
pred_real
=
[]
for
p
in
pred
:
self
.
pred_fake
.
append
([
tensor
[:
tensor
.
shape
[
0
]
//
2
]
for
tensor
in
p
])
self
.
pred_real
.
append
([
tensor
[
tensor
.
shape
[
0
]
//
2
:]
for
tensor
in
p
])
self
.
pred_fake
.
append
(
[
tensor
[:
tensor
.
shape
[
0
]
//
2
]
for
tensor
in
p
])
self
.
pred_real
.
append
(
[
tensor
[
tensor
.
shape
[
0
]
//
2
:]
for
tensor
in
p
])
else
:
self
.
pred_fake
=
pred
[:
pred
.
shape
[
0
]
//
2
]
self
.
pred_real
=
pred
[
pred
.
shape
[
0
]
//
2
:]
...
...
@@ -67,20 +71,26 @@ class GTrainer():
for
i
in
range
(
num_D
):
num_intermediate_outputs
=
len
(
self
.
pred_fake
[
i
])
-
1
for
j
in
range
(
num_intermediate_outputs
):
self
.
gan_feat_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
x
=
self
.
pred_fake
[
i
][
j
],
y
=
self
.
pred_real
[
i
][
j
])))
*
cfg
.
lambda_feat
/
num_D
self
.
gan_feat_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
x
=
self
.
pred_fake
[
i
][
j
],
y
=
self
.
pred_real
[
i
][
j
])))
*
cfg
.
lambda_feat
/
num_D
self
.
gan_feat_loss
.
persistable
=
True
########VGG Feat loss
weights
=
[
1.0
/
32
,
1.0
/
16
,
1.0
/
8
,
1.0
/
4
,
1.0
]
weights
=
[
1.0
/
32
,
1.0
/
16
,
1.0
/
8
,
1.0
/
4
,
1.0
]
self
.
vgg
=
vgg
.
VGG19
()
fake_vgg
=
self
.
vgg
.
net
(
self
.
fake_B
)
real_vgg
=
self
.
vgg
.
net
(
input_img
)
self
.
vgg_loss
=
0.0
for
i
in
range
(
len
(
fake_vgg
)):
self
.
vgg_loss
+=
weights
[
i
]
*
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
self
.
vgg_loss
+=
weights
[
i
]
*
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
x
=
fake_vgg
[
i
],
y
=
real_vgg
[
i
])))
self
.
vgg_loss
.
persistable
=
True
self
.
g_loss
=
(
self
.
gan_loss
+
self
.
gan_feat_loss
+
self
.
vgg_loss
)
/
3
self
.
g_loss
=
(
self
.
gan_loss
+
self
.
gan_feat_loss
+
self
.
vgg_loss
)
/
3
lr
=
cfg
.
learning_rate
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
...
...
@@ -109,7 +119,8 @@ class GTrainer():
class
DTrainer
():
def
__init__
(
self
,
input_label
,
input_img
,
input_ins
,
fake_B
,
cfg
,
step_per_epoch
):
def
__init__
(
self
,
input_label
,
input_img
,
input_ins
,
fake_B
,
cfg
,
step_per_epoch
):
self
.
program
=
fluid
.
default_main_program
().
clone
()
lr
=
cfg
.
learning_rate
with
fluid
.
program_guard
(
self
.
program
):
...
...
@@ -125,8 +136,10 @@ class DTrainer():
self
.
pred_fake
=
[]
self
.
pred_real
=
[]
for
p
in
pred
:
self
.
pred_fake
.
append
([
tensor
[:
tensor
.
shape
[
0
]
//
2
]
for
tensor
in
p
])
self
.
pred_real
.
append
([
tensor
[
tensor
.
shape
[
0
]
//
2
:]
for
tensor
in
p
])
self
.
pred_fake
.
append
(
[
tensor
[:
tensor
.
shape
[
0
]
//
2
]
for
tensor
in
p
])
self
.
pred_real
.
append
(
[
tensor
[
tensor
.
shape
[
0
]
//
2
:]
for
tensor
in
p
])
else
:
self
.
pred_fake
=
pred
[:
pred
.
shape
[
0
]
//
2
]
self
.
pred_real
=
pred
[
pred
.
shape
[
0
]
//
2
:]
...
...
@@ -134,20 +147,28 @@ class DTrainer():
#####gan loss
self
.
gan_loss_fake
=
0
for
pred_i
in
self
.
pred_fake
:
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
minval
=
fluid
.
layers
.
elementwise_min
(
-
1
*
pred_i
-
1
,
zeros
)
minval
=
fluid
.
layers
.
elementwise_min
(
-
1
*
pred_i
-
1
,
zeros
)
loss_i
=
-
1
*
fluid
.
layers
.
reduce_mean
(
minval
)
self
.
gan_loss_fake
+=
loss_i
self
.
gan_loss_fake
/=
len
(
self
.
pred_fake
)
self
.
gan_loss_real
=
0
for
pred_i
in
self
.
pred_real
:
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
minval
=
fluid
.
layers
.
elementwise_min
(
pred_i
-
1
,
zeros
)
minval
=
fluid
.
layers
.
elementwise_min
(
pred_i
-
1
,
zeros
)
loss_i
=
-
1
*
fluid
.
layers
.
reduce_mean
(
minval
)
self
.
gan_loss_real
+=
loss_i
self
.
gan_loss_real
/=
len
(
self
.
pred_real
)
...
...
@@ -188,8 +209,7 @@ class SPADE(object):
'--vgg19_pretrain'
,
type
=
str
,
default
=
"./VGG19_pretrained"
,
help
=
"VGG19 pretrained model for vgg loss"
)
help
=
"VGG19 pretrained model for vgg loss"
)
parser
.
add_argument
(
'--crop_width'
,
type
=
int
,
...
...
@@ -216,10 +236,7 @@ class SPADE(object):
default
=
4
,
help
=
"num of discriminator layers for SPADE"
)
parser
.
add_argument
(
'--label_nc'
,
type
=
int
,
default
=
36
,
help
=
"label numbers of SPADE"
)
'--label_nc'
,
type
=
int
,
default
=
36
,
help
=
"label numbers of SPADE"
)
parser
.
add_argument
(
'--ngf'
,
type
=
int
,
...
...
@@ -245,7 +262,11 @@ class SPADE(object):
type
=
float
,
default
=
10
,
help
=
"weight term of vgg loss"
)
parser
.
add_argument
(
'--no_instance'
,
type
=
bool
,
default
=
False
,
help
=
"Whether to use instance label."
)
parser
.
add_argument
(
'--no_instance'
,
type
=
bool
,
default
=
False
,
help
=
"Whether to use instance label."
)
return
parser
...
...
@@ -261,7 +282,9 @@ class SPADE(object):
def
build_model
(
self
):
data_shape
=
[
-
1
,
3
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
label_shape
=
[
-
1
,
self
.
cfg
.
label_nc
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
label_shape
=
[
-
1
,
self
.
cfg
.
label_nc
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
edge_shape
=
[
-
1
,
1
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
input_A
=
fluid
.
layers
.
data
(
...
...
@@ -273,7 +296,8 @@ class SPADE(object):
input_fake
=
fluid
.
layers
.
data
(
name
=
'input_fake'
,
shape
=
data_shape
,
dtype
=
'float32'
)
gen_trainer
=
GTrainer
(
input_A
,
input_B
,
input_C
,
self
.
cfg
,
self
.
batch_num
)
gen_trainer
=
GTrainer
(
input_A
,
input_B
,
input_C
,
self
.
cfg
,
self
.
batch_num
)
dis_trainer
=
DTrainer
(
input_A
,
input_B
,
input_C
,
input_fake
,
self
.
cfg
,
self
.
batch_num
)
py_reader
=
fluid
.
io
.
PyReader
(
...
...
@@ -290,7 +314,8 @@ class SPADE(object):
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
gen_trainer
.
vgg
.
load_vars
(
exe
,
gen_trainer
.
program
,
self
.
cfg
.
vgg19_pretrain
)
gen_trainer
.
vgg
.
load_vars
(
exe
,
gen_trainer
.
program
,
self
.
cfg
.
vgg19_pretrain
)
if
self
.
cfg
.
init_model
:
utility
.
init_checkpoints
(
self
.
cfg
,
exe
,
gen_trainer
,
"net_G"
)
...
...
@@ -315,7 +340,8 @@ class SPADE(object):
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
for
tensor
in
py_reader
():
data_A
,
data_B
,
data_C
=
tensor
[
0
][
'input_A'
],
tensor
[
0
][
'input_B'
],
tensor
[
0
][
'input_C'
]
data_A
,
data_B
,
data_C
=
tensor
[
0
][
'input_A'
],
tensor
[
0
][
'input_B'
],
tensor
[
0
][
'input_C'
]
tensor_A
=
fluid
.
LoDTensor
()
tensor_B
=
fluid
.
LoDTensor
()
tensor_C
=
fluid
.
LoDTensor
()
...
...
@@ -327,18 +353,20 @@ class SPADE(object):
g_loss_gan
,
g_loss_vgg
,
g_loss_feat
,
fake_B_tmp
=
exe
.
run
(
gen_trainer_program
,
fetch_list
=
[
gen_trainer
.
gan_loss
,
gen_trainer
.
vgg_loss
,
gen_trainer
.
gan_feat_loss
,
gen_trainer
.
fake_B
gen_trainer
.
gan_loss
,
gen_trainer
.
vgg_loss
,
gen_trainer
.
gan_feat_loss
,
gen_trainer
.
fake_B
],
feed
=
{
"input_label"
:
tensor_A
,
feed
=
{
"input_label"
:
tensor_A
,
"input_img"
:
tensor_B
,
"input_ins"
:
tensor_C
})
"input_ins"
:
tensor_C
})
# optimize the discriminator network
d_loss_real
,
d_loss_fake
=
exe
.
run
(
dis_trainer_program
,
d_loss_real
,
d_loss_fake
=
exe
.
run
(
dis_trainer_program
,
fetch_list
=
[
dis_trainer
.
gan_loss_real
,
dis_trainer
.
gan_loss_fake
dis_trainer
.
gan_loss_real
,
dis_trainer
.
gan_loss_fake
],
feed
=
{
"input_label"
:
tensor_A
,
...
...
@@ -355,7 +383,8 @@ class SPADE(object):
d_loss_real: {}; d_loss_fake: {};
\n\
Batch_time_cost: {:.2f}"
.
format
(
epoch_id
,
batch_id
,
g_loss_gan
[
0
],
g_loss_vgg
[
0
],
g_loss_feat
[
0
],
d_loss_real
[
0
],
d_loss_fake
[
0
],
batch_time
))
0
],
g_loss_feat
[
0
],
d_loss_real
[
0
],
d_loss_fake
[
0
],
batch_time
))
sys
.
stdout
.
flush
()
batch_id
+=
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录