diff --git a/README.cn.md b/README.cn.md index f14712704d9e2ddb4b13870e92020a46e0d14f52..8806dbfa52b152f123634f84dd1402098b017b45 100644 --- a/README.cn.md +++ b/README.cn.md @@ -17,7 +17,7 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式 - 1.2 [噪声对比估计加速词向量训练](https://github.com/PaddlePaddle/models/tree/develop/nce_cost) -## 2. 使用循环神经网络语言模型生成文本 +## 2. RNN 语言模型 语言模型是自然语言处理领域里一个重要的基础模型,除了得到词向量(语言模型训练的副产物),还可以帮助我们生成文本。给定若干个词,语言模型可以帮助我们预测下一个最可能出现的词。 @@ -50,7 +50,7 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式 - 5.1 [基于Pairwise和Listwise的排序学习](https://github.com/PaddlePaddle/models/tree/develop/ltr) -## 6. 深度结构化语义模型 +## 6. 结构化语义模型 深度结构化语义模型是一种基于神经网络的语义匹配模型框架,可以用于学习两路信息实体或是文本之间的语义相似性。DSSM使用DNN、CNN或是RNN将两路信息实体或是文本映射到同一个连续的低纬度语义空间中。在这个语义空间中,两路实体或是文本可以同时进行表示,然后,通过定义距离度量和匹配函数来刻画并学习不同实体或是文本在同一个语义空间内的语义相似性。 @@ -85,7 +85,7 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式 - 9.1 [Globally Normalized Reader](https://github.com/PaddlePaddle/models/tree/develop/globally_normalized_reader) -## 10. 基于神经网络的自动问答(Neural Question Answering) +## 10. 自动问答 自动问答(Question Answering)系统利用计算机自动回答用户提出的问题,是验证机器是否具备自然语言理解能力的重要任务之一,其研究历史可以追溯到人工智能的原点。与检索系统相比,自动问答系统是信息服务的一种高级形式,系统返回给用户的不再是排序后的基于关键字匹配的检索结果,而是精准的自然语言答案。 @@ -120,7 +120,7 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式 - 13.1 [场景文字识别](https://github.com/PaddlePaddle/models/tree/develop/scene_text_recognition) -## 14. 语音识别:DeepSpeech2 +## 14. 语音识别 语音识别技术(Auto Speech Recognize,简称ASR)将人类语音中的词汇内容转化为计算机可读的输入,让机器能够“听懂”人类的语音,在语音助手、语音输入、语音交互等应用中发挥着重要作用。深度学习在语音识别领域取得了瞩目的成绩,端到端的深度学习方法将传统的声学模型、词典、语言模型等模块融为一个整体,不再依赖隐马尔可夫模型中的各种条件独立性假设,令模型变得更加简洁,一个神经网络模型以语音特征为输入,直接输出识别出的文本,目前已经成为语音识别最重要的手段。 @@ -128,5 +128,5 @@ PaddlePaddle提供了丰富的运算单元,帮助大家以模块化的方式 - 14.1 [语音识别: DeepSpeech2](https://github.com/PaddlePaddle/models/tree/develop/deep_speech_2) -## Copyright and License -PaddlePaddle is provided under the [Apache-2.0 license](LICENSE). + +本教程由[PaddlePaddle](https://github.com/PaddlePaddle/Paddle)创作,采用[Apache-2.0](LICENSE) 许可协议进行许可。 diff --git a/README.md b/README.md index 7d5c0a9c4ad727a9ebcbbf63c41395f10e05a8a8..eead2927ec439ed8bd491f90e6ae1b9c12d8c459 100644 --- a/README.md +++ b/README.md @@ -12,11 +12,11 @@ In the example of word vectors, we show how to use Hierarchical-Sigmoid and Nois - 1.2 [Noise Contrast Estimation Accelerated Word Vector Training](https://github.com/PaddlePaddle/models/tree/develop/nce_cost) -## 2. Generate text using the recurrent neural network language model +## 2. RNN language model The language model is important in the field of natural language processing. In addition to getting the word vector (a by-product of language model training), it can also help us to generate text. Given a number of words, the language model can help us predict the next most likely word. In the example of using the language model to generate text, we focus on the recurrent neural network language model. We can use the instructions in the document quickly adapt to their training corpus, complete automatic writing poetry, automatic writing prose and other interesting models. -- 2.1 [Generate text using the annotated neural network language model](https://github.com/PaddlePaddle/models/tree/develop/generate_sequence_by_rnn_lm) +- 2.1 [Generate text using the RNN language model](https://github.com/PaddlePaddle/models/tree/develop/generate_sequence_by_rnn_lm) ## 3. Click-Through Rate prediction The click-through rate model predicts the probability that a user will click on an ad. This is widely used for advertising technology. Logistic Regression has a good learning performance for large-scale sparse features in the early stages of the development of click-through rate prediction. In recent years, DNN model because of its strong learning ability to gradually take the banner rate of the task of the banner. @@ -74,7 +74,4 @@ For the example of image classification, we show you how to train AlexNet, VGG, - 9.3 [VGG](https://github.com/PaddlePaddle/models/tree/develop/image_classification) - 9.4 [Residual Network](https://github.com/PaddlePaddle/models/tree/develop/image_classification) - -## Copyright and License - -PaddlePaddle is provided under the [Apache-2.0 license](LICENSE). +This tutorial is contributed by [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) and licensed under the [Apache-2.0 license](LICENSE).