Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
a20fdf00
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a20fdf00
编写于
1月 21, 2019
作者:
Z
zhengya01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce for metric_learning
上级
baaa6166
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
363 addition
and
13 deletion
+363
-13
fluid/PaddleCV/metric_learning/.run_ce.sh
fluid/PaddleCV/metric_learning/.run_ce.sh
+23
-0
fluid/PaddleCV/metric_learning/__init__.py
fluid/PaddleCV/metric_learning/__init__.py
+0
-0
fluid/PaddleCV/metric_learning/_ce.py
fluid/PaddleCV/metric_learning/_ce.py
+15
-9
fluid/PaddleCV/metric_learning/imgtool_ce.py
fluid/PaddleCV/metric_learning/imgtool_ce.py
+123
-0
fluid/PaddleCV/metric_learning/reader_ce.py
fluid/PaddleCV/metric_learning/reader_ce.py
+177
-0
fluid/PaddleCV/metric_learning/run.xsh
fluid/PaddleCV/metric_learning/run.xsh
+3
-0
fluid/PaddleCV/metric_learning/train_elem.py
fluid/PaddleCV/metric_learning/train_elem.py
+22
-4
未找到文件。
fluid/PaddleCV/metric_learning/.run_ce.sh
0 → 100755
浏览文件 @
a20fdf00
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
metric_learning
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train_elem.py
--model
=
ResNet50
--train_batch_size
=
80
--test_batch_size
=
80
--lr
=
0.01
--total_iter_num
=
10
--use_gpu
=
True
--model_save_dir
=
out_put
--loss_name
=
arcmargin
--arc_scale
=
80.0
--arc_margin
=
0.15
--arc_easy_margin
=
False
--enable_ce
=
True | python _ce.py
cudaid
=
${
metric_learning_4
:
=0,1,2,3
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train_elem.py
--model
=
ResNet50
--train_batch_size
=
80
--test_batch_size
=
80
--lr
=
0.01
--total_iter_num
=
10
--use_gpu
=
True
--model_save_dir
=
out_put
--loss_name
=
arcmargin
--arc_scale
=
80.0
--arc_margin
=
0.15
--arc_easy_margin
=
False
--enable_ce
=
True | python _ce.py
cudaid
=
${
metric_learning_8
:
=0,1,2,3,4,5,6,7
}
# use 0,1,2,3,4,5,6,7 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train_elem.py
--model
=
ResNet50
--train_batch_size
=
80
--test_batch_size
=
80
--lr
=
0.01
--total_iter_num
=
10
--use_gpu
=
True
--model_save_dir
=
out_put
--loss_name
=
arcmargin
--arc_scale
=
80.0
--arc_margin
=
0.15
--arc_easy_margin
=
False
--enable_ce
=
True | python _ce.py
fluid/PaddleCV/metric_learning/__init__.py
0 → 100644
浏览文件 @
a20fdf00
fluid/PaddleCV/metric_learning/_ce.py
浏览文件 @
a20fdf00
...
...
@@ -3,18 +3,25 @@
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
,
DurationKpi
,
AccKpi
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
# NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
0
,
actived
=
True
)
test_recall_kpi
=
AccKpi
(
'test_recall'
,
0.02
,
0
,
actived
=
True
)
each_pass_duration_card1_kpi
=
DurationKpi
(
'each_pass_duration_card1'
,
0.08
,
0
,
actived
=
True
)
train_avg_loss_card1_kpi
=
CostKpi
(
'train_avg_loss_card1'
,
0.08
,
0
)
each_pass_duration_card4_kpi
=
DurationKpi
(
'each_pass_duration_card4'
,
0.08
,
0
,
actived
=
True
)
train_avg_loss_card4_kpi
=
CostKpi
(
'train_avg_loss_card4'
,
0.08
,
0
)
each_pass_duration_card8_kpi
=
DurationKpi
(
'each_pass_duration_card8'
,
0.08
,
0
,
actived
=
True
)
train_avg_loss_card8_kpi
=
CostKpi
(
'train_avg_loss_card8'
,
0.08
,
0
)
tracking_kpis
=
[
train_cost_kpi
,
test_recall_kpi
,
]
each_pass_duration_card1_kpi
,
train_avg_loss_card1_kpi
,
each_pass_duration_card4_kpi
,
train_avg_loss_card4_kpi
,
each_pass_duration_card8_kpi
,
train_avg_loss_card8_kpi
,
]
def
parse_log
(
log
):
'''
...
...
@@ -55,4 +62,3 @@ def log_to_ce(log):
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/PaddleCV/metric_learning/imgtool_ce.py
0 → 100644
浏览文件 @
a20fdf00
""" tools for processing images
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
cv2
import
math
import
random
import
functools
import
numpy
as
np
#random.seed(0)
def
rotate_image
(
img
):
""" rotate_image """
(
h
,
w
)
=
img
.
shape
[:
2
]
center
=
(
w
//
2
,
h
//
2
)
#angle = random.randint(-10, 10)
aggle
=
0
M
=
cv2
.
getRotationMatrix2D
(
center
,
angle
,
1.0
)
rotated
=
cv2
.
warpAffine
(
img
,
M
,
(
w
,
h
))
return
rotated
def
random_crop
(
img
,
size
,
scale
=
None
,
ratio
=
None
):
""" random_crop """
scale
=
[
0.08
,
1.0
]
if
scale
is
None
else
scale
ratio
=
[
3.
/
4.
,
4.
/
3.
]
if
ratio
is
None
else
ratio
#aspect_ratio = math.sqrt(random.uniform(*ratio))
aspect_ratio
=
math
.
sqrt
(
1.
)
w
=
1.
*
aspect_ratio
h
=
1.
/
aspect_ratio
bound
=
min
((
float
(
img
.
shape
[
1
])
/
img
.
shape
[
0
])
/
(
w
**
2
),
(
float
(
img
.
shape
[
0
])
/
img
.
shape
[
1
])
/
(
h
**
2
))
scale_max
=
min
(
scale
[
1
],
bound
)
scale_min
=
min
(
scale
[
0
],
bound
)
#target_area = img.shape[0] * img.shape[1] * random.uniform(scale_min,
# scale_max)
target_area
=
img
.
shape
[
0
]
*
img
.
shape
[
1
]
*
(
scale_min
+
scale_max
)
/
2.
target_size
=
math
.
sqrt
(
target_area
)
w
=
int
(
target_size
*
w
)
h
=
int
(
target_size
*
h
)
#i = random.randint(0, img.shape[0] - h)
#j = random.randint(0, img.shape[1] - w)
i
=
int
(
img
.
shape
[
0
]
-
h
)
//
2
j
=
int
(
img
.
shape
[
1
]
-
w
)
//
2
img
=
img
[
i
:
i
+
h
,
j
:
j
+
w
,
:]
resized
=
cv2
.
resize
(
img
,
(
size
,
size
),
interpolation
=
cv2
.
INTER_LANCZOS4
)
return
resized
def
distort_color
(
img
):
return
img
def
resize_short
(
img
,
target_size
):
""" resize_short """
percent
=
float
(
target_size
)
/
min
(
img
.
shape
[
0
],
img
.
shape
[
1
])
resized_width
=
int
(
round
(
img
.
shape
[
1
]
*
percent
))
resized_height
=
int
(
round
(
img
.
shape
[
0
]
*
percent
))
resized
=
cv2
.
resize
(
img
,
(
resized_width
,
resized_height
),
interpolation
=
cv2
.
INTER_LANCZOS4
)
return
resized
def
crop_image
(
img
,
target_size
,
center
):
""" crop_image """
height
,
width
=
img
.
shape
[:
2
]
size
=
target_size
if
center
==
True
:
w_start
=
(
width
-
size
)
//
2
h_start
=
(
height
-
size
)
//
2
else
:
#w_start = random.randint(0, width - size)
#h_start = random.randint(0, height - size)
w_start
=
(
width
-
size
)
//
2
h_start
=
(
height
-
size
)
//
2
w_end
=
w_start
+
size
h_end
=
h_start
+
size
img
=
img
[
h_start
:
h_end
,
w_start
:
w_end
,
:]
return
img
def
process_image
(
sample
,
mode
,
color_jitter
,
rotate
,
crop_size
=
224
,
mean
=
None
,
std
=
None
):
""" process_image """
mean
=
[
0.485
,
0.456
,
0.406
]
if
mean
is
None
else
mean
std
=
[
0.229
,
0.224
,
0.225
]
if
std
is
None
else
std
image_name
=
sample
[
0
]
img
=
cv2
.
imread
(
image_name
)
# BGR mode, but need RGB mode
if
mode
==
'train'
:
if
rotate
:
img
=
rotate_image
(
img
)
if
crop_size
>
0
:
img
=
random_crop
(
img
,
crop_size
)
if
color_jitter
:
img
=
distort_color
(
img
)
#if random.randint(0, 1) == 1:
if
random
.
randint
(
0
,
1
)
in
[
0
,
1
]:
img
=
img
[:,
::
-
1
,
:]
else
:
if
crop_size
>
0
:
img
=
resize_short
(
img
,
crop_size
)
img
=
crop_image
(
img
,
target_size
=
crop_size
,
center
=
True
)
img
=
img
[:,
:,
::
-
1
].
astype
(
'float32'
).
transpose
((
2
,
0
,
1
))
/
255
img_mean
=
np
.
array
(
mean
).
reshape
((
3
,
1
,
1
))
img_std
=
np
.
array
(
std
).
reshape
((
3
,
1
,
1
))
img
-=
img_mean
img
/=
img_std
if
mode
==
'train'
or
mode
==
'val'
:
return
(
img
,
sample
[
1
])
elif
mode
==
'test'
:
return
(
img
,
)
def
image_mapper
(
**
kwargs
):
""" image_mapper """
return
functools
.
partial
(
process_image
,
**
kwargs
)
fluid/PaddleCV/metric_learning/reader_ce.py
0 → 100644
浏览文件 @
a20fdf00
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
math
import
random
import
functools
import
numpy
as
np
import
paddle
from
imgtool_ce
import
process_image
random
.
seed
(
0
)
DATA_DIR
=
"./data/Stanford_Online_Products/"
TRAIN_LIST
=
'./data/Stanford_Online_Products/Ebay_train.txt'
VAL_LIST
=
'./data/Stanford_Online_Products/Ebay_test.txt'
def
init_sop
(
mode
):
if
mode
==
'train'
:
train_data
=
{}
train_image_list
=
[]
train_list
=
open
(
TRAIN_LIST
,
"r"
).
readlines
()
for
i
,
item
in
enumerate
(
train_list
):
items
=
item
.
strip
().
split
()
if
items
[
0
]
==
'image_id'
:
continue
path
=
items
[
3
]
label
=
int
(
items
[
1
])
-
1
train_image_list
.
append
((
path
,
label
))
if
label
not
in
train_data
:
train_data
[
label
]
=
[]
train_data
[
label
].
append
(
path
)
#random.shuffle(train_image_list)
print
(
"{} dataset size: {}"
.
format
(
mode
,
len
(
train_data
)))
return
train_data
,
train_image_list
else
:
val_data
=
{}
val_image_list
=
[]
test_image_list
=
[]
val_list
=
open
(
VAL_LIST
,
"r"
).
readlines
()
for
i
,
item
in
enumerate
(
val_list
):
items
=
item
.
strip
().
split
()
if
items
[
0
]
==
'image_id'
:
continue
path
=
items
[
3
]
label
=
int
(
items
[
1
])
val_image_list
.
append
((
path
,
label
))
test_image_list
.
append
(
path
)
if
label
not
in
val_data
:
val_data
[
label
]
=
[]
val_data
[
label
].
append
(
path
)
print
(
"{} dataset size: {}"
.
format
(
mode
,
len
(
val_data
)))
if
mode
==
'val'
:
return
val_data
,
val_image_list
else
:
return
test_image_list
def
common_iterator
(
data
,
settings
):
batch_size
=
settings
.
train_batch_size
samples_each_class
=
settings
.
samples_each_class
assert
(
batch_size
%
samples_each_class
==
0
)
class_num
=
batch_size
//
samples_each_class
def
train_iterator
():
labs
=
list
(
data
.
keys
())
lab_num
=
len
(
labs
)
ind
=
list
(
range
(
0
,
lab_num
))
while
True
:
#random.shuffle(ind)
ind_sample
=
ind
[:
class_num
]
for
ind_i
in
ind_sample
:
lab
=
labs
[
ind_i
]
data_list
=
data
[
lab
]
data_ind
=
list
(
range
(
0
,
len
(
data_list
)))
#random.shuffle(data_ind)
anchor_ind
=
data_ind
[:
samples_each_class
]
for
anchor_ind_i
in
anchor_ind
:
anchor_path
=
DATA_DIR
+
data_list
[
anchor_ind_i
]
yield
anchor_path
,
lab
return
train_iterator
def
triplet_iterator
(
data
,
settings
):
batch_size
=
settings
.
train_batch_size
assert
(
batch_size
%
3
==
0
)
def
train_iterator
():
labs
=
list
(
data
.
keys
())
lab_num
=
len
(
labs
)
ind
=
list
(
range
(
0
,
lab_num
))
while
True
:
#random.shuffle(ind)
ind_pos
,
ind_neg
=
ind
[:
2
]
lab_pos
=
labs
[
ind_pos
]
pos_data_list
=
data
[
lab_pos
]
data_ind
=
list
(
range
(
0
,
len
(
pos_data_list
)))
#random.shuffle(data_ind)
anchor_ind
,
pos_ind
=
data_ind
[:
2
]
lab_neg
=
labs
[
ind_neg
]
neg_data_list
=
data
[
lab_neg
]
#neg_ind = random.randint(0, len(neg_data_list) - 1)
neg_ind
=
1
anchor_path
=
DATA_DIR
+
pos_data_list
[
anchor_ind
]
yield
anchor_path
,
lab_pos
pos_path
=
DATA_DIR
+
pos_data_list
[
pos_ind
]
yield
pos_path
,
lab_pos
neg_path
=
DATA_DIR
+
neg_data_list
[
neg_ind
]
yield
neg_path
,
lab_neg
return
train_iterator
def
arcmargin_iterator
(
data
,
settings
):
def
train_iterator
():
while
True
:
for
items
in
data
:
path
,
label
=
items
path
=
DATA_DIR
+
path
yield
path
,
label
return
train_iterator
def
image_iterator
(
data
,
mode
):
def
val_iterator
():
for
items
in
data
:
path
,
label
=
items
path
=
DATA_DIR
+
path
yield
path
,
label
def
test_iterator
():
for
item
in
data
:
path
=
item
path
=
DATA_DIR
+
path
yield
[
path
]
if
mode
==
'val'
:
return
val_iterator
else
:
return
test_iterator
def
createreader
(
settings
,
mode
):
def
metric_reader
():
if
mode
==
'train'
:
train_data
,
train_image_list
=
init_sop
(
'train'
)
loss_name
=
settings
.
loss_name
if
loss_name
in
[
"softmax"
,
"arcmargin"
]:
return
arcmargin_iterator
(
train_image_list
,
settings
)()
elif
loss_name
==
'triplet'
:
return
triplet_iterator
(
train_data
,
settings
)()
else
:
return
common_iterator
(
train_data
,
settings
)()
elif
mode
==
'val'
:
val_data
,
val_image_list
=
init_sop
(
'val'
)
return
image_iterator
(
val_image_list
,
'val'
)()
else
:
test_image_list
=
init_sop
(
'test'
)
return
image_iterator
(
test_image_list
,
'test'
)()
image_shape
=
settings
.
image_shape
.
split
(
','
)
assert
(
image_shape
[
1
]
==
image_shape
[
2
])
image_size
=
int
(
image_shape
[
2
])
#keep_order = False if mode != 'train' or settings.loss_name in ['softmax', 'arcmargin'] else True
keep_order
=
True
image_mapper
=
functools
.
partial
(
process_image
,
mode
=
mode
,
color_jitter
=
False
,
rotate
=
False
,
crop_size
=
image_size
)
reader
=
paddle
.
reader
.
xmap_readers
(
image_mapper
,
metric_reader
,
8
,
1000
,
order
=
keep_order
)
return
reader
def
train
(
settings
):
return
createreader
(
settings
,
"train"
)
def
test
(
settings
):
return
createreader
(
settings
,
"val"
)
def
infer
(
settings
):
return
createreader
(
settings
,
"test"
)
fluid/PaddleCV/metric_learning/run.xsh
0 → 100755
浏览文件 @
a20fdf00
#!/bin/bash
./.run_ce.sh
fluid/PaddleCV/metric_learning/train_elem.py
浏览文件 @
a20fdf00
...
...
@@ -194,6 +194,10 @@ def train_async(args):
train_reader
=
paddle
.
batch
(
reader
.
train
(
args
),
batch_size
=
train_batch_size
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
args
),
batch_size
=
test_batch_size
,
drop_last
=
False
)
if
args
.
enable_ce
:
import
reader_ce
train_reader
=
paddle
.
batch
(
reader_ce
.
train
(
args
),
batch_size
=
train_batch_size
,
drop_last
=
False
)
test_reader
=
paddle
.
batch
(
reader_ce
.
test
(
args
),
batch_size
=
test_batch_size
,
drop_last
=
False
)
test_feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
train_py_reader
.
decorate_paddle_reader
(
train_reader
)
...
...
@@ -202,6 +206,7 @@ def train_async(args):
use_cuda
=
args
.
use_gpu
,
loss_name
=
train_cost
.
name
)
total_time
=
0
totalruntime
=
0
train_py_reader
.
start
()
iter_no
=
0
...
...
@@ -230,10 +235,16 @@ def train_async(args):
train_info
=
[
0
,
0
,
0
,
0
]
totalruntime
+=
period
total_time
+=
1
if
iter_no
%
args
.
test_iter_step
==
0
and
iter_no
!=
0
:
#if iter_no % args.test_iter_step == 0 and iter_no != 0:
if
(
iter_no
%
args
.
test_iter_step
==
0
and
iter_no
!=
0
)
or
args
.
enable_ce
:
f
,
l
=
[],
[]
for
batch_id
,
data
in
enumerate
(
test_reader
()):
if
args
.
enable_ce
:
if
batch_id
>
1
:
break
t1
=
time
.
time
()
[
feas
]
=
exe
.
run
(
test_prog
,
fetch_list
=
test_fetch_list
,
feed
=
test_feeder
.
feed
(
data
))
label
=
np
.
asarray
([
x
[
1
]
for
x
in
data
])
...
...
@@ -263,10 +274,17 @@ def train_async(args):
iter_no
+=
1
# This is for continuous evaluation only
# only for ce
if
args
.
enable_ce
:
# Use the mean cost/acc for training
print
(
"kpis train_cost %s"
%
(
avg_loss
))
print
(
"kpis test_recall %s"
%
(
recall
))
gpu_num
=
devicenum
epoch_idx
=
args
.
total_iter_num
print
(
"kpis
\t
each_pass_duration_card%s
\t
%s"
%
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis
\t
train_avg_loss_card%s
\t
%s"
%
(
gpu_num
,
avg_loss
))
#print("kpis\ttrain_recall_card%s\t%s" %
# (gpu_num, recall))
def
initlogging
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录