PaddlePaddle provides a rich set of computational units to enable users to adopt a modular approach to solving various learning problems. In this Repo, we demonstrate how to use PaddlePaddle to solve common machine learning tasks, providing several different neural network model that anyone can easily learn and use.
| [Simple Baselines](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/human_pose_estimation) | coco2018关键点检测项目亚军方案,网络结构非常简单,效果达到state of the art | COCO val2017 | AP = 72.7% |
[LAC (**Lexical Analysis of Chinese**](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis))百度自主研发中文特色模型词法分析任务,**输入是一个字符串,而输出是句子中的词边界和词性、实体类别。
[LAC(Lexical Analysis of Chinese)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/lexical_analysis)百度自主研发中文特色模型词法分析任务,**输入是一个字符串,而输出是句子中的词边界和词性、实体类别。
[ERNIE (Embeddings from Language Models)](https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE)百度自研的语义表示模型,通过建模海量数据中的词、实体及实体关系,学习真实世界的语义知识。相较于 BERT 学习原始语言信号,ERNIE直接对先验语义知识单元进行建模,增强了模型语义表示能力。
<br/>
**BERT**
[BERT(Bidirectional Encoder Representation from Transformers) ](https://github.com/PaddlePaddle/LARK/tree/develop/BERT)是一个迁移能力很强的通用语义表示模型, 以 Transformer 为网络基本组件,以双向 Masked Language Model和 Next Sentence Prediction 为训练目标,通过预训练得到通用语义表示,再结合简单的输出层,应用到下游的 NLP 任务,在多个任务上取得了 SOTA 的结果。
### 语义模型
<br/>
#### ERNIE
**ELMo**
[ELMo(Embeddings from Language Models) ](https://github.com/PaddlePaddle/LARK/tree/develop/ELMo)是重要的通用语义表示模型之一,以双向 LSTM 为网路基本组件,以 Language Model 为训练目标,通过预训练得到通用的语义表示,将通用的语义表示作为 Feature 迁移到下游 NLP 任务中,会显著提升下游任务的模型性能。
[ERNIE(Embeddings from Language Models)](https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE)百度自研的语义表示模型,通过建模海量数据中的词、实体及实体关系,学习真实世界的语义知识。相较于 BERT 学习原始语言信号,ERNIE直接对先验语义知识单元进行建模,增强了模型语义表示能力。
[BERT(Bidirectional Encoder Representation from Transformers)](https://github.com/PaddlePaddle/LARK/tree/develop/BERT)是一个迁移能力很强的通用语义表示模型, 以 Transformer 为网络基本组件,以双向 Masked Language Model和 Next Sentence Prediction 为训练目标,通过预训练得到通用语义表示,再结合简单的输出层,应用到下游的 NLP 任务,在多个任务上取得了 SOTA 的结果。
[ELMo(Embeddings from Language Models)](https://github.com/PaddlePaddle/LARK/tree/develop/ELMo)是重要的通用语义表示模型之一,以双向 LSTM 为网路基本组件,以 Language Model 为训练目标,通过预训练得到通用的语义表示,将通用的语义表示作为 Feature 迁移到下游 NLP 任务中,会显著提升下游任务的模型性能。
| | Ubuntu Corpus | Douban Conversation Corpus | | | | | | | | |
[DGU(Dialogue General Understanding)](https://github.com/PaddlePaddle/models/tree/develop/PaddleNLP/dialogue_model_toolkit/dialogue_general_understanding)对话通用理解针对数据集开发了相关的模型训练过程,支持分类,多标签分类,序列标注等任务,用户可针对自己的数据集,进行相关的模型定制