diff --git a/fluid/AutoDL/LRC/README.md b/fluid/AutoDL/LRC/README.md index ed85b6e307142d0d797421ec25b273bc05560e6e..df9af47d4a3876371673cbbfef0ad2553768b9a5 100644 --- a/fluid/AutoDL/LRC/README.md +++ b/fluid/AutoDL/LRC/README.md @@ -1,5 +1,8 @@ # LRC Local Rademachar Complexity Regularization -This directory contains image classification model based on novel regularizer rooted in Local Rademacher Complexity (LRC). The regularization by LRC and [DARTS](https://arxiv.org/abs/1806.09055) are combined in this model and it achieves 97.3% accuracy on CIFAR-10 dataset. +Regularization of Deep Neural Networks(DNNs) for the sake of improving their generalization capability is important and chllenging. This directory contains image classification model based on a novel regularizer rooted in Local Rademacher Complexity (LRC). We appreciate the contribution by [DARTS](https://arxiv.org/abs/1806.09055) for our research. The regularization by LRC and DARTS are combined in this model on CIFAR-10 dataset. Code accompanying the paper +> [An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity](https://arxiv.org/abs/1902.00873)\ +> Yingzhen Yang, Xingjian Li, Jun Huan.\ +> _arXiv:1902.00873_. --- # Table of Contents @@ -7,7 +10,6 @@ This directory contains image classification model based on novel regularizer ro - [Installation](#installation) - [Data preparation](#data-preparation) - [Training](#training) -- [Model performances](#model-performances) ## Installation @@ -66,9 +68,7 @@ After data preparation, one can start the training step by: * Initalize bias in batch norm and fc to zero constant and do not add bias to conv2d. -## Model performances -Below is the accuracy on CIFAR-10 dataset: +## Reference -| model | avg top1 | avg top5 | -| ----- | -------- | -------- | -| [DARTS-LRC](https://paddlemodels.bj.bcebos.com/autodl/fluid_rademacher.tar.gz) | 97.34 | 99.75 | + - DARTS: Differentiable Architecture Search [`paper`](https://arxiv.org/abs/1806.09055) + - Differentiable architecture search in PyTorch [`code`](https://github.com/quark0/darts) diff --git a/fluid/AutoDL/LRC/README_cn.md b/fluid/AutoDL/LRC/README_cn.md index 7768c39f4e64d0b780395b67aea35d6f897325bb..06dc937074de199af31db97ee200e7690443b1b0 100644 --- a/fluid/AutoDL/LRC/README_cn.md +++ b/fluid/AutoDL/LRC/README_cn.md @@ -1,5 +1,8 @@ # LRC 局部Rademachar复杂度正则化 -本目录包括了一种基于局部rademacher复杂度的新型正则(LRC)的图像分类模型。该模型将LRC正则和[DARTS](https://arxiv.org/abs/1806.09055)网络相结合,在CIFAR-10数据集中得到了97.3%的准确率。 +为了在深度神经网络中提升泛化能力,正则化的选择十分重要也具有挑战性。本目录包括了一种基于局部rademacher复杂度的新型正则(LRC)的图像分类模型。十分感谢[DARTS](https://arxiv.org/abs/1806.09055)模型对本研究提供的帮助。该模型将LRC正则和DARTS网络相结合,在CIFAR-10数据集中得到了很出色的效果。代码和文章一同发布 +> [An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity](https://arxiv.org/abs/1902.00873)\ +> Yingzhen Yang, Xingjian Li, Jun Huan.\ +> _arXiv:1902.00873_. --- # 内容 @@ -7,7 +10,6 @@ - [安装](#安装) - [数据准备](#数据准备) - [模型训练](#模型训练) -- [模型性能](#模型性能) ## 安装 @@ -63,9 +65,7 @@ * 对batch norm和全连接层偏差采用固定初始化,不对卷积设置偏差 -## 模型性能 -下表为该模型在CIFAR-10数据集上的性能: +## 引用 -| 模型 | 平均top1 | 平均top5 | -| ----- | -------- | -------- | -| [DARTS-LRC](https://paddlemodels.bj.bcebos.com/autodl/fluid_rademacher.tar.gz) | 97.34 | 99.75 | + - DARTS: Differentiable Architecture Search [`论文`](https://arxiv.org/abs/1806.09055) + - Differentiable Architecture Search in PyTorch [`代码`](https://github.com/quark0/darts)