diff --git a/PaddleSpeech/README.md b/PaddleSpeech/README.md index 4134352d09675bde44a3e9eca1dc4bf71cb3a5be..f4c4392a4632262de98c1f41b8b09220adba473b 100644 --- a/PaddleSpeech/README.md +++ b/PaddleSpeech/README.md @@ -4,8 +4,14 @@ Fluid 模型库 语音识别 -------- -自动语音识别(Automatic Speech Recognition, ASR)是将人类声音中的词汇内容转录成计算机可输入的文字的技术。语音识别的相关研究经历了漫长的探索过程,在HMM/GMM模型之后其发展一直较为缓慢,随着深度学习的兴起,其迎来了春天。在多种语言识别任务中,将深度神经网络(DNN)作为声学模型,取得了比GMM更好的性能,使得 ASR 成为深度学习应用非常成功的领域之一。而由于识别准确率的不断提高,有越来越多的语言技术产品得以落地,例如语言输入法、以智能音箱为代表的智能家居设备等 — 基于语言的交互方式正在深刻的改变人类的生活。 +自动语音识别(Automatic Speech Recognition, ASR)是将人类声音中的词汇内容转录成计算机可输入的文字的技术。语音识别的相关研究经历了漫长的探索过程,在 HMM/GMM 模型之后其发展一直较为缓慢,随着深度学习的兴起,其迎来了春天。在多种语言识别任务中,将深度神经网络 (DNN) 作为声学模型,取得了比 GMM 更好的性能,使得 ASR 成为深度学习应用非常成功的领域之一。而由于识别准确率的不断提高,有越来越多的语言技术产品得以落地,例如语言输入法、以智能音箱为代表的智能家居设备等 — 基于语言的交互方式正在深刻的改变人类的生活。 -与 [DeepSpeech](https://github.com/PaddlePaddle/DeepSpeech) 中深度学习模型端到端直接预测字词的分布不同,本实例更接近传统的语言识别流程,以音素为建模单元,关注语言识别中声学模型的训练,利用[kaldi](http://www.kaldi-asr.org) 进行音频数据的特征提取和标签对齐,并集成 kaldi 的解码器完成解码。 +- [DeepASR](https://github.com/PaddlePaddle/models/blob/develop/PaddleSpeech/DeepASR/README_cn.md) 本实例更接近传统的语言识别流程,以音素为建模单元,关注语言识别中声学模型的训练,利用 [kaldi](http://www.kaldi-asr.org) 进行音频数据的特征提取和标签对齐,并集成 kaldi 的解码器完成解码。 -- [DeepASR](https://github.com/PaddlePaddle/models/blob/develop/PaddleSpeech/DeepASR/README_cn.md) +- [DeepSpeech2](https://github.com/PaddlePaddle/DeepSpeech) 是一个采用 PaddlePaddle 平台的端到端自动语音识别(ASR)引擎的开源项目,具体原理请参考这篇论文 [Deep Speech 2: End-to-End Speech Recognition in English and Mandarin](https://arxiv.org/abs/1512.02595)。 + +## 语音合成 + +语音合成 (Speech Synthesis) 技术是指用人工方法合成可辨识的语音。文本转语音 (Text-To-Speech) 系统是对语音合成技术的具体应用,其任务是给定某种语言的文本,合成对应的语音。语音合成技术是基于语音的人机交互,实时语音翻译等技术的基础。传统的文本转语音模型分为文本到音位,音位到频谱,频谱到波形等几个阶段分别进行优化,而随着深度学习技术在语音技术的应用的发展,端到端的文本转语音模型正在取得快速发展。 + +- [DeepVoice3](https://github.com/PaddlePaddle/models/tree/develop/PaddleSpeech/DeepVoice3), 百度研发的基于卷积神经网络的端到端语音合成模型,对应论文 [Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning](https://arxiv.org/abs/1710.07654), 基于 PaddlePaddle 动态图实现。 \ No newline at end of file diff --git a/README.md b/README.md index 6f1deb24911736ee46244d6aa7bf5b4788dc8c50..2cc08605a9a82dba032d2b982f5390f617af846b 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,6 @@ [![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://github.com/PaddlePaddle/models) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) -PaddlePaddle provides a rich set of computational units to enable users to adopt a modular approach to solving various learning problems. In this Repo, we demonstrate how to use PaddlePaddle to solve common machine learning tasks, providing several different neural network model that anyone can easily learn and use. - PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化的方法解决各种学习问题。在此Repo中,我们展示了如何用 PaddlePaddle来解决常见的机器学习任务,提供若干种不同的易学易用的神经网络模型。PaddlePaddle用户可领取**免费Tesla V100在线算力资源**,高效训练模型,**每日登陆即送12小时**,**连续五天运行再加送48小时**,[前往使用免费算力](http://ai.baidu.com/support/news?action=detail&id=981)。 ## 目录 @@ -17,11 +15,12 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化 * [度量学习](#度量学习) * [视频分类和动作定位](#视频分类和动作定位) * [智能文本处理(PaddleNLP)](#PaddleNLP) - * [基础模型(词法分析&语言模型)](#基础模型) - * [文本理解(文本分类&阅读理解)](#文本理解) - * [语义模型(语义表示&语义匹配)](#语义模型) - * [文本生成(机器翻译&对话生成)](#文本生成) + * [NLP 基础技术](#NLP-基础技术) + * [NLP 核心技术](#NLP-核心技术) + * [NLP 系统应用](#NLP-系统应用) * [智能推荐(PaddleRec)](#PaddleRec) +* [智能语音(PaddleSpeech)](#PaddleSpeech) +* [模型压缩(PaddleSlim)](#PaddleSlim) * [其他模型](#其他模型) * [快速下载模型库](#快速下载模型库) @@ -29,35 +28,46 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化 ### 图像分类 -图像分类是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层视觉任务的基础,在许多领域都有着广泛的应用。如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。 +[图像分类](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) 是根据图像的语义信息对不同类别图像进行区分,是计算机视觉中重要的基础问题,是物体检测、图像分割、物体跟踪、行为分析、人脸识别等其他高层视觉任务的基础,在许多领域都有着广泛的应用。如:安防领域的人脸识别和智能视频分析等,交通领域的交通场景识别,互联网领域基于内容的图像检索和相册自动归类,医学领域的图像识别等。 | **模型名称** | **模型简介** | **数据集** | **评估指标 top-1/top-5 accuracy** | | - | - | - | - | -| [AlexNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 首次在CNN中成功的应用了ReLU、Dropout和LRN,并使用GPU进行运算加速 | ImageNet-2012验证集 | 56.72%/79.17% | -| [VGG19](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在AlexNet的基础上使用3*3小卷积核,增加网络深度,具有很好的泛化能力 | ImageNet-2012验证集 | 72.56%/90.93% | +| [AlexNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 首次在 CNN 中成功的应用了 ReLU, Dropout 和 LRN,并使用 GPU 进行运算加速 | ImageNet-2012验证集 | 56.72%/79.17% | +| [VGG19](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在 AlexNet 的基础上使用 3*3 小卷积核,增加网络深度,具有很好的泛化能力 | ImageNet-2012验证集 | 72.56%/90.93% | | [GoogLeNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在不增加计算负载的前提下增加了网络的深度和宽度,性能更加优越 | ImageNet-2012验证集 | 70.70%/89.66% | | [ResNet50](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | Residual Network,引入了新的残差结构,解决了随着网络加深,准确率下降的问题 | ImageNet-2012验证集 | 76.50%/93.00% | -| [ResNet200_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 融合多种对ResNet改进策略,ResNet200_vd的top1准确率达到80.93% | ImageNet-2012验证集 | 80.93%/95.33% | -| [Inceptionv4](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将Inception模块与Residual Connection进行结合,通过ResNet的结构极大地加速训练并获得性能的提升 | ImageNet-2012验证集 | 80.77%/95.26% | +| [ResNet200_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 融合多种对 ResNet 改进策略,ResNet200_vd 的 top1 准确率达到 80.93% | ImageNet-2012验证集 | 80.93%/95.33% | +| [Inceptionv4](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将 Inception 模块与 Residual Connection 进行结合,通过ResNet的结构极大地加速训练并获得性能的提升 | ImageNet-2012验证集 | 80.77%/95.26% | | [MobileNetV1](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 将传统的卷积结构改造成两层卷积结构的网络,在基本不影响准确率的前提下大大减少计算时间,更适合移动端和嵌入式视觉应用 | ImageNet-2012验证集 | 70.99%/89.68% | -| [MobileNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | MobileNet结构的微调,直接在thinner的bottleneck层上进行skip learning连接以及对bottleneck layer不进行ReLu非线性处理可取得更好的结果 | ImageNet-2012验证集 | 72.15%/90.65% | -| [SENet154_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在ResNeXt 基础、上加入了SE(Sequeeze-and-Excitation)模块,提高了识别准确率,在ILSVRC 2017 的分类项目中取得了第一名 | ImageNet-2012验证集 | 81.40%/95.48% | -| [ShuffleNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | ECCV2018,轻量级CNN网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比ShuffleNet和MobileNetv2更准确,更适合移动端以及无人车领域 | ImageNet-2012验证集 | 70.03%/89.17% | - -更多图像分类模型请参考[Image Classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) +| [MobileNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | MobileNet结构的微调,直接在 thinner 的 bottleneck层上进行 skip learning 连接以及对 bottleneck layer 不进行 ReLu 非线性处理可取得更好的结果 | ImageNet-2012验证集 | 72.15%/90.65% | +| [SENet154_vd](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在ResNeXt 基础、上加入了 SE(Sequeeze-and-Excitation) 模块,提高了识别准确率,在 ILSVRC 2017 的分类项目中取得了第一名 | ImageNet-2012验证集 | 81.40%/95.48% | +| [ShuffleNetV2](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | ECCV2018,轻量级 CNN 网络,在速度和准确度之间做了很好地平衡。在同等复杂度下,比 ShuffleNet 和 MobileNetv2 更准确,更适合移动端以及无人车领域 | ImageNet-2012验证集 | 70.03%/89.17% | +| [efficientNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 同时对模型的分辨率,通道数和深度。进行缩放,用极少的参数就可以达到SOTA的精度。 | ImageNet-2012验证集 | 77.38%/93.31% | +| [xception71](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 对inception-v3的改进,用深度可分离卷积代替普通卷积,降低参数量的同时提高了精度。 | ImageNet-2012验证集 | 81.11%/95.45% | +| [dpn107](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 融合了densenet和resnext的特点。 | ImageNet-2012验证集 | 80.89%/95.32% | +| [mobilenetV3_small_x1_0](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 在v2的基础上增加了se模块,并且使用hard-swish激活函数。在分类、检测、分割等视觉任务上都有不错表现。 | ImageNet-2012验证集 | 67.46%/87.12% | +| [DarkNet53](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 检测框架yolov3使用的backbone,在分类和检测任务上都有不错表现。 | ImageNet-2012验证集 | 78.04%/94.05% | +| [DenseNet161](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 提出了密集连接的网络结构,更加有利于信息流的传递。 | ImageNet-2012验证集 | 78.57%/94.14% | +| [ResNeXt152_vd_64x4d](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 提出了cardinatity的概念,用于作为模型复杂度的另外一个度量,并依据该概念有效地提升了模型精度。 | ImageNet-2012验证集 | 81.08%/95.34% | +| [SqueezeNet1_1](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification) | 提出了新的网络架构Fire Module,通过减少参数来进行模型压缩。 | ImageNet-2012验证集 | 60.08%/81.85% | + +更多图像分类模型请参考 [Image Classification](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification)。 ### 目标检测 -目标检测任务的目标是给定一张图像或是一个视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。对于计算机而言,能够“看到”的是图像被编码之后的数字,但很难解图像或是视频帧中出现了人或是物体这样的高层语义概念,也就更加难以定位目标出现在图像中哪个区域。 +目标检测任务的目标是给定一张图像或是一个视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。对于计算机而言,能够“看到”的是图像被编码之后的数字,但很难解图像或是视频帧中出现了人或是物体这样的高层语义概念,也就更加难以定位目标出现在图像中哪个区域。目标检测模型请参考 [PaddleDetection](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection)。 | 模型名称 | 模型简介 | 数据集 | 评估指标 mAP | | ------------------------------------------------------------ | ------------------------------------------------------------ | ---------- | ------------------------------------------------------- | -| [SSD](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 很好的继承了MobileNet预测速度快,易于部署的特点,能够很好的在多种设备上完成图像目标检测任务 | VOC07 test | mAP = 73.32% | -| [Faster-RCNN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高 | MS-COCO | 基于ResNet 50 mAP(0.50:0.95) = 36.7% | -| [Mask-RCNN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 经典的两阶段框架,在Faster R-CNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕,可得到像素级别的检测结果。 | MS-COCO | 基于ResNet 50 Mask mAP(0.50:0.95) = 31.4% | -| [RetinaNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 经典的一阶段框架,由主干网络、FPN结构、和两个分别用于回归物体位置和预测物体类别的子网络组成。在训练过程中使用Focal Loss,解决了传统一阶段检测器存在前景背景类别不平衡的问题,进一步提高了一阶段检测器的精度。 | MS-COCO | 基于ResNet 50 mAP (0.50:0.95) = 36% | -| [YOLOv3](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 速度和精度均衡的目标检测网络,相比于原作者darknet中的YOLO v3实现,PaddlePaddle实现参考了论文[Bag of Tricks for Image Classification with Convolutional Neural Networks](https://arxiv.org/pdf/1812.01187.pdf) 增加了mixup,label_smooth等处理,精度(mAP(0.50:0.95))相比于原作者提高了4.7个绝对百分点,在此基础上加入synchronize batch normalization, 最终精度相比原作者提高5.9个绝对百分点。 | MS-COCO | 基于DarkNet mAP(0.50:0.95)= 38.9% | -| [PyramidBox](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/face_detection) | **PyramidBox** **模型是百度自主研发的人脸检测模型**,利用上下文信息解决困难人脸的检测问题,网络表达能力高,鲁棒性强。于18年3月份在WIDER Face数据集上取得第一名 | WIDER FACE | mAP (Easy/Medium/Hard set)= 96.0%/ 94.8%/ 88.8% | +| [SSD](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 很好的继承了 MobileNet 预测速度快,易于部署的特点,能够很好的在多种设备上完成图像目标检测任务 | VOC07 test | mAP = 73.32% | +| [Faster-RCNN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高 | MS-COCO | 基于ResNet 50 mAP(0.50: 0.95) = 36.7% | +| [Mask-RCNN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 经典的两阶段框架,在 Faster R-CNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕,可得到像素级别的检测结果。 | MS-COCO | 基于ResNet 50 Mask mAP(0.50: 0.95) = 31.4% | +| [RetinaNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 经典的一阶段框架,由主干网络、FPN结构、和两个分别用于回归物体位置和预测物体类别的子网络组成。在训练过程中使用 Focal Loss,解决了传统一阶段检测器存在前景背景类别不平衡的问题,进一步提高了一阶段检测器的精度。 | MS-COCO | 基于ResNet 50 mAP (0.50: 0.95) = 36% | +| [YOLOv3](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 速度和精度均衡的目标检测网络,相比于原作者 darknet 中的 YOLO v3 实现,PaddlePaddle 实现参考了论文 [Bag of Tricks for Image Classification with Convolutional Neural Networks](https://arxiv.org/pdf/1812.01187.pdf) 增加了 mixup,label_smooth 等处理,精度 (mAP(0.50: 0.95)) 相比于原作者提高了 4.7 个绝对百分点,在此基础上加入 synchronize batch normalization, 最终精度相比原作者提高 5.9 个绝对百分点。 | MS-COCO | 基于DarkNet mAP(0.50: 0.95)= 38.9% | +| [PyramidBox](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/face_detection) | **PyramidBox** **模型是百度自主研发的人脸检测模型**,利用上下文信息解决困难人脸的检测问题,网络表达能力高,鲁棒性强。于18年3月份在 WIDER Face 数据集上取得第一名 | WIDER FACE | mAP (Easy/Medium/Hard set)= 96.0%/ 94.8%/ 88.8% | +| [Cascade RCNN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | Cascade R-CNN 在 Faster R-CNN 框架下,通过级联多个检测器,在训练过程中选取不同的 IoU 阈值,逐步提高目标定位的精度,从而获取优异的检测性能。 | MS-COCO | 基于ResNet 50 mAP (0.50: 0.95) = 40.9% | +| [Faceboxes](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 经典的人脸检测网络,被称为“高精度 CPU 实时人脸检测器”。网络中使用率 CReLU、density_prior_bo x等组件,使得模型的精度和速度得到平衡与提升。相比于 PyramidBox,预测与计算更快,模型更小,精度也保持高水平。 | WIDER FACE | mAP (Easy/Medium/Hard Set) = 0.898/0.872/0.752 | +| [BlazeFace](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection) | 高速的人脸检测网络,由5个单的和6个双 BlazeBlocks、和 SSD 的架构构成。它轻巧但性能良好,并且专为移动 GPU 推理量身定制。 | WIDER FACE | mAP Easy/Medium/Hard Set = 0.915/0.892/0.797 | ### 图像分割 @@ -66,29 +76,30 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化 | 模型名称 | 模型简介 | 数据集 | 评估指标 | | ------------------------------------------------------------ | ------------------------------------------------------------ | --------- | --------------- | | [ICNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/icnet) | 主要用于图像实时语义分割,能够兼顾速度和准确性,易于线上部署 | Cityscape | Mean IoU=67.0% | -| [DeepLab V3+](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/deeplabv3%2B) | 通过encoder-decoder进行多尺度信息的融合,同时保留了原来的空洞卷积和ASSP层, 其骨干网络使用了Xception模型,提高了语义分割的健壮性和运行速率 | Cityscape | Mean IoU=78.81% | +| [DeepLab V3+](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/deeplabv3%2B) | 通过 encoder-decoder 进行多尺度信息的融合,同时保留了原来的空洞卷积和 ASSP 层, 其骨干网络使用了 Xception 模型,提高了语义分割的健壮性和运行速率 | Cityscape | Mean IoU=78.81% | ### 关键点检测 -人体骨骼关键点检测,Pose Estimation,主要检测人体的一些关键点,如关节,五官等,通过关键点描述人体骨骼信息。人体骨骼关键点检测对于描述人体姿态,预测人体行为至关重要。是诸多计算机视觉任务的基础,例如动作分类,异常行为检测,以及自动驾驶等等。 +人体骨骼关键点检测 (Pose Estimation) 主要检测人体的一些关键点,如关节,五官等,通过关键点描述人体骨骼信息。人体骨骼关键点检测对于描述人体姿态,预测人体行为至关重要。是诸多计算机视觉任务的基础,例如动作分类,异常行为检测,以及自动驾驶等等。 | 模型名称 | 模型简介 | 数据集 | 评估指标 | | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------ | ------------ | -| [Simple Baselines](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/human_pose_estimation) | coco2018关键点检测项目亚军方案,网络结构非常简单,效果达到state of the art | COCO val2017 | AP = 72.7% | +| [Simple Baselines](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/human_pose_estimation) | coco2018 关键点检测项目亚军方案,网络结构非常简单,效果达到 state of the art | COCO val2017 | AP = 72.7% | ### 图像生成 -图像生成是指根据输入向量,生成目标图像。这里的输入向量可以是随机的噪声或用户指定的条件向量。具体的应用场景有:手写体生成、人脸合成、风格迁移、图像修复等。 +图像生成是指根据输入向量,生成目标图像。这里的输入向量可以是随机的噪声或用户指定的条件向量。具体的应用场景有:手写体生成、人脸合成、风格迁移、图像修复等。[PaddleGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) 包含和图像生成相关的多个模型。 | 模型名称 | 模型简介 | 数据集 | | ------------------------------------------------------------ | ------------------------------------------------------------ | ---------- | -| [CGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 条件生成对抗网络,一种带条件约束的GAN,使用额外信息对模型增加条件,可以指导数据生成过程 | Mnist | -| [DCGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 深度卷积生成对抗网络,将GAN和卷积网络结合起来,以解决GAN训练不稳定的问题 | Mnist | +| [CGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 条件生成对抗网络,一种带条件约束的 GAN,使用额外信息对模型增加条件,可以指导数据生成过程 | Mnist | +| [DCGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 深度卷积生成对抗网络,将 GAN 和卷积网络结合起来,以解决 GAN 训练不稳定的问题 | Mnist | | [Pix2Pix](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 图像翻译,通过成对图片将某一类图片转换成另外一类图片,可用于风格迁移 | Cityscapes | | [CycleGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 图像翻译,可以通过非成对的图片将某一类图片转换成另外一类图片,可用于风格迁移 | Cityscapes | | [StarGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 多领域属性迁移,引入辅助分类帮助单个判别器判断多个属性,可用于人脸属性转换 | Celeba | | [AttGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 利用分类损失和重构损失来保证改变特定的属性,可用于人脸特定属性转换 | Celeba | -| [STGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 人脸特定属性转换,只输入有变化的标签,引入GRU结构,更好的选择变化的属性 | Celeba | +| [STGAN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 人脸特定属性转换,只输入有变化的标签,引入 GRU 结构,更好的选择变化的属性 | Celeba | +| [SPADE](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleGAN) | 提出一种考虑空间语义信息的归一化方法,从而更好的保留语义信息,生成更为逼真的图像,可用于图像翻译。 | Cityscapes | ### 场景文字识别 @@ -96,268 +107,165 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化 | 模型名称 | 模型简介 | 数据集 | 评估指标 | | ------------------------------------------------------------ | ------------------------------------------------------------ | -------------------------- | -------------- | -| [CRNN-CTC](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/ocr_recognition) | 使用CTC model识别图片中单行英文字符,用于端到端的文本行图片识别方法 | 单行不定长的英文字符串图片 | 错误率= 22.3% | -| [OCR Attention](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/ocr_recognition) | 使用attention 识别图片中单行英文字符,用于端到端的自然场景文本识别, | 单行不定长的英文字符串图片 | 错误率 = 15.8% | +| [CRNN-CTC](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/ocr_recognition) | 使用 CTC model 识别图片中单行英文字符,用于端到端的文本行图片识别方法 | 单行不定长的英文字符串图片 | 错误率= 22.3% | +| [OCR Attention](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/ocr_recognition) | 使用 attention 识别图片中单行英文字符,用于端到端的自然场景文本识别 | 单行不定长的英文字符串图片 | 错误率 = 15.8% | ### 度量学习 度量学习也称作距离度量学习、相似度学习,通过学习对象之间的距离,度量学习能够用于分析对象时间的关联、比较关系,在实际问题中应用较为广泛,可应用于辅助分类、聚类问题,也广泛用于图像检索、人脸识别等领域。 -| 模型名称 | 模型简介 | 数据集 | 评估指标 Recall@Rank-1(使用arcmargin训练) | -| ------------------------------------------------------------ | --------------------------------------------------------- | ------------------------------ | --------------------------------------------- | -| [ResNet50未微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 使用arcmargin loss训练的特征模型 | Stanford Online Product(SOP) | 78.11% | -| [ResNet50使用triplet微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在arcmargin loss基础上,使用triplet loss微调的特征模型 | Stanford Online Product(SOP) | 79.21% | -| [ResNet50使用quadruplet微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在arcmargin loss基础上,使用quadruplet loss微调的特征模型 | Stanford Online Product(SOP) | 79.59% | -| [ResNet50使用eml微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在arcmargin loss基础上,使用eml loss微调的特征模型 | Stanford Online Product(SOP) | 80.11% | -| [ResNet50使用npairs微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在arcmargin loss基础上,使用npairs loss微调的特征模型 | Stanford Online Product(SOP) | 79.81% | +| 模型名称 | 模型简介 | 数据集 | 评估指标 Recall@Rank-1(使用arcmargin训练) | +| ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------ | ------------------------------------------- | +| [ResNet50未微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 使用 arcmargin loss 训练的特征模型 | Stanford Online Product(SOP) | 78.11% | +| [ResNet50使用triplet微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在 arcmargin loss 基础上,使用 triplet loss 微调的特征模型 | Stanford Online Product(SOP) | 79.21% | +| [ResNet50使用quadruplet微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在 arcmargin loss 基础上,使用 quadruplet loss 微调的特征模型 | Stanford Online Product(SOP) | 79.59% | +| [ResNet50使用eml微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在 arcmargin loss 基础上,使用 eml loss 微调的特征模型 | Stanford Online Product(SOP) | 80.11% | +| [ResNet50使用npairs微调](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/metric_learning) | 在 arcmargin loss基础上,使用npairs loss 微调的特征模型 | Stanford Online Product(SOP) | 79.81% | ### 视频分类和动作定位 -视频分类和动作定位是视频理解任务的基础。视频数据包含语音、图像等多种信息,因此理解视频任务不仅需要处理语音和图像,还需要提取视频帧时间序列中的上下文信息。视频分类模型提供了提取全局时序特征的方法,主要方式有卷积神经网络(C3D,I3D,C2D等),神经网络和传统图像算法结合(VLAD等),循环神经网络等建模方法。视频动作定位模型需要同时识别视频动作的类别和起止时间点,通常采用类似于图像目标检测中的算法在时间维度上进行建模。 +视频分类和动作定位是视频理解任务的基础。视频数据包含语音、图像等多种信息,因此理解视频任务不仅需要处理语音和图像,还需要提取视频帧时间序列中的上下文信息。视频分类模型提供了提取全局时序特征的方法,主要方式有卷积神经网络 (C3D, I3D, C2D等),神经网络和传统图像算法结合 (VLAD 等),循环神经网络等建模方法。视频动作定位模型需要同时识别视频动作的类别和起止时间点,通常采用类似于图像目标检测中的算法在时间维度上进行建模。 | 模型名称 | 模型简介 | 数据集 | 评估指标 | | ------------------------------------------------------------ | ------------------------------------------------------------ | -------------------------- | ----------- | -| [TSN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | ECCV'16提出的基于2D-CNN经典解决方案 | Kinetics-400 | Top-1 = 67% | +| [TSN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | ECCV'16 提出的基于 2D-CNN 经典解决方案 | Kinetics-400 | Top-1 = 67% | | [Non-Local](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 视频非局部关联建模模型 | Kinetics-400 | Top-1 = 74% | -| [stNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | AAAI'19提出的视频联合时空建模方法 | Kinetics-400 | Top-1 = 69% | +| [StNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | AAAI'19 提出的视频联合时空建模方法 | Kinetics-400 | Top-1 = 69% | | [TSM](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 基于时序移位的简单高效视频时空建模方法 | Kinetics-400 | Top-1 = 70% | | [Attention LSTM](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 常用模型,速度快精度高 | Youtube-8M | GAP = 86% | -| [Attention Cluster](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | CVPR'18提出的视频多模态特征注意力聚簇融合方法 | Youtube-8M | GAP = 84% | -| [NeXtVlad](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 2nd-Youtube-8M比赛第3名的模型 | Youtube-8M | GAP = 87% | -| [C-TCN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 2018年ActivityNet夺冠方案 | ActivityNet1.3 | MAP=31% | -| [BSN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 为视频动作定位问题提供高效的proposal生成方法 | ActivityNet1.3 | AUC=66.64% | -| [BMN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 2019年ActivityNet夺冠方案 | ActivityNet1.3 | AUC=67.19% | +| [Attention Cluster](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | CVPR'18 提出的视频多模态特征注意力聚簇融合方法 | Youtube-8M | GAP = 84% | +| [NeXtVlad](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 2nd-Youtube-8M 比赛第 3 名的模型 | Youtube-8M | GAP = 87% | +| [C-TCN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 2018 年 ActivityNet 夺冠方案 | ActivityNet1.3 | MAP=31% | +| [BSN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 为视频动作定位问题提供高效的 proposal 生成方法 | ActivityNet1.3 | AUC=66.64% | +| [BMN](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleVideo) | 2019 年 ActivityNet 夺冠方案 | ActivityNet1.3 | AUC=67.19% | +| [ETS](https://github.com/PaddlePaddle/models/tree/release/1.6/PaddleCV/PaddleVideo/models/ets) | 视频摘要生成领域的基准模型 | ActivityNet Captions | METEOR:10.0 | ## PaddleNLP -### 基础模型 +[**PaddleNLP**](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP) 是基于 PaddlePaddle 深度学习框架开发的自然语言处理 (NLP) 工具,算法,模型和数据的开源项目。百度在 NLP 领域十几年的深厚积淀为 PaddleNLP 提供了强大的核心动力。使用 PaddleNLP,您可以得到: -#### 词法分析 +- **丰富而全面的 NLP 任务支持:** + - PaddleNLP 为您提供了多粒度,多场景的应用支持。涵盖了从[分词](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis),[词性标注](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis),[命名实体识别](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis)等 NLP 基础技术,到[文本分类](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/sentiment_classification),[文本相似度计算](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/similarity_net),[语义表示](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/language_representations_kit),[文本生成](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleTextGEN)等 NLP 核心技术。同时,PaddleNLP 还提供了针对常见 NLP 大型应用系统(如[阅读理解](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleMRC),[对话系统](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleDialgoue),[机器翻译系统](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleMT)等)的特定核心技术和工具组件,模型和预训练参数等,让您在 NLP 领域畅通无阻。 +- **稳定可靠的 NLP 模型和强大的预训练参数:** + - PaddleNLP集成了百度内部广泛使用的 NLP 工具模型,为您提供了稳定可靠的 NLP 算法解决方案。基于百亿级数据的预训练参数和丰富的预训练模型,助您轻松提高模型效果,为您的 NLP 业务注入强大动力。 +- **持续改进和技术支持,零基础搭建 NLP 应用:** + - PaddleNLP 为您提供持续的技术支持和模型算法更新,为您的 NLP 业务保驾护航。 -[LAC(Lexical Analysis of Chinese)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis)百度自主研发中文特色模型词法分析任务,**输入是一个字符串,而输出是句子中的词边界和词性、实体类别。 +### NLP 基础技术 -| **模型** | **Precision** | **Recall** | **F1-score** | -| ---------------- | ------------- | ---------- | ------------ | -| Lexical Analysis | 88.0% | 88.7% | 88.4% | -| BERT finetuned | 90.2% | 90.4% | 90.3% | -| ERNIE finetuned | 92.0% | 92.0% | 92.0% | +| 任务类型 | 目录 | 简介 | +| ------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | +| 中文词法分析 | [LAC(Lexical Analysis of Chinese)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis) | 百度自主研发中文特色模型词法分析任务,集成了中文分词、词性标注和命名实体识别任务。输入是一个字符串,而输出是句子中的词边界和词性、实体类别。 | +| 词向量 | [Word2vec](https://github.com/PaddlePaddle/models/tree/develop/PaddleRec/word2vec) | 提供单机多卡,多机等分布式训练中文词向量能力,支持主流词向量模型(skip-gram,cbow等),可以快速使用自定义数据训练词向量模型。 | +| 语言模型 | [Language_model](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/language_model) | 给定一个输入词序列(中文需要先分词、英文需要先 tokenize),计算其生成概率。 语言模型的评价指标 PPL(困惑度),用于表示模型生成句子的流利程度。 | -#### 语言模型 +### NLP 核心技术 -[基于LSTM的语言模型任务](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/language_model),给定一个输入词序列(中文分词、英文tokenize),计算其PPL(语言模型困惑度,用户表示句子的流利程度)。 +#### 语义表示 -| **large config** | **train** | **valid** | **test** | -| ---------------- | --------- | --------- | -------- | -| paddle | 37.221 | 82.358 | 78.137 | -| tensorflow | 38.342 | 82.311 | 78.121 | +[PaddleLARK](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/language_representations_kit) (Paddle LAngauge Representation ToolKit) 是传统语言模型的进一步发展,通过在大规模语料上训练得到的通用的语义表示模型,可以助益其他自然语言处理任务,是通用预训练 + 特定任务精调范式的体现。PaddleLARK 集成了 ELMO,BERT,ERNIE 1.0,ERNIE 2.0,XLNet 等热门中英文预训练模型。 -### 文本理解 +| 模型 | 简介 | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [ERNIE](https://github.com/PaddlePaddle/ERNIE)(Enhanced Representation from kNowledge IntEgration) | 百度自研的语义表示模型,通过建模海量数据中的词、实体及实体关系,学习真实世界的语义知识。相较于 BERT 学习原始语言信号,ERNIE 直接对先验语义知识单元进行建模,增强了模型语义表示能力。 | +| [BERT](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleLARK/BERT)(Bidirectional Encoder Representation from Transformers) | 一个迁移能力很强的通用语义表示模型, 以 Transformer 为网络基本组件,以双向 Masked Language Model和 Next Sentence Prediction 为训练目标,通过预训练得到通用语义表示,再结合简单的输出层,应用到下游的 NLP 任务,在多个任务上取得了 SOTA 的结果。 | +| [ELMo](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleLARK/ELMo)(Embeddings from Language Models) | 重要的通用语义表示模型之一,以双向 LSTM 为网路基本组件,以 Language Model 为训练目标,通过预训练得到通用的语义表示,将通用的语义表示作为 Feature 迁移到下游 NLP 任务中,会显著提升下游任务的模型性能。 | -#### 情感分析 +#### 文本相似度计算 -[Senta(Sentiment Classification)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/sentiment_classification)百度AI开放平台中情感倾向分析模型、百度自主研发的中文情感分析特色模型。 +[SimNet](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/similarity_net) (Similarity Net) 是一个计算短文本相似度的框架,主要包括 BOW、CNN、RNN、MMDNN 等核心网络结构形式。SimNet 框架在百度各产品上广泛应用,提供语义相似度计算训练和预测框架,适用于信息检索、新闻推荐、智能客服等多个应用场景,帮助企业解决语义匹配问题。 -| **模型** | **dev** | **test** | **模型(****finetune****)** | **dev** | **test** | -| ------------- | ------- | -------- | ---------------------------- | ------- | -------- | -| BOW | 89.8% | 90.0% | BOW | 91.3% | 90.6% | -| CNN | 90.6% | 89.9% | CNN | 92.4% | 91.8% | -| LSTM | 90.0% | 91.0% | LSTM | 93.3% | 92.2% | -| GRU | 90.0% | 89.8% | GRU | 93.3% | 93.2% | -| BI-LSTM | 88.5% | 88.3% | BI-LSTM | 92.8% | 91.4% | -| ERNIE | 95.1% | 95.4% | ERNIE | 95.4% | 95.5% | -| ERNIE+BI-LSTM | 95.3% | 95.2% | ERNIE+BI-LSTM | 95.7% | 95.6% | +#### 文本生成 -#### 对话情绪识别 +[PaddleTextGEN](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/PaddleTextGEN) (Paddle Text Generation) ,一个基于 PaddlePaddle 的文本生成框架,提供了一些列经典文本生成模型案例,如 vanilla seq2seq,seq2seq with attention,variational seq2seq 模型等。 -[EmoTect(Emotion Detection)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/emotion_detection)专注于识别智能对话场景中用户的情绪识别,并开源基于百度海量数据训练好的预训练模型。 +### NLP 系统应用 -| **模型** | **闲聊** | **客服** | **微博** | -| -------- | -------- | -------- | -------- | -| BOW | 90.2% | 87.6% | 74.2% | -| LSTM | 91.4% | 90.1% | 73.8% | -| Bi-LSTM | 91.2% | 89.9% | 73.6% | -| CNN | 90.8% | 90.7% | 76.3% | -| TextCNN | 91.1% | 91.0% | 76.8% | -| BERT | 93.6% | 92.3% | 78.6% | -| ERNIE | 94.4% | 94.0% | 80.6% | +#### 情感分析 -#### 阅读理解 +| 模型 | 简介 | +| ------------------------------------------------------------ | ------------------------------------------------------------ | +| [Senta](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/sentiment_classification) (Sentiment Classification,简称Senta) | 面向**通用场景**的情感分类模型,针对带有主观描述的中文文本,可自动判断该文本的情感极性类别。 | +| [EmotionDetection](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/emotion_detection) (Emotion Detection,简称EmoTect) | 专注于识别**人机对话场景**中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别。 | -[MRC(Machine Reading Comprehension)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/Research/ACL2018-DuReader)机器阅读理解(MRC)是自然语言处理(NLP)中的关键任务之一,开源的DuReader升级了经典的阅读理解BiDAF模型,去掉了char级别的embedding,在预测层中使用了[pointer network](https://arxiv.org/abs/1506.03134),并且参考了[R-NET](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf)中的一些网络结构,效果上有了大幅提升 - -| **Model** | **Dev ROUGE-L** | **Test ROUGE-L** | -| -------------------------------------------------------- | --------------- | ---------------- | -| BiDAF (原始[论文](https://arxiv.org/abs/1711.05073)基线) | 39.29 | 45.90 | -| 本基线系统 | 47.68 | 54.66 | - -### 语义模型 - -#### ERNIE - -[ERNIE(Enhanced Representation from kNowledge IntEgration)](https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE)百度自研的语义表示模型,通过建模海量数据中的词、实体及实体关系,学习真实世界的语义知识。相较于 BERT 学习原始语言信号,ERNIE直接对先验语义知识单元进行建模,增强了模型语义表示能力。 - -
数据集 |
- XNLI |
- LCQMC |
- MSRA-NER |
- ChnSentiCorp |
- nlpcc-dbqa |
- |||||||
评估 |
- acc |
- acc |
- f1-score |
- acc |
- mrr |
- f1-score |
- ||||||
dev |
- test |
- dev |
- test |
- dev |
- test |
- dev |
- test |
- dev |
- test |
- dev |
- test |
- |
BERT |
- 78.1 |
- 77.2 |
- 88.8 |
- 87 |
- 94.0 |
- 92.6 |
- 94.6 |
- 94.3 |
- 94.7 |
- 94.6 |
- 80.7 |
- 80.8 |
-
ERNIE |
- 79.9(+1.8) |
- 78.4(+1.2) |
- 89.7(+0.9) |
- 87.4(+0.4) |
- 95.0(+1.0) |
- 93.8(+1.2) |
- 95.2(+0.6) |
- 95.4(+1.1) |
- 95.0(+0.3) |
- 95.1(+0.5) |
- 82.3(+1.6) |
- 82.7(+1.9) |
-