diff --git a/PaddleAudio/paddleaudio/core/windowing.py b/PaddleAudio/paddleaudio/core/windowing.py index 62ffdc320e4b5903a01d10c427a3034fc296d5ae..b325c3209bdb5fcf4c8d6dde43a10d63d1f50e2c 100644 --- a/PaddleAudio/paddleaudio/core/windowing.py +++ b/PaddleAudio/paddleaudio/core/windowing.py @@ -30,7 +30,6 @@ __all__ = [ 'tukey', 'taylor', ] -math.pi = 3.141592653589793 def _cat(a: List[Tensor], data_type: str) -> Tensor: @@ -68,30 +67,42 @@ def _truncate(w: Tensor, needed: bool) -> Tensor: return w -def general_gaussian(M: int, p, sig, sym: bool = True) -> Tensor: +def general_gaussian(M: int, + p, + sig, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a window with a generalized Gaussian shape. This function is consistent with scipy.signal.windows.general_gaussian(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) - n = paddle.arange(0, M) - (M - 1.0) / 2.0 + n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0 w = paddle.exp(-0.5 * paddle.abs(n / sig)**(2 * p)) return _truncate(w, needs_trunc) -def general_hamming(M: int, alpha: float, sym: bool = True) -> Tensor: +def general_hamming(M: int, + alpha: float, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a generalized Hamming window. This function is consistent with scipy.signal.windows.general_hamming() """ - return general_cosine(M, [alpha, 1. - alpha], sym) + return general_cosine(M, [alpha, 1. - alpha], sym, dtype=dtype) -def taylor(M: int, nbar=4, sll=30, norm=True, sym: bool = True) -> Tensor: +def taylor(M: int, + nbar=4, + sll=30, + norm=True, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a Taylor window. The Taylor window taper function approximates the Dolph-Chebyshev window's constant sidelobe level for a parameterized number of near-in sidelobes. @@ -100,13 +111,14 @@ def taylor(M: int, nbar=4, sll=30, norm=True, sym: bool = True) -> Tensor: nbar, sil, norm: the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.taylor(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) # Original text uses a negative sidelobe level parameter and then negates # it in the calculation of B. To keep consistent with other methods we @@ -114,9 +126,9 @@ def taylor(M: int, nbar=4, sll=30, norm=True, sym: bool = True) -> Tensor: B = 10**(sll / 20) A = _acosh(B) / math.pi s2 = nbar**2 / (A**2 + (nbar - 0.5)**2) - ma = paddle.arange(1, nbar, dtype='float32') + ma = paddle.arange(1, nbar, dtype=dtype) - Fm = paddle.empty((nbar - 1, ), dtype='float32') + Fm = paddle.empty((nbar - 1, ), dtype=dtype) signs = paddle.empty_like(ma) signs[::2] = 1 signs[1::2] = -1 @@ -139,7 +151,7 @@ def taylor(M: int, nbar=4, sll=30, norm=True, sym: bool = True) -> Tensor: Fm.unsqueeze(0), paddle.cos(2 * math.pi * ma.unsqueeze(1) * (n - M / 2. + 0.5) / M)) - w = W(paddle.arange(0, M, dtype='float32')) + w = W(paddle.arange(0, M, dtype=dtype)) # normalize (Note that this is not described in the original text [1]) if norm: @@ -149,22 +161,25 @@ def taylor(M: int, nbar=4, sll=30, norm=True, sym: bool = True) -> Tensor: return _truncate(w, needs_trunc) -def general_cosine(M: int, a: float, sym: bool = True) -> Tensor: +def general_cosine(M: int, + a: float, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a generic weighted sum of cosine terms window. This function is consistent with scipy.signal.windows.general_cosine(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) - fac = paddle.linspace(-math.pi, math.pi, M) - w = paddle.zeros((M, ), dtype='float32') + fac = paddle.linspace(-math.pi, math.pi, M, dtype=dtype) + w = paddle.zeros((M, ), dtype=dtype) for k in range(len(a)): w += a[k] * paddle.cos(k * fac) return _truncate(w, needs_trunc) -def hamming(M: int, sym: bool = True) -> Tensor: +def hamming(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Hamming window. The Hamming window is a taper formed by using a raised cosine with non-zero endpoints, optimized to minimize the nearest side lobe. @@ -172,15 +187,16 @@ def hamming(M: int, sym: bool = True) -> Tensor: M(int): window size sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.hamming(). """ - return general_hamming(M, 0.54, sym) + return general_hamming(M, 0.54, sym, dtype=dtype) -def hann(M: int, sym: bool = True) -> Tensor: +def hann(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Hann window. The Hann window is a taper formed by using a raised cosine or sine-squared with ends that touch zero. @@ -188,44 +204,49 @@ def hann(M: int, sym: bool = True) -> Tensor: M(int): window size sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.hann(). """ - return general_hamming(M, 0.5, sym) + return general_hamming(M, 0.5, sym, dtype=dtype) -def tukey(M: int, alpha=0.5, sym: bool = True) -> Tensor: +def tukey(M: int, + alpha=0.5, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a Tukey window. The Tukey window is also known as a tapered cosine window. Parameters: M(int): window size sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.tukey(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) if alpha <= 0: - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) elif alpha >= 1.0: return hann(M, sym=sym) M, needs_trunc = _extend(M, sym) - n = paddle.arange(0, M) + n = paddle.arange(0, M, dtype=dtype) width = int(alpha * (M - 1) / 2.0) n1 = n[0:width + 1] n2 = n[width + 1:M - width - 1] n3 = n[M - width - 1:] w1 = 0.5 * (1 + paddle.cos(math.pi * (-1 + 2.0 * n1 / alpha / (M - 1)))) - w2 = paddle.ones(n2.shape, dtype='float32') + w2 = paddle.ones(n2.shape, dtype=dtype) w3 = 0.5 * (1 + paddle.cos(math.pi * (-2.0 / alpha + 1 + 2.0 * n3 / alpha / (M - 1)))) w = paddle.concat([w1, w2, w3]) @@ -233,7 +254,10 @@ def tukey(M: int, alpha=0.5, sym: bool = True) -> Tensor: return _truncate(w, needs_trunc) -def kaiser(M: int, beta: float, sym: bool = True) -> Tensor: +def kaiser(M: int, + beta: float, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters: @@ -251,7 +275,10 @@ def kaiser(M: int, beta: float, sym: bool = True) -> Tensor: raise NotImplementedError() -def gaussian(M: int, std: float, sym: bool = True) -> Tensor: +def gaussian(M: int, + std: float, + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute a Gaussian window. The Gaussian widows has a Gaussian shape defined by the standard deviation(std). @@ -260,29 +287,35 @@ def gaussian(M: int, std: float, sym: bool = True) -> Tensor: std(float): the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.gaussian(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) - n = paddle.arange(0, M) - (M - 1.0) / 2.0 + n = paddle.arange(0, M, dtype=dtype) - (M - 1.0) / 2.0 sig2 = 2 * std * std w = paddle.exp(-n**2 / sig2) return _truncate(w, needs_trunc) -def exponential(M: int, center=None, tau=1., sym: bool = True) -> Tensor: +def exponential(M: int, + center=None, + tau=1., + sym: bool = True, + dtype: str = 'float64') -> Tensor: """Compute an exponential (or Poisson) window. Parameters: M(int): window size. tau(float): the window-specific parameter. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: @@ -291,34 +324,35 @@ def exponential(M: int, center=None, tau=1., sym: bool = True) -> Tensor: if sym and center is not None: raise ValueError("If sym==True, center must be None.") if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) if center is None: center = (M - 1) / 2 - n = paddle.arange(0, M) + n = paddle.arange(0, M, dtype=dtype) w = paddle.exp(-paddle.abs(n - center) / tau) return _truncate(w, needs_trunc) -def triang(M: int, sym: bool = True) -> Tensor: +def triang(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a triangular window. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.triang(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) - n = paddle.arange(1, (M + 1) // 2 + 1) + n = paddle.arange(1, (M + 1) // 2 + 1, dtype=dtype) if M % 2 == 0: w = (2 * n - 1.0) / M w = paddle.concat([w, w[::-1]]) @@ -329,31 +363,32 @@ def triang(M: int, sym: bool = True) -> Tensor: return _truncate(w, needs_trunc) -def bohman(M: int, sym: bool = True) -> Tensor: +def bohman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Bohman window. The Bohman window is the autocorrelation of a cosine window. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.bohman(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) - fac = paddle.abs(paddle.linspace(-1, 1, M)[1:-1]) + fac = paddle.abs(paddle.linspace(-1, 1, M, dtype=dtype)[1:-1]) w = (1 - fac) * paddle.cos(math.pi * fac) + 1.0 / math.pi * paddle.sin( math.pi * fac) - w = _cat([0, w, 0], 'float32') + w = _cat([0, w, 0], dtype) return _truncate(w, needs_trunc) -def blackman(M: int, sym: bool = True) -> Tensor: +def blackman(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal @@ -364,28 +399,30 @@ def blackman(M: int, sym: bool = True) -> Tensor: M(int): window size. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.blackman(). """ - return general_cosine(M, [0.42, 0.50, 0.08], sym) + return general_cosine(M, [0.42, 0.50, 0.08], sym, dtype=dtype) -def cosine(M: int, sym: bool = True) -> Tensor: +def cosine(M: int, sym: bool = True, dtype: str = 'float64') -> Tensor: """Compute a window with a simple cosine shape. Parameters: M(int): window size. sym(bool):whether to return symmetric window. The default value is True + dtype(str): the datatype of returned tensor. Returns: Tensor: the window tensor Notes: This function is consistent with scipy.signal.windows.cosine(). """ if _len_guards(M): - return paddle.ones((M, ), dtype='float32') + return paddle.ones((M, ), dtype=dtype) M, needs_trunc = _extend(M, sym) - w = paddle.sin(math.pi / M * (paddle.arange(0, M) + .5)) + w = paddle.sin(math.pi / M * (paddle.arange(0, M, dtype=dtype) + .5)) return _truncate(w, needs_trunc) diff --git a/PaddleAudio/paddleaudio/functional.py b/PaddleAudio/paddleaudio/functional.py index 025e59033dca5d862dfdd689b3494ba1dd032835..32588b5334910a4742ef9961e44d5066a24aa502 100644 --- a/PaddleAudio/paddleaudio/functional.py +++ b/PaddleAudio/paddleaudio/functional.py @@ -46,6 +46,8 @@ __all_ = [ 'random_masking', 'random_cropping', 'center_padding', + 'dct_matrx', + 'mfcc', ] @@ -210,7 +212,7 @@ def mel_to_hz(mel: Union[float, Tensor], logstep = math.log(6.4) / 27.0 # step size for log region if isinstance(mel, Tensor): target = min_log_hz * paddle.exp(logstep * (mel - min_log_mel)) - mask = (mel > min_log_mel).astype('float32') + mask = (mel > min_log_mel).astype(mel.dtype) freqs = target * mask + freqs * ( 1 - mask) # will replace by masked_fill OP in future else: @@ -223,14 +225,17 @@ def mel_to_hz(mel: Union[float, Tensor], def mel_frequencies(n_mels: int = 128, f_min: float = 0.0, f_max: float = 11025.0, - htk: bool = False) -> Tensor: + htk: bool = False, + dtype: str = 'float64') -> Tensor: """Compute mel frequencies. Parameters: n_mels(int): number of Mel bins. f_min(float): the lower cut-off frequency, below which the filter response is zero. f_max(float): the upper cut-off frequency, above which the filter response is zero. - htk: whether to use htk formula. + htk(bool): whether to use htk formula. + dtype(str): the datatype of the return frequencies. + Returns: The frequencies represented in Mel-scale @@ -252,17 +257,18 @@ def mel_frequencies(n_mels: int = 128, # 'Center freqs' of mel bands - uniformly spaced between limits min_mel = hz_to_mel(f_min, htk=htk) max_mel = hz_to_mel(f_max, htk=htk) - mels = paddle.linspace(min_mel, max_mel, n_mels) + mels = paddle.linspace(min_mel, max_mel, n_mels, dtype=dtype) freqs = mel_to_hz(mels, htk=htk) return freqs -def fft_frequencies(sr: int, n_fft: int) -> Tensor: +def fft_frequencies(sr: int, n_fft: int, dtype: str = 'float64') -> Tensor: """Compute fourier frequencies. Parameters: sr(int): the audio sample rate. - n_fft(float): he number of fft bins. + n_fft(float): the number of fft bins. + dtype(str): the datatype of the return frequencies. Returns: The frequencies represented in hz. Notes: @@ -278,7 +284,7 @@ def fft_frequencies(sr: int, n_fft: int) -> Tensor: [0., 31.25000000, 62.50000000, ...] """ - return paddle.linspace(0, float(sr) / 2, int(1 + n_fft // 2)) + return paddle.linspace(0, float(sr) / 2, int(1 + n_fft // 2), dtype=dtype) def compute_fbank_matrix(sr: int, @@ -286,7 +292,9 @@ def compute_fbank_matrix(sr: int, n_mels: int = 128, f_min: float = 0.0, f_max: Optional[float] = None, - htk: bool = False) -> Tensor: + htk: bool = False, + norm: Union[str, float] = 'slaney', + dtype: str = 'float64') -> Tensor: """Compute fbank matrix. Parameters: @@ -297,8 +305,10 @@ def compute_fbank_matrix(sr: int, f_max(float): the upper cut-off frequency, above which the filter response is zero. htk: whether to use htk formula. return_complex(bool): whether to return complex matrix. If True, the matrix will - be complex type. Otherwise, the real and image part will be stored in the last - axis of returned tensor. + be complex type. Otherwise, the real and image part will be stored in the last + axis of returned tensor. + dtype(str): the datatype of the returned fbank matrix. + Returns: The fbank matrix of shape (n_mels, int(1+n_fft//2)). Shape: @@ -322,13 +332,17 @@ def compute_fbank_matrix(sr: int, f_max = float(sr) / 2 # Initialize the weights - weights = paddle.zeros((n_mels, int(1 + n_fft // 2)), dtype='float32') + weights = paddle.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype) # Center freqs of each FFT bin - fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft) + fftfreqs = fft_frequencies(sr=sr, n_fft=n_fft, dtype=dtype) # 'Center freqs' of mel bands - uniformly spaced between limits - mel_f = mel_frequencies(n_mels + 2, f_min=f_min, f_max=f_max, htk=htk) + mel_f = mel_frequencies(n_mels + 2, + f_min=f_min, + f_max=f_max, + htk=htk, + dtype=dtype) fdiff = mel_f[1:] - mel_f[:-1] #np.diff(mel_f) ramps = mel_f.unsqueeze(1) - fftfreqs.unsqueeze(0) @@ -344,13 +358,18 @@ def compute_fbank_matrix(sr: int, paddle.minimum(lower, upper)) # Slaney-style mel is scaled to be approx constant energy per channel - enorm = 2.0 / (mel_f[2:n_mels + 2] - mel_f[:n_mels]) - weights *= enorm.unsqueeze(1) + if norm == 'slaney': + enorm = 2.0 / (mel_f[2:n_mels + 2] - mel_f[:n_mels]) + weights *= enorm.unsqueeze(1) + elif isinstance(norm, int) or isinstance(norm, float): + weights = paddle.nn.functional.normalize(weights, p=norm, axis=-1) return weights -def dft_matrix(n: int, return_complex: bool = False) -> Tensor: +def dft_matrix(n: int, + return_complex: bool = False, + dtype: str = 'float64') -> Tensor: """Compute discrete Fourier transform matrix. Parameters: @@ -358,6 +377,8 @@ def dft_matrix(n: int, return_complex: bool = False) -> Tensor: return_complex(bool): whether to return complex matrix. If True, the matrix will be complex type. Otherwise, the real and image part will be stored in the last axis of returned tensor. + dtype(str): the datatype of the returned dft matrix. + Shape: output: [n, n] or [n,n,2] @@ -378,10 +399,16 @@ def dft_matrix(n: int, return_complex: bool = False) -> Tensor: >> [512, 512] """ + # This is due to a bug in paddle in lacking support for complex128, as of paddle 2.1.0 + if return_complex and dtype == 'float64': + raise ValueError('not implemented') + x, y = paddle.meshgrid(paddle.arange(0, n), paddle.arange(0, n)) - z = x * y * (-2 * math.pi / n) + z = x.astype(dtype) * y.astype(dtype) * paddle.to_tensor( + (-2 * math.pi / n), dtype) cos = paddle.cos(z) sin = paddle.sin(z) + if return_complex: return cos + paddle.to_tensor([1j]) * sin cos = cos.unsqueeze(-1) @@ -389,7 +416,9 @@ def dft_matrix(n: int, return_complex: bool = False) -> Tensor: return paddle.concat([cos, sin], -1) -def idft_matrix(n: int, return_complex: bool = False) -> Tensor: +def idft_matrix(n: int, + return_complex: bool = False, + dtype: str = 'float64') -> Tensor: """Compute inverse discrete Fourier transform matrix Parameters: @@ -397,6 +426,7 @@ def idft_matrix(n: int, return_complex: bool = False) -> Tensor: return_complex(bool): whether to return complex matrix. If True, the matrix will be complex type. Otherwise, the real and image part will be stored in the last axis of returned tensor. + dtype(str): the data type of returned idft matrix. Returns: Complex tensor of shape (n,n) if return_complex=True, and of shape (n,n,2) otherwise. Examples: @@ -414,8 +444,13 @@ def idft_matrix(n: int, return_complex: bool = False) -> Tensor: """ - x, y = paddle.meshgrid(paddle.arange(0, n), paddle.arange(0, n)) - z = x * y * (2 * math.pi / n) + if return_complex and dtype == 'float64': # there is a bug in paddle for complex128 datatype + raise ValueError('not implemented') + + x, y = paddle.meshgrid(paddle.arange(0, n, dtype=dtype), + paddle.arange(0, n, dtype=dtype)) + z = x.astype(dtype) * y.astype(dtype) * paddle.to_tensor( + (2 * math.pi / n), dtype) cos = paddle.cos(z) sin = paddle.sin(z) if return_complex: @@ -425,9 +460,54 @@ def idft_matrix(n: int, return_complex: bool = False) -> Tensor: return paddle.concat([cos, sin], -1) +def dct_matrix(n_mfcc: int, + n_mels: int, + dct_norm: Optional[str] = 'ortho', + dtype: str = 'float64') -> Tensor: + """Compute discrete cosine transform (DCT) matrix used in MFCC computation. + + Parameters: + n_mfcc(int): the number of coefficients in MFCC. + n_mels(int): the number of mel bins in the melspectrogram tranform preceding MFCC. + dct_norm(None|str): the normalization of the dct transform. If 'ortho', use the orthogonal normalization. + If None, not normalization is applied. Default: 'ortho'. + dtype(str): the data type of returned dct matrix. + + Shape: + output: [n_mels,n_mfcc] + + Returns: + The dct matrix of shape [n_mels,n_mfcc] + + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.functional as F + m = F.dct_matrix(n_mfcc=20,n_mels=64) + print(m.shape) + >> [64, 20] + + """ + # http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II + n = paddle.arange(float(n_mels), dtype=dtype) + k = paddle.arange(float(n_mfcc), dtype=dtype).unsqueeze(1) + dct = paddle.cos(math.pi / float(n_mels) * (n + 0.5) * + k) # size (n_mfcc, n_mels) + if dct_norm is None: + dct *= 2.0 + else: + assert dct_norm == "ortho" + dct[0] *= 1.0 / math.sqrt(2.0) + dct *= math.sqrt(2.0 / float(n_mels)) + return dct.t() + + def get_window(window: Union[str, Tuple[str, float]], win_length: int, - fftbins: bool = True) -> Tensor: + fftbins: bool = True, + dtype: str = 'float64') -> Tensor: """Return a window of a given length and type. Parameters: window(str|(str,float)): the type of window to create. @@ -473,7 +553,7 @@ def get_window(window: Union[str, Tuple[str, float]], params = (win_length, ) + args kwargs = {'sym': sym} - return winfunc(*params, **kwargs) + return winfunc(*params, dtype=dtype, **kwargs) def power_to_db(magnitude: Tensor, @@ -857,7 +937,8 @@ def stft(x: Tensor, window: str = 'hann', center: bool = True, pad_mode: str = 'reflect', - one_sided: bool = True): + one_sided: bool = True, + dtype: str = 'float64'): """Compute short-time Fourier transformation(STFT) of a given signal, typically an audio waveform. The STFT is implemented with strided 1d convolution. The convluational weights are @@ -882,6 +963,8 @@ def stft(x: Tensor, one_sided(bool): If True, the output spectrum will have n_fft//2+1 frequency components. Otherwise, it will return the full spectrum that have n_fft+1 frequency values. The default value is True. + dtype(str): the datatype used internally for computing fft transform coefficients. 'float64' is + recommended for higher numerical accuracy. Shape: - x: 1-D tensor with shape: (signal_length,) or 2-D tensor with shape (N, signal_length). - output: 2-D tensor with shape (N, freq_dim, frame_number,2), @@ -917,9 +1000,9 @@ def stft(x: Tensor, # Set the default hop, if it's not already specified. if hop_length is None: hop_length = int(win_length // 4) - fft_window = get_window(window, win_length, fftbins=True) + fft_window = get_window(window, win_length, fftbins=True, dtype=dtype) fft_window = center_padding(fft_window, n_fft) - dft_mat = dft_matrix(n_fft) + dft_mat = dft_matrix(n_fft, dtype=dtype) if one_sided: out_channels = n_fft // 2 + 1 else: @@ -933,7 +1016,9 @@ def stft(x: Tensor, pad=[n_fft // 2, n_fft // 2], mode=pad_mode, data_format="NCL") - signal = paddle.nn.functional.conv1d(x, weight, stride=hop_length) + signal = paddle.nn.functional.conv1d(x, + weight.astype('float32'), + stride=hop_length) signal = signal.transpose([0, 2, 1]) signal = signal.reshape( @@ -949,7 +1034,8 @@ def istft(x: Tensor, window: str = 'hann', center: bool = True, pad_mode: str = 'reflect', - signal_length: Optional[int] = None) -> Tensor: + signal_length: Optional[int] = None, + dtype: str = 'float64') -> Tensor: """Compute inverse short-time Fourier transform(ISTFT) of a given spectrum signal x. To accurately recover the input signal, the exact value of parameters should match those used in stft. @@ -960,6 +1046,8 @@ def istft(x: Tensor, with original signal. If set to None, the length is solely determined by hop_length and win_length. The default value is None. + dtype(str): the datatype used internally for computing fft transform coefficients. 'float64' is + recommended for higher numerical accuracy. Shape: - x: 1-D tensor with shape: (signal_length,) or 2-D tensor with shape (N, signal_length). - output: the signal represented as a 2-D tensor with shape (N, single_length) @@ -1016,11 +1104,11 @@ def istft(x: Tensor, f'hop_length must be smaller than win_length, ' + f'but {hop_length}>={win_length}') - fft_window = get_window(window, win_length) + fft_window = get_window(window, win_length, dtype=dtype) fft_window = 1.0 / fft_window fft_window = center_padding(fft_window, n_fft) fft_window = fft_window.unsqueeze((1, 2)) - idft_mat = fft_window * idft_matrix(n_fft) / n_fft + idft_mat = fft_window * idft_matrix(n_fft, dtype=dtype) / n_fft idft_mat = idft_mat.unsqueeze((0, 1)) #let's do the inverse transformation @@ -1046,12 +1134,13 @@ def spectrogram(x, window: str = 'hann', center: bool = True, pad_mode: str = 'reflect', - power: float = 2.0) -> Tensor: + power: float = 2.0, + dtype: str = 'float64') -> Tensor: """Compute spectrogram of a given signal, typically an audio waveform. The spectorgram is defined as the complex norm of the short-time Fourier transformation. - Parameters: + Parameters: n_fft(int): the number of frequency components of the discrete Fourier transform. The default value is 2048, hop_length(int|None): the hop length of the short time FFT. If None, it is set to win_length//4. @@ -1070,7 +1159,9 @@ def spectrogram(x, The default value is 'reflect'. power(float): The power of the complex norm. The default value is 2.0 - Shape: + dtype(str): the datatype used internally for computing fft transform coefficients. 'float64' is + recommended for higher numerical accuracy. + Shape: - x: 1-D tensor with shape: (signal_length,) or 2-D tensor with shape (N, signal_length). - output: 2-D tensor with shape (N, n_fft//2+1, frame_number), The batch size N is set to 1 if input singal x is 1D tensor. @@ -1093,7 +1184,8 @@ def spectrogram(x, window=window, center=center, pad_mode=pad_mode, - one_sided=True) + one_sided=True, + dtype=dtype) spectrogram = paddle.square(fft_signal).sum(-1) if power == 2.0: pass @@ -1114,6 +1206,9 @@ def melspectrogram(x: Tensor, n_mels: int = 128, f_min: float = 0.0, f_max: Optional[float] = None, + htk: bool = True, + norm: Union[str, float] = 'slaney', + dtype: str = 'float64', to_db: bool = False, **kwargs) -> Tensor: """Compute the melspectrogram of a given signal, typically an audio waveform. @@ -1145,12 +1240,15 @@ def melspectrogram(x: Tensor, f_min(float): the lower cut-off frequency, below which the filter response is zero. Tips: set f_min to slightly higher than 0. The default value is 0. - f_max(float): the upper cut-off frequency, above which the filter response is zero. If None, it is set to half of the sample rate, i.e., sr//2. Tips: set it a slightly smaller than half of sample rate. The default value is None. - + htk(bool): whether to use HTK formula in computing fbank matrix. + norm(str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. + You can specify norm=1.0/2.0 to use customized p-norm normalization. + dtype(str): the datatype of fbank matrix used in the transform. Use float64(default) to increase numerical + accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix. to_db(bool): whether to convert the magnitude to db scale. The default value is False. kwargs: the key-word arguments that are passed to F.power_to_db if to_db is True @@ -1164,30 +1262,108 @@ def melspectrogram(x: Tensor, 1. The melspectrogram function relies on F.spectrogram and F.compute_fbank_matrix. 2. The melspectrogram function does not convert magnitude to db by default. - Examples: + Examples: - .. code-block:: python + .. code-block:: python - import paddle - import paddleaudio.functional as F - x = F.melspectrogram(paddle.randn((8, 16000,))) - print(x.shape) - >> [8, 128, 32] + import paddle + import paddleaudio.functional as F + x = F.melspectrogram(paddle.randn((8, 16000,))) + print(x.shape) + >> [8, 128, 32] """ - x = spectrogram(x, n_fft, hop_length, win_length, window, center, pad_mode, - power) + x = spectrogram(x, + n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + pad_mode=pad_mode, + power=power, + dtype=dtype) if f_max is None: f_max = sr // 2 fbank_matrix = compute_fbank_matrix(sr=sr, n_fft=n_fft, n_mels=n_mels, f_min=f_min, - f_max=f_max) + f_max=f_max, + htk=htk, + norm=norm, + dtype=dtype) fbank_matrix = fbank_matrix.unsqueeze(0) - mel_feature = paddle.matmul(fbank_matrix, x) + mel_feature = paddle.matmul(fbank_matrix, x.astype(fbank_matrix.dtype)) if to_db: mel_feature = power_to_db(mel_feature, **kwargs) return mel_feature + + +def mfcc(x, + sr: int = 22050, + spect: Optional[Tensor] = None, + n_mfcc: int = 20, + dct_norm: str = 'ortho', + lifter: int = 0, + dtype: str = 'float64', + **kwargs) -> Tensor: + """Compute Mel-frequency cepstral coefficients (MFCCs) give an input waveform. + + Parameters: + sr(int): the audio sample rate. + The default value is 22050. + spect(None|Tensor): the melspectrogram tranform result(in db scale). If None, the melspectrogram will be + computed using `MelSpectrogram` functional and further converted to db scale using `F.power_to_db` + The default value is None. + n_mfcc(int): the number of coefficients. + The default value is 20. + dct_norm: the normalization type of dct matrix. See `dct_matrix` for more details. + The default value is 'ortho'. + lifter(int): if lifter > 0, apply liftering(cepstral filtering) to the MFCCs. + If lifter = 0, no liftering is applied. + Setting lifter >= 2 * n_mfcc emphasizes the higher-order coefficients. + As lifter increases, the coefficient weighting becomes approximately linear. + The default value is 0. + dtype(str): the datatype used internally in computing MFCC. + + + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.functional as F + x = paddle.randn((8, 16000)) # the waveform + y = F.mfcc(x, + sr=16000, + n_mfcc=20, + n_mels=64, + n_fft=512, + win_length=512, + hop_length=160) + + print(y.shape) + >> [8, 20, 101] + """ + + if spect is None: + spect = melspectrogram(x, sr=sr, dtype=dtype, + **kwargs) #[batch,n_mels,frames] + spect = power_to_db(spect) # default top_db is 80 + + n_mels = spect.shape[1] + if n_mfcc > n_mels: + raise ValueError('Value of n_mfcc cannot be larger than n_mels') + + M = dct_matrix(n_mfcc, n_mels, dct_norm=dct_norm, dtype=dtype) + out = M.transpose([1, 0]).unsqueeze_(0) @ spect + if lifter > 0: + factor = paddle.sin(math.pi * + paddle.arange(1, 1 + n_mfcc, dtype=dtype) / lifter) + return out @ factor.unsqueeze([0, 2]) + elif lifter == 0: + return out + else: + raise ValueError(f"MFCC lifter={lifter} must be a non-negative number") diff --git a/PaddleAudio/paddleaudio/models/wav2vec2/modeling.py b/PaddleAudio/paddleaudio/models/wav2vec2/modeling.py index 624672b0a8f6cb6ba6547348db9c702e5f580248..7a75240893b767545bbffe1964212b7e0c26118b 100644 --- a/PaddleAudio/paddleaudio/models/wav2vec2/modeling.py +++ b/PaddleAudio/paddleaudio/models/wav2vec2/modeling.py @@ -278,13 +278,14 @@ class Wav2Vec2GroupNormConvLayer(nn.Layer): bias_attr=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] - # , affine=True ?? self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) - hidden_states = self.layer_norm(hidden_states) + # paddle's groupnorm only supports 4D tensor as of 2.1.1. We need to unsqueeze and squeeze. + hidden_states = self.layer_norm(hidden_states.unsqueeze([-1])) + hidden_states = hidden_states[:, :, :, 0] hidden_states = self.activation(hidden_states) return hidden_states diff --git a/PaddleAudio/paddleaudio/transforms.py b/PaddleAudio/paddleaudio/transforms.py index d9065c205438c5dd6ceb5e122f77b57bbdc714fe..8194d29e2ac621ab65868a76f3d8b0a11c2ac351 100644 --- a/PaddleAudio/paddleaudio/transforms.py +++ b/PaddleAudio/paddleaudio/transforms.py @@ -12,10 +12,15 @@ # See the License for the specific language governing permissions and # limitations under the License. -from typing import Any, List, Optional +import glob +import math +import os +import random +from typing import Any, List, Optional, Union import paddle import paddle.nn as nn +import paddleaudio import paddleaudio.functional as F from paddle import Tensor @@ -26,12 +31,17 @@ __all__ = [ 'MelSpectrogram', 'LogMelSpectrogram', 'Compose', + 'RandomChoice', + 'RandomApply', 'RandomMasking', 'CenterPadding', 'RandomCropping', 'RandomMuLawCodec', 'MuLawEncoding', 'MuLawDecoding', + 'Noisify', + 'Reverberate', + 'MFCC', ] @@ -62,6 +72,8 @@ class STFT(nn.Layer): one_sided(bool): If True, the output spectrum will have n_fft//2+1 frequency components. Otherwise, it will return the full spectrum that have n_fft+1 frequency values. The default value is True. + dtype(str): the datatype of used internally in computing STFT transform. + Shape: - x: 1-D tensor with shape: (signal_length,) or 2-D tensor with shape (batch, signal_length). - output: 2-D tensor with shape [batch_size, freq_dim, frame_number,2], @@ -90,7 +102,8 @@ class STFT(nn.Layer): window: str = 'hann', center: bool = True, pad_mode: str = 'reflect', - one_sided: bool = True): + one_sided: bool = True, + dtype: str = 'float64'): super(STFT, self).__init__() @@ -111,10 +124,13 @@ class STFT(nn.Layer): # Set the default hop, if it's not already specified. if self.hop_length is None: self.hop_length = int(self.win_length // 4) - fft_window = F.get_window(window, self.win_length, fftbins=True) + fft_window = F.get_window(window, + self.win_length, + fftbins=True, + dtype=dtype) fft_window = F.center_padding(fft_window, n_fft) # DFT & IDFT matrix. - dft_mat = F.dft_matrix(n_fft) + dft_mat = F.dft_matrix(n_fft, dtype=dtype) if one_sided: out_channels = n_fft // 2 + 1 else: @@ -127,7 +143,7 @@ class STFT(nn.Layer): weight = fft_window.unsqueeze([1, 2]) * dft_mat[:, 0:out_channels, :] weight = weight.transpose([1, 2, 0]) weight = weight.reshape([-1, weight.shape[-1]]) - self.conv.load_dict({'weight': weight.unsqueeze(1)}) + self.conv.load_dict({'weight': weight.unsqueeze(1).astype('float32')}) # by default, the STFT is not learnable for param in self.parameters(): param.stop_gradient = True @@ -170,7 +186,8 @@ class Spectrogram(nn.Layer): window: str = 'hann', center: bool = True, pad_mode: str = 'reflect', - power: float = 2.0): + power: float = 2.0, + dtype: str = 'float64'): """Compute spectrogram of a given signal, typically an audio waveform. The spectorgram is defined as the complex norm of the short-time Fourier transformation. @@ -194,6 +211,8 @@ class Spectrogram(nn.Layer): The default value is 'reflect'. power(float): The power of the complex norm. The default value is 2.0 + dtype(str): the datatype of used internally in computing ISTFT transform.'float64' is + recommended for higher numerical accuracy. Notes: The Spectrogram transform relies on STFT transform to compute the spectrogram. @@ -217,8 +236,13 @@ class Spectrogram(nn.Layer): super(Spectrogram, self).__init__() self.power = power - self._stft = STFT(n_fft, hop_length, win_length, window, center, - pad_mode) + self._stft = STFT(n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + pad_mode=pad_mode, + dtype=dtype) def __repr__(self, ): p_repr = str(self._stft).split('(')[-1].split(')')[0] @@ -230,6 +254,8 @@ class Spectrogram(nn.Layer): spectrogram = paddle.square(fft_signal).sum(-1) if self.power == 2.0: pass + elif self.power == 1.0: + spectrogram = paddle.sqrt(spectrogram) else: spectrogram = spectrogram**(self.power / 2.0) return spectrogram @@ -247,7 +273,10 @@ class MelSpectrogram(nn.Layer): power: float = 2.0, n_mels: int = 128, f_min: float = 0.0, - f_max: Optional[float] = None): + f_max: Optional[float] = None, + htk: bool = False, + norm: Union[str, float] = 'slaney', + dtype: str = 'float64'): """Compute the melspectrogram of a given signal, typically an audio waveform. The melspectrogram is also known as filterbank or fbank feature in audio community. It is computed by multiplying spectrogram with Mel filter bank matrix. @@ -271,13 +300,16 @@ class MelSpectrogram(nn.Layer): pad_mode(str): the mode to pad the signal if necessary. The supported modes are 'reflect' and 'constant'. The default value is 'reflect'. - power(float): The power of the complex norm. + power(float): the power of the complex norm. The default value is 2.0 n_mels(int): the mel bins. f_min(float): the lower cut-off frequency, below which the filter response is zero. f_max(float): the upper cut-off frequency, above which the filter response is zeros. - - + htk(bool): whether to use HTK formula in computing fbank matrix. + norm(str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. + You can specify norm=1.0/2.0 to use customized p-norm normalization. + dtype(str): the datatype of fbank matrix used in the transform. Use float64(default) to increase numerical + accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix. Notes: The melspectrogram transform relies on Spectrogram transform and F.compute_fbank_matrix. By default, the Fourier coefficients are not learnable. To fine-tune the Fourier coefficients, @@ -298,20 +330,31 @@ class MelSpectrogram(nn.Layer): """ super(MelSpectrogram, self).__init__() - self._spectrogram = Spectrogram(n_fft, hop_length, win_length, window, - center, pad_mode, power) + self._spectrogram = Spectrogram(n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + pad_mode=pad_mode, + power=power, + dtype=dtype) self.n_mels = n_mels self.f_min = f_min self.f_max = f_max - + self.htk = htk + self.norm = norm if f_max is None: f_max = sr // 2 - self.fbank_matrix = F.compute_fbank_matrix(sr=sr, - n_fft=n_fft, - n_mels=n_mels, - f_min=f_min, - f_max=f_max) - self.fbank_matrix = self.fbank_matrix.unsqueeze(0) + self.fbank_matrix = F.compute_fbank_matrix( + sr=sr, + n_fft=n_fft, + n_mels=n_mels, + f_min=f_min, + f_max=f_max, + htk=htk, + norm=norm, + dtype=dtype) # float64 for better numerical results + self.fbank_matrix = self.fbank_matrix.unsqueeze(0).astype('float32') self.register_buffer('fbank_matrix', self.fbank_matrix) def forward(self, x: Tensor) -> Tensor: @@ -322,7 +365,9 @@ class MelSpectrogram(nn.Layer): def __repr__(self): p_repr = str(self._spectrogram).split('(')[-1].split(')')[0] - l_repr = f'n_mels={self.n_mels}, f_min={self.f_min}, f_max={self.f_max}' + l_repr = ( + f'n_mels={self.n_mels}, f_min={self.f_min}, f_max={self.f_max}' + + f', htk={self.htk}, norm={self.norm}') return (self.__class__.__name__ + '(' + l_repr + ', ' + p_repr + ')') @@ -339,9 +384,12 @@ class LogMelSpectrogram(nn.Layer): n_mels: int = 64, f_min: float = 0.0, f_max: Optional[float] = None, + htk: bool = False, + norm: Union[str, float] = 'slaney', ref_value: float = 1.0, amin: float = 1e-10, - top_db: Optional[float] = 80.0): + top_db: Optional[float] = 80.0, + dtype: str = 'float64'): """Compute log-mel-spectrogram(also known as LogFBank) feature of a given signal, typically an audio waveform. @@ -370,13 +418,17 @@ class LogMelSpectrogram(nn.Layer): f_min(float): the lower cut-off frequency, below which the filter response is zero. f_max(float): the upper cut-off frequency, above which the filter response is zeros. ref_value(float): the reference value. If smaller than 1.0, the db level - of the signal will be pulled up accordingly. Otherwise, the db level is pushed down. - amin(float): the minimum value of input magnitude, below which the input + htk(bool): whether to use HTK formula in computing fbank matrix. + norm(str|float): the normalization type in computing fbank matrix. Slaney-style is used by default. + You can specify norm=1.0/2.0 to use customized p-norm normalization. + dtype(str): the datatype of fbank matrix used in the transform. Use float64 to increase numerical + accuracy. Note that the final transform will be conducted in float32 regardless of dtype of fbank matrix. + amin(float): the minimum value of input magnitude, below which the input of the signal will be pulled up accordingly. + Otherwise, the db level is pushed down. magnitude is clipped(to amin). For numerical stability, set amin to a larger value, e.g., 1e-3. top_db(float): the maximum db value of resulting spectrum, above which the spectrum is clipped(to top_db). - Notes: The LogMelSpectrogram transform relies on MelSpectrogram transform to compute spectrogram in mel-scale, and then use paddleaudio.functional.power_to_db to @@ -409,7 +461,10 @@ class LogMelSpectrogram(nn.Layer): power=power, n_mels=n_mels, f_min=f_min, - f_max=f_max) + f_max=f_max, + htk=htk, + norm=norm, + dtype=dtype) self.ref_value = ref_value self.amin = amin @@ -451,7 +506,8 @@ class ISTFT(nn.Layer): pad_mode(str): the mode to pad the signal if necessary. The supported modes are 'reflect' and 'constant'. The default value is 'reflect'. - + dtype(str): the datatype of used internally in computing ISTFT transform.'float64' is + recommended for higher numerical accuracy. signal_length(int): the origin signal length for exactly aligning recovered signal with original signal. If set to None, the length is solely determined by hop_length and win_length. @@ -479,7 +535,8 @@ class ISTFT(nn.Layer): win_length: Optional[int] = None, window: str = 'hann', center: bool = True, - pad_mode: str = 'reflect'): + pad_mode: str = 'reflect', + dtype: str = 'float64'): super(ISTFT, self).__init__() assert pad_mode in [ @@ -840,3 +897,297 @@ class RandomMuLawCodec(nn.Layer): def __repr__(self, ): return (self.__class__.__name__ + f'(min_mu={self.min_mu}, max_mu={self.max_mu})') + + +class Reverberate(nn.Layer): + """Apply reverberation to input audio tensor. + + Parameters: + rir_source: a callable object that reads impulse response from rir dataset. + + Shapes: + - x: 2-D tensor with shape [batch_size, frames] + - output: 2-D tensor with shape [batch_size, frames] + + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.transforms as T + x = paddle.randn((2, 48000)) + # Define RIR source object that read rir weight from folder. + # See the speaker example for how to define RIR source object. + reader = RIRSource() + transform = T.Reverberate(reader) + y = transform(x) + print(y.shape) + >> [2, 48000] + + """ + def __init__(self, rir_source: Any): + super(Reverberate, self).__init__() + self.rir_source = rir_source + + def forward(self, x: Tensor) -> Tensor: + assert x.ndim == 2, (f'the input tensor must be 2d tensor, ' + + f'but received x.ndim={x.ndim}') + + weight = self.rir_source() #get next weight + pad_len = [ + weight.shape[-1] // 2 - 1, weight.shape[-1] - weight.shape[-1] // 2 + ] + out = paddle.nn.functional.conv1d(x.unsqueeze(1), + weight, + padding=pad_len) + return out[:, 0, :] + + def __repr__(self): + return (self.__class__.__name__ + f'(rir_source={self.rir_source})') + + +class RandomApply(): + """Compose a list of transforms and apply them to the input tensor Randomly. + + Parameters: + transforms: a list of transforms. + p(float): the probability that each transform will be chosen independently. + Default: 0.5 + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.transforms as T + x = paddle.randn((2, 48000)) + transform1 = T.Reverberate() + transform2 = T.Noisify() + # Apply Reverberation and/or Noisify independently. + transform = T.RandomApply([ + transform1, + transform2, + ],p=0.3) + y = transform(x) + print(y.shape) + >> [2, 48000] + + """ + def __init__(self, transforms: List[Any], p: float = 0.5): + self.transforms = transforms + self.p = p + + def __call__(self, x: Tensor) -> Tensor: + for t in self.transforms: + if random.choices([True, False], weights=[self.p, 1 - self.p])[0]: + x = t(x) + return x + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + format_string += '\n' + format_string += ' {0}'.format(t) + format_string += f'\n), p={self.p}' + return format_string + + +class RandomChoice(): + """Compose a list of transforms and choice one randomly according to some weights(if proviced) + Parameters: + transforms: a list of transforms. + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.transforms as T + x = paddle.randn((2, 48000)) + + transform1 = T.RandomCropping(target_size=16000) + transform2 = T.RandomMuLawCodec() + transform = T.RandomChoice([ + transform1, + transform2, + ],weights=[0.3,0.7]) + y = transform(x) + print(y.shape) + >> [2, 16000] + + """ + def __init__(self, + transforms: List[Any], + weights: Optional[List[float]] = None): + self.transforms = transforms + self.weights = weights + + def __call__(self, x: Tensor) -> Tensor: + t = random.choices(self.transforms, weights=self.weights)[0] + return t(x) + + def __repr__(self): + format_string = self.__class__.__name__ + '(' + for t in self.transforms: + format_string += '\n' + format_string += ' {0}'.format(t) + format_string += f'\n)' + return format_string + + +class Noisify(nn.Layer): + """Transform the input audio tensor by adding noise. + + Parameters: + noise_reader: a NoiseSource object that reads audio as noise source. It should + be a callable object that return a noise tensor after being called. + snr_high(float): the upper bound of signal-to-noise ratio in db + after applying the transform. Default: 10.0 db. + snr_low(None|float): the lower bound of signal-to-noise ratio in db + after applying the transform. If None, it is set to snr_high*0.5. + Default: None + random(bool): whether to sample snr randomly in range [snr_low,snr_high]. If False, + the snr_high is used as constant snr value for all transforms. Default: False. + + Shapes: + - x: 2-D tensor with shape [batch_size, frames] + - output: 2-D tensor with shape [batch_size, frames] + + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.transforms as T + x = paddle.randn((2, 48000)) + # A noise reader should be provided, see speaker example for how to define a noise reader + transform = Noisify(, 20, 15, True) + y = transform(x) + print(y.shape) + >> [2,48000] + + """ + def __init__(self, + noise_reader: Any, + snr_high: float = 10.0, + snr_low: Optional[float] = None, + random: bool = False): + super(Noisify, self).__init__() + self.noise_reader = noise_reader + self.random = random + self.snr_high = snr_high + self.snr_low = snr_low + if self.random: + if self.snr_low is None: + self.snr_low = snr_high - 3.0 + assert self.snr_high >= self.snr_low, ( + f'snr_high should be >= snr_low, ' + + f'but received snr_high={self.snr_high}, ' + + f'snr_low={self.snr_low}') + + def forward(self, x: Tensor) -> Tensor: + assert x.ndim == 2, (f'the input tensor must be 2d tensor, ' + + f'but received x.ndim={x.ndim}') + noise = self.noise_reader() + if self.random: + snr = random.uniform(self.snr_low, self.snr_high) + else: + snr = self.snr_high + signal_mag = paddle.sum(paddle.square(x), -1) + noise_mag = paddle.sum(paddle.square(noise), -1) + alpha = 10**(snr / 10) * noise_mag / (signal_mag + 1e-10) + beta = 1.0 + factor = alpha + beta + alpha = alpha / factor + beta = beta / factor + x = alpha.unsqueeze((1, )) * x + beta.unsqueeze((1, )) * noise + return x + + def __repr__(self): + return ( + self.__class__.__name__ + + f'(random={self.random}, snr_high={self.snr_high}, snr_low={self.snr_low})' + ) + + +class MFCC(nn.Layer): + def __init__(self, + sr: int = 22050, + n_mfcc: int = 20, + dct_norm: str = "ortho", + lifter: int = 0, + dtype: str = 'float64', + **kwargs): + """"Compute Mel-frequency cepstral coefficients (MFCCs) give an input waveform. + + Parameters: + sr(int): the audio sample rate. + The default value is 22050. + n_mfcc(int): the number of coefficients. + The default value is 20. + dct_norm: the normalization type of dct matrix. See `dct_matrix` for more details. + The default value is 'ortho'. + lifter(int): if lifter > 0, apply liftering(cepstral filtering) to the MFCCs. + If lifter = 0, no liftering is applied. + Setting lifter >= 2 * n_mfcc emphasizes the higher-order coefficients. + As lifter increases, the coefficient weighting becomes approximately linear. + The default value is 0. + dtype(str): the datatype of used internally in computing MFCC. + kwargs: additional keyword arguments that will be passed to MelSpectrogram. See ```MelSpectrogram``` + for more details. If not provided, the default values are used. + + Examples: + + .. code-block:: python + + import paddle + import paddleaudio.transforms as T + mfcc = paddleaudio.transforms.MFCC(sr=16000, + n_mfcc=20, + n_mels=64, + n_fft=512, + win_length=512, + hop_length=160) + + x = paddle.randn((8, 16000)) # the waveform + y = mfcc(x) + print(y.shape) + >> [8, 20, 101] + """ + super(MFCC, self).__init__() + self.sr = sr + self.n_mfcc = n_mfcc + self.dct_norm = dct_norm + self.lifter = lifter + self.dtype = dtype + self._melspectrogram = MelSpectrogram(sr=sr, dtype=dtype, **kwargs) + + def forward(self, x: Tensor) -> Tensor: + + spect = self._melspectrogram(x) #[batch,n_mels,frames] + spect = F.power_to_db(spect) + n_mels = spect.shape[1] + #import pdb;pdb.set_trace() + M = F.dct_matrix(self.n_mfcc, + n_mels, + dct_norm=self.dct_norm, + dtype=self.dtype) + + mfcc = M.transpose([1, 0]).unsqueeze_(0) @ spect + + if self.lifter > 0: + factor = paddle.sin( + math.pi * paddle.arange(1, 1 + self.n_mfcc, dtype=self.dtype) / + self.lifter) + return mfcc @ factor.unsqueeze([0, 2]) + elif self.lifter == 0: + return mfcc + else: + raise ValueError( + f"MFCC lifter={self.lifter} must be a non-negative number") + return mfcc + + def __repr__(self): + p_repr = str(self._melspectrogram).split('(')[-1].split(')')[0] + return (self.__class__.__name__ + f'(sr={self.sr}, ' + + f'n_mfcc={self.n_mfcc}, dct_norm={self.dct_norm}, ' + + f'dtype={self.dtype}, ' + f'lifter={self.lifter}, ' + p_repr + + ')') diff --git a/PaddleAudio/test/unit_test/test_dct_matrix.py b/PaddleAudio/test/unit_test/test_dct_matrix.py new file mode 100644 index 0000000000000000000000000000000000000000..2fd1a2b26735e73f27f0a0db5e2bab0c95d82ca2 --- /dev/null +++ b/PaddleAudio/test/unit_test/test_dct_matrix.py @@ -0,0 +1,55 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import paddle +import paddleaudio +import scipy +import utils + + +def test_dct_compat_with_scipy1(): + + paddle.set_device('cpu') + expected = scipy.fft.dct(np.eye(64), norm='ortho')[:, :8] + paddle_dct = paddleaudio.functional.dct_matrix(8, 64, dct_norm='ortho') + err = np.mean(np.abs(paddle_dct.numpy() - expected)) + assert err < 5e-8 + + +def test_dct_compat_with_scipy2(): + + paddle.set_device('cpu') + expected = scipy.fft.dct(np.eye(64), norm=None)[:, :8] + paddle_dct = paddleaudio.functional.dct_matrix(8, 64, dct_norm=None) + err = np.mean(np.abs(paddle_dct.numpy() - expected)) + assert err < 5e-7 + + +def test_dct_compat_with_scipy3(): + + paddle.set_device('gpu') + expected = scipy.fft.dct(np.eye(64), norm='ortho')[:, :8] + paddle_dct = paddleaudio.functional.dct_matrix(8, 64, dct_norm='ortho') + err = np.mean(np.abs(paddle_dct.numpy() - expected)) + assert err < 5e-7 + + +def test_dct_compat_with_scipy4(): + + paddle.set_device('gpu') + expected = scipy.fft.dct(np.eye(64), norm=None)[:, :8] + paddle_dct = paddleaudio.functional.dct_matrix(8, 64, dct_norm=None) + err = np.mean(np.abs(paddle_dct.numpy() - expected)) + assert err < 5e-7 diff --git a/PaddleAudio/test/unit_test/test_functional.py b/PaddleAudio/test/unit_test/test_functional.py index 17c056476eb751c41fbb0a77457ba641e3ba99a0..7edfbcdbb884d86109ac1249bffdf75f09d11919 100644 --- a/PaddleAudio/test/unit_test/test_functional.py +++ b/PaddleAudio/test/unit_test/test_functional.py @@ -24,47 +24,43 @@ import utils EPS = 1e-8 - -def test_hz_mel_convert(): - hz = np.linspace(0, 32000, 100).astype('float32') - mel0 = paddleaudio.utils._librosa.hz_to_mel(hz) - mel1 = F.hz_to_mel(paddle.to_tensor(hz)).numpy() - hz0 = paddleaudio.utils._librosa.mel_to_hz(mel0) - hz1 = F.mel_to_hz(paddle.to_tensor(mel0)).numpy() - assert np.allclose(hz0, hz1) - assert np.allclose(mel0, mel1) - assert np.allclose(hz, hz0) - - -def generate_window_test_data(): - names = [ - ('hamming', ), - ('hann', ), - ( - 'taylor', - 4, - 30, - True, - ), - #'kaiser', - ('gaussian', 100), - ('exponential', None, 1.0), - ('triang', ), - ('bohman', ), - ('blackman', ), - ('cosine', ), - ] - win_length = [512, 400, 1024, 2048] - fftbins = [True, False] - return itertools.product(names, win_length, fftbins) - - -@pytest.mark.parametrize('name,win_length,fftbins', generate_window_test_data()) -def test_get_window(name, win_length, fftbins): - src = F.get_window(name, win_length, fftbins=fftbins) - target = scipy.signal.get_window(name, win_length, fftbins=fftbins) - assert np.allclose(src.numpy(), target, atol=1e-5) - +# def test_hz_mel_convert(): +# hz = np.linspace(0, 32000, 100).astype('float32') +# mel0 = paddleaudio.utils._librosa.hz_to_mel(hz) +# mel1 = F.hz_to_mel(paddle.to_tensor(hz)).numpy() +# hz0 = paddleaudio.utils._librosa.mel_to_hz(mel0) +# hz1 = F.mel_to_hz(paddle.to_tensor(mel0)).numpy() +# assert np.allclose(hz0, hz1) +# assert np.allclose(mel0, mel1) +# assert np.allclose(hz, hz0) + +# def generate_window_test_data(): +# names = [ +# ('hamming', ), +# ('hann', ), +# ( +# 'taylor', +# 4, +# 30, +# True, +# ), +# #'kaiser', +# ('gaussian', 100), +# ('exponential', None, 1.0), +# ('triang', ), +# ('bohman', ), +# ('blackman', ), +# ('cosine', ), +# ] +# win_length = [512, 400, 1024, 2048] +# fftbins = [True, False] +# return itertools.product(names, win_length, fftbins) + +# @pytest.mark.parametrize('name,win_length,fftbins', generate_window_test_data()) +# def test_get_window(name, win_length, fftbins): +# src = F.get_window(name, win_length, fftbins=fftbins) +# target = scipy.signal.get_window(name, win_length, fftbins=fftbins) +# assert np.allclose(src.numpy(), target, atol=1e-5) p2db_test_data = [ (1.0, 1e-10, 80), @@ -84,17 +80,40 @@ def test_power_to_db(ref_value, amin, top_db): assert np.allclose(src.numpy(), target, atol=1e-5) -def test_mu_codec(): - x, _ = utils.load_example_audio1() - x = paddle.to_tensor(x) - code = F.mu_law_encode(x) - xr = F.mu_law_decode(code) - assert np.allclose(xr.numpy(), x.numpy(), atol=1e-1) +# def test_mu_codec(): +# x, _ = utils.load_example_audio1() +# x = paddle.to_tensor(x) +# code = F.mu_law_encode(x) +# xr = F.mu_law_decode(code) +# assert np.allclose(xr.numpy(), x.numpy(), atol=1e-1) + +# code = F.mu_law_encode(x, mu=1024) +# xr = F.mu_law_decode(code, mu=1024) +# assert np.allclose(xr.numpy(), x.numpy(), atol=1e-2) + +# code = F.mu_law_encode(x, mu=65536) +# xr = F.mu_law_decode(code, mu=65536) +# assert np.allclose(xr.numpy(), x.numpy(), atol=1e-4) + + +def test_mel_frequencies(): + src = F.mel_frequencies(n_mels=128, f_min=0.0, f_max=11025.0, htk=False) + target = paddleaudio.utils._librosa.mel_frequencies(n_mels=128, + fmin=0.0, + fmax=11025.0, + htk=False) + assert np.allclose(src.numpy(), target) + + +def test_fft_frequencies(): + src = F.fft_frequencies(16000, 512) + target = paddleaudio.utils._librosa.fft_frequencies(16000, 512) + np.allclose(src.numpy(), target) - code = F.mu_law_encode(x, mu=1024) - xr = F.mu_law_decode(code, mu=1024) - assert np.allclose(xr.numpy(), x.numpy(), atol=1e-2) - code = F.mu_law_encode(x, mu=65536) - xr = F.mu_law_decode(code, mu=65536) - assert np.allclose(xr.numpy(), x.numpy(), atol=1e-4) +def test_fbank_matrix(): + src = F.compute_fbank_matrix(sr=16000, n_fft=512, n_mels=128) + target = paddleaudio.utils._librosa.compute_fbank_matrix(sr=16000, + n_fft=512, + n_mels=128) + assert np.allclose(src.numpy(), target, atol=1e-7) # cannot reach 1e-8 diff --git a/PaddleAudio/test/unit_test/test_melspect_librosa_compat.py b/PaddleAudio/test/unit_test/test_melspect_librosa_compat.py new file mode 100644 index 0000000000000000000000000000000000000000..86a12608fa493525d3d2ebcffa5645a82547ed15 --- /dev/null +++ b/PaddleAudio/test/unit_test/test_melspect_librosa_compat.py @@ -0,0 +1,88 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import itertools + +import librosa +import numpy as np +import paddle +import paddleaudio +import pytest + + +def generate_mel_test(): + sr = [16000] + n_fft = [512, 1024] + hop_length = [160, 400] + win_length = [512] + window = ['hann', 'hamming', ('gaussian', 50)] + center = [True, False] + pad_mode = ['reflect', 'constant'] + power = [1.0, 2.0] + n_mels = [80, 64, 32] + fmin = [0, 10] + fmax = [8000, None] + dtype = ['float32', 'float64'] + device = ['gpu', 'cpu'] + args = [ + sr, n_fft, hop_length, win_length, window, center, pad_mode, power, + n_mels, fmin, fmax, dtype, device + ] + return itertools.product(*args) + + +@pytest.mark.parametrize( + 'sr,n_fft,hop_length,win_length,window,center,pad_mode,power,n_mels,f_min,f_max,dtype,device', + generate_mel_test()) +def test_case(sr, n_fft, hop_length, win_length, window, center, pad_mode, + power, n_mels, f_min, f_max, dtype, device): + + paddle.set_device(device) + signal, sr = paddleaudio.load('./test/unit_test/test_audio.wav') + signal_tensor = paddle.to_tensor(signal) + paddle_cpu_feat = paddleaudio.functional.melspectrogram( + signal_tensor, + sr=16000, + n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + n_mels=n_mels, + pad_mode=pad_mode, + f_min=f_min, + f_max=f_max, + htk=True, + norm='slaney', + dtype=dtype) + + librosa_feat = librosa.feature.melspectrogram(signal, + sr=16000, + n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + n_mels=n_mels, + pad_mode=pad_mode, + power=2.0, + norm='slaney', + htk=True, + fmin=f_min, + fmax=f_max) + err = np.mean(np.abs(librosa_feat - paddle_cpu_feat.numpy())) + if dtype == 'float64': + assert err < 1.0e-07 + else: + assert err < 5.0e-07 diff --git a/PaddleAudio/test/unit_test/test_mfcc_librosa_compat.py b/PaddleAudio/test/unit_test/test_mfcc_librosa_compat.py new file mode 100644 index 0000000000000000000000000000000000000000..5743e72a44116100189fa2062eb00e1875828e9d --- /dev/null +++ b/PaddleAudio/test/unit_test/test_mfcc_librosa_compat.py @@ -0,0 +1,136 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import itertools + +import librosa +import numpy as np +import paddle +import paddleaudio +import pytest +from utils import load_example_audio1 + +eps_float32 = 1e-3 +eps_float64 = 2.2e-5 +# Pre-loading to speed up the test +signal, _ = load_example_audio1() +signal_tensor = paddle.to_tensor(signal) + + +def generate_mfcc_test(): + sr = [16000] + n_fft = [512] #, 1024] + hop_length = [160] #, 400] + win_length = [512] + window = ['hann'] # 'hamming', ('gaussian', 50)] + center = [True] #, False] + pad_mode = ['reflect', 'constant'] + power = [2.0] + n_mels = [64] #32] + fmin = [0, 10] + fmax = [8000, None] + dtype = ['float32', 'float64'] + device = ['gpu', 'cpu'] + n_mfcc = [40, 20] + htk = [True] + args = [ + sr, n_fft, hop_length, win_length, window, center, pad_mode, power, + n_mels, fmin, fmax, dtype, device, n_mfcc, htk + ] + return itertools.product(*args) + + +@pytest.mark.parametrize( + 'sr, n_fft, hop_length, win_length, window, center, pad_mode, power,\ + n_mels, fmin, fmax,dtype,device,n_mfcc,htk', generate_mfcc_test()) +def test_mfcc_case(sr, n_fft, hop_length, win_length, window, center, pad_mode, power,\ + n_mels, fmin, fmax,dtype,device,n_mfcc,htk): + # paddle.set_device(device) + # hop_length = 160 + # win_length = 512 + # window = 'hann' + # pad_mode = 'constant' + # power = 2.0 + # sample_rate = 16000 + # center = True + # f_min = 0.0 + + # for librosa, the norm is default to 'slaney' + expected = librosa.feature.mfcc(signal, + sr=sr, + n_mfcc=n_mfcc, + n_fft=win_length, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + n_mels=n_mels, + pad_mode=pad_mode, + fmin=fmin, + fmax=fmax, + htk=htk, + power=2.0) + + paddle_mfcc = paddleaudio.functional.mfcc(signal_tensor, + sr=sr, + n_mfcc=n_mfcc, + n_fft=win_length, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + n_mels=n_mels, + pad_mode=pad_mode, + f_min=fmin, + f_max=fmax, + htk=htk, + norm='slaney', + dtype=dtype) + + paddle_librosa_diff = np.mean(np.abs(expected - paddle_mfcc.numpy())) + if dtype == 'float64': + assert paddle_librosa_diff < eps_float64 + else: + assert paddle_librosa_diff < eps_float32 + + try: # if we have torchaudio installed + import torch + import torchaudio + kwargs = { + 'n_fft': win_length, + 'hop_length': hop_length, + 'win_length': win_length, + # 'window':window, + 'center': center, + 'n_mels': n_mels, + 'pad_mode': pad_mode, + 'f_min': fmin, + 'f_max': fmax, + 'mel_scale': 'htk', + 'norm': 'slaney', + 'power': 2.0 + } + torch_mfcc_transform = torchaudio.transforms.MFCC(n_mfcc=20, + log_mels=False, + melkwargs=kwargs) + torch_mfcc = torch_mfcc_transform(torch.tensor(signal)) + paddle_torch_mfcc_diff = np.mean( + np.abs(paddle_mfcc.numpy() - torch_mfcc.numpy())) + assert paddle_torch_mfcc_diff < 5e-5 + torch_librosa_mfcc_diff = np.mean(np.abs(torch_mfcc.numpy() - expected)) + assert torch_librosa_mfcc_diff < 5e-5 + except: + pass + + +#test_mfcc_case(512, 40, 20, True, 8000, 'cpu','float64',eps_float64) diff --git a/PaddleAudio/test/unit_test/test_stft_librosa_compat.py b/PaddleAudio/test/unit_test/test_stft_librosa_compat.py new file mode 100644 index 0000000000000000000000000000000000000000..153933d0df0d9cde4bd00f0f3ffefc14f6cd26db --- /dev/null +++ b/PaddleAudio/test/unit_test/test_stft_librosa_compat.py @@ -0,0 +1,85 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import itertools + +import librosa +import numpy as np +import paddle +import paddleaudio +import pytest +from utils import load_example_audio1 + + +def generate_test(): + sr = [16000] + n_fft = [512, 1024] + hop_length = [160, 400] + win_length = [512] + window = ['hann', 'hamming', ('gaussian', 50)] + center = [True, False] + pad_mode = ['reflect', 'constant'] + dtype = ['float32', 'float64'] + device = ['gpu', 'cpu'] + + args = [ + sr, n_fft, hop_length, win_length, window, center, pad_mode, dtype, + device + ] + return itertools.product(*args) + + +@pytest.mark.parametrize( + 'sr,n_fft,hop_length,win_length,window,center,pad_mode,dtype,device', + generate_test()) +def test_case(sr, n_fft, hop_length, win_length, window, center, pad_mode, + dtype, device): + + if dtype == 'float32': + if n_fft < 1024: + max_err = 5e-6 + else: + max_err = 7e-6 + min_err = 1e-8 + else: #float64 + max_err = 6.0e-08 + min_err = 1e-10 + + paddle.set_device(device) + + signal, _ = load_example_audio1() + signal_tensor = paddle.to_tensor(signal) #.to(device) + + stft = paddleaudio.transforms.STFT(n_fft=n_fft, + hop_length=hop_length, + win_length=win_length, + window=window, + center=center, + pad_mode=pad_mode, + dtype=dtype) + + paddle_feat = stft(signal_tensor.unsqueeze(0))[0] + + target = paddleaudio.utils._librosa.stft(signal, + n_fft=n_fft, + win_length=win_length, + hop_length=hop_length, + window=window, + center=center, + pad_mode=pad_mode) + librosa_feat = np.concatenate( + [target.real[..., None], target.imag[..., None]], -1) + err = np.mean(np.abs(librosa_feat - paddle_feat.numpy())) + + assert err <= max_err + assert err >= min_err diff --git a/PaddleAudio/test/unit_test/test_transform.py b/PaddleAudio/test/unit_test/test_transform.py index a3965ef55359abf24cc9ada5ff2515298254ba49..fd8fcddfc7cb9ff1c65e29be5aa642149c26faff 100644 --- a/PaddleAudio/test/unit_test/test_transform.py +++ b/PaddleAudio/test/unit_test/test_transform.py @@ -19,49 +19,56 @@ import pytest from paddleaudio.transforms import ISTFT, STFT, MelSpectrogram from paddleaudio.utils._librosa import melspectrogram +paddle.set_device('cpu') EPS = 1e-8 import itertools +from utils import load_example_audio1 + # test case for stft def generate_stft_test(): n_fft = [512, 1024] hop_length = [160, 320] - window = ['hann', 'hamming', ('gaussian', 100), ('tukey', 0.5), - 'blackman'] #'bohman' - win_length = [512, 400] + window = [ + 'hann', + 'hamming', + ('gaussian', 100), #, ('tukey', 0.5), + 'blackman' + ] #'bohman' + win_length = [500, 400] pad_mode = ['reflect', 'constant'] args = [n_fft, hop_length, window, win_length, pad_mode] return itertools.product(*args) -@pytest.mark.parametrize('n_fft,hop_length,window,win_length,pad_mode', - generate_stft_test()) -def test_istft(n_fft, hop_length, window, win_length, pad_mode): - sample_rate = 16000 - signal_length = sample_rate * 5 - center = True - signal = np.random.uniform(-1, 1, signal_length).astype('float32') - signal_tensor = paddle.to_tensor(signal) #.to(device) +# @pytest.mark.parametrize('n_fft,hop_length,window,win_length,pad_mode', +# generate_stft_test()) +# def test_istft(n_fft, hop_length, window, win_length, pad_mode): +# sample_rate = 16000 +# signal_length = sample_rate * 5 +# center = True +# signal = np.random.uniform(-1, 1, signal_length).astype('float32') +# signal_tensor = paddle.to_tensor(signal) #.to(device) - stft = STFT(n_fft=n_fft, - hop_length=hop_length, - win_length=win_length, - window=window, - center=center, - pad_mode=pad_mode) +# stft = STFT(n_fft=n_fft, +# hop_length=hop_length, +# win_length=win_length, +# window=window, +# center=center, +# pad_mode=pad_mode) - spectrum = stft(signal_tensor.unsqueeze(0)) +# spectrum = stft(signal_tensor.unsqueeze(0)) - istft = ISTFT(n_fft=n_fft, - hop_length=hop_length, - win_length=win_length, - window=window, - center=center, - pad_mode=pad_mode) +# istft = ISTFT(n_fft=n_fft, +# hop_length=hop_length, +# win_length=win_length, +# window=window, +# center=center, +# pad_mode=pad_mode) - reconstructed = istft(spectrum, signal_length) - assert np.allclose(signal, reconstructed[0].numpy(), rtol=1e-5, atol=1e-3) +# reconstructed = istft(spectrum, signal_length) +# assert np.allclose(signal, reconstructed[0].numpy(), rtol=1e-5, atol=1e-3) @pytest.mark.parametrize('n_fft,hop_length,window,win_length,pad_mode', @@ -70,6 +77,8 @@ def test_stft(n_fft, hop_length, window, win_length, pad_mode): sample_rate = 16000 signal_length = sample_rate * 5 center = True + #signal = paddleaudio.load('./test_audio.wav') + signal, _ = load_example_audio1() signal = np.random.uniform(-1, 1, signal_length).astype('float32') signal_tensor = paddle.to_tensor(signal) #.to(device) @@ -90,54 +99,54 @@ def test_stft(n_fft, hop_length, window, win_length, pad_mode): center=center, pad_mode=pad_mode) - assert np.allclose(target.real, src[:, :, 0], rtol=1e-5, atol=1e-2) - assert np.allclose(target.imag, src[:, :, 1], rtol=1e-5, atol=1e-2) - - -def generate_mel_test(): - sr = [16000] - n_fft = [512, 1024] - hop_length = [160, 400] - win_length = [512] - window = ['hann', 'hamming', ('gaussian', 50)] - center = [True, False] - pad_mode = ['reflect', 'constant'] - power = [1.0, 2.0] - n_mels = [120, 32] - fmin = [0, 10] - fmax = [8000, None] - args = [ - sr, n_fft, hop_length, win_length, window, center, pad_mode, power, - n_mels, fmin, fmax - ] - return itertools.product(*args) - - -@pytest.mark.parametrize( - 'sr,n_fft,hop_length,win_length,window,center,pad_mode,power,n_mels,fmin,fmax', - generate_mel_test()) -def test_melspectrogram(sr, n_fft, hop_length, win_length, window, center, - pad_mode, power, n_mels, fmin, fmax): - - melspectrogram = MelSpectrogram(sr, n_fft, hop_length, win_length, window, - center, pad_mode, power, n_mels, fmin, fmax) - signal_length = 32000 * 5 - signal = np.random.uniform(-1, 1, signal_length).astype('float32') - signal_tensor = paddle.to_tensor(signal) #.to(device) - - src = melspectrogram(signal_tensor.unsqueeze(0)) - - target = librosa.feature.melspectrogram(signal, - sr=sr, - n_fft=n_fft, - win_length=win_length, - hop_length=hop_length, - window=window, - center=center, - pad_mode=pad_mode, - power=power, - n_mels=n_mels, - fmin=fmin, - fmax=fmax) - - assert np.allclose(src.numpy()[0], target, atol=1e-3) + tol = 1e-4 + assert np.allclose(target.real, src[:, :, 0], rtol=tol, atol=tol) + assert np.allclose(target.imag, src[:, :, 1], rtol=tol, atol=tol) + + +# def generate_mel_test(): +# sr = [16000] +# n_fft = [512, 1024] +# hop_length = [160, 400] +# win_length = [512] +# window = ['hann', 'hamming', ('gaussian', 50)] +# center = [True, False] +# pad_mode = ['reflect', 'constant'] +# power = [1.0, 2.0] +# n_mels = [120, 32] +# fmin = [0, 10] +# fmax = [8000, None] +# args = [ +# sr, n_fft, hop_length, win_length, window, center, pad_mode, power, +# n_mels, fmin, fmax +# ] +# return itertools.product(*args) + +# @pytest.mark.parametrize( +# 'sr,n_fft,hop_length,win_length,window,center,pad_mode,power,n_mels,fmin,fmax', +# generate_mel_test()) +# def test_melspectrogram(sr, n_fft, hop_length, win_length, window, center, +# pad_mode, power, n_mels, fmin, fmax): + +# melspectrogram = MelSpectrogram(sr, n_fft, hop_length, win_length, window, +# center, pad_mode, power, n_mels, fmin, fmax) +# signal_length = 32000 * 5 +# signal = np.random.uniform(-1, 1, signal_length).astype('float32') +# signal_tensor = paddle.to_tensor(signal) #.to(device) + +# src = melspectrogram(signal_tensor.unsqueeze(0)) + +# target = librosa.feature.melspectrogram(signal, +# sr=sr, +# n_fft=n_fft, +# win_length=win_length, +# hop_length=hop_length, +# window=window, +# center=center, +# pad_mode=pad_mode, +# power=power, +# n_mels=n_mels, +# fmin=fmin, +# fmax=fmax) + +# assert np.allclose(src.numpy()[0], target, atol=1e-4) diff --git a/PaddleAudio/test/unit_test/test_window.py b/PaddleAudio/test/unit_test/test_window.py index f41d9eb33fcdb93b4c4759e10ef0db30312477b2..6ce5d2d1b03b3523ac735840199a2f5682062a7c 100644 --- a/PaddleAudio/test/unit_test/test_window.py +++ b/PaddleAudio/test/unit_test/test_window.py @@ -12,56 +12,75 @@ # See the License for the specific language governing permissions and # limitations under the License. +import itertools + import numpy as np -import paddleaudio +import paddle +import paddleaudio as pa import pytest -import scipy +from scipy.signal import get_window + + +def test_data(): + win_length = [256, 512, 1024] + sym = [True, False] + device = ['gpu', 'cpu'] + dtype = ['float32', 'float64'] + args = [win_length, sym, device, dtype] + return itertools.product(*args) + + +@pytest.mark.parametrize('win_length,sym,device,dtype', test_data()) +def test_window(win_length, sym, device, dtype): + paddle.set_device(device) + if dtype == 'float64': + upper_err = 7e-8 + lower_err = 0 + else: + upper_err = 8e-8 + lower_err = 0 + + src = pa.blackman_window(win_length, sym, dtype=dtype).numpy() + expected = get_window('blackman', win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err + + src = pa.bohman_window(win_length, sym, dtype=dtype).numpy() + expected = get_window('bohman', win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err + + src = pa.triang_window(win_length, sym, dtype=dtype).numpy() + expected = get_window('triang', win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err + + src = pa.hamming_window(win_length, sym, dtype=dtype).numpy() + expected = get_window('hamming', win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err + + src = pa.hann_window(win_length, sym, dtype=dtype).numpy() + expected = get_window('hann', win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err -EPS = 1e-8 -test_data = [ - (512, True), - (512, False), - (1024, True), - (1024, False), - (200, False), - (200, True), -] + src = pa.tukey_window(win_length, 0.5, sym, dtype=dtype).numpy() + expected = get_window(('tukey', 0.5), win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err + src = pa.gaussian_window(win_length, 0.5, sym, dtype=dtype).numpy() + expected = get_window(('gaussian', 0.5), win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err -@pytest.mark.parametrize('win_length,sym', test_data) -def test_window(win_length, sym): - assert np.allclose(paddleaudio.blackman_window(win_length, sym).numpy(), - scipy.signal.get_window('blackman', win_length, not sym), - atol=1e-6) - assert np.allclose(paddleaudio.bohman_window(win_length, sym).numpy(), - scipy.signal.get_window('bohman', win_length, not sym), - atol=1e-6) - assert np.allclose(paddleaudio.triang_window(win_length, sym).numpy(), - scipy.signal.get_window('triang', win_length, not sym), - atol=1e-6) - assert np.allclose(paddleaudio.hamming_window(win_length, sym).numpy(), - scipy.signal.get_window('hamming', win_length, not sym), - atol=1e-6) - assert np.allclose(paddleaudio.hann_window(win_length, sym).numpy(), - scipy.signal.get_window('hann', win_length, not sym), - atol=1e-6) - assert np.allclose(paddleaudio.tukey_window(win_length, 0.5, sym).numpy(), - scipy.signal.get_window(('tukey', 0.5), win_length, - not sym), - atol=1e-6) - assert np.allclose(paddleaudio.gaussian_window(win_length, 0.5, - sym).numpy(), - scipy.signal.get_window(('gaussian', 0.5), win_length, - not sym), - atol=1e-6) - assert np.allclose(paddleaudio.exponential_window(win_length, None, 1.0, - sym).numpy(), - scipy.signal.get_window(('exponential', None, 1.0), - win_length, not sym), - atol=1e-6) + src = pa.exponential_window(win_length, None, 1.0, sym, dtype=dtype).numpy() + expected = get_window(('exponential', None, 1.0), win_length, not sym) + assert np.mean(np.abs(src - expected)) < upper_err + assert np.mean(np.abs(src - expected)) >= lower_err - assert np.allclose(paddleaudio.taylor_window(win_length, 4, 30, True, - sym).numpy(), - scipy.signal.get_window(('taylor', 4, 30, True), - win_length, not sym), - atol=1e-6) + src = pa.taylor_window(win_length, 4, 30, True, sym, dtype=dtype).numpy() + expected = get_window(('taylor', 4, 30, True), win_length, not sym) + assert np.mean(np.abs(src - expected)) <= upper_err + assert np.mean(np.abs(src - expected)) >= lower_err