-[PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud](https://arxiv.org/abs/1812.04244), Shaoshuai Shi, Xiaogang Wang, Hongsheng Li.
-[PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413), Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas.
-[PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation](https://www.semanticscholar.org/paper/PointNet%3A-Deep-Learning-on-Point-Sets-for-3D-and-Qi-Su/d997beefc0922d97202789d2ac307c55c2c52fba), Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas.
**NOTE**: This is borrowed from [traveller59/kitti-object-eval-python](https://github.com/traveller59/kitti-object-eval-python)
Fast kitti object detection eval in python(finish eval in less than 10 second), support 2d/bev/3d/aos. , support coco-style AP. If you use command line interface, numba need some time to compile jit functions.
## Dependencies
Only support python 3.6+, need `numpy`, `skimage`, `numba`, `fire`. If you have Anaconda, just install `cudatoolkit` in anaconda. Otherwise, please reference to this [page](https://github.com/numba/numba#custom-python-environments) to set up llvm and cuda for numba.
* Install by conda:
```
conda install -c numba cudatoolkit=x.x (8.0, 9.0, 9.1, depend on your environment)