Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
95c0277d
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
95c0277d
编写于
5月 04, 2017
作者:
K
kuke
提交者:
Yibing
5月 24, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Rewrite bidi encoder & code cleanup
上级
0fa397ea
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
35 addition
and
33 deletion
+35
-33
seq2seq/nmt_without_attention_v2.py
seq2seq/nmt_without_attention_v2.py
+35
-33
未找到文件。
seq2seq/nmt_without_attention_v2.py
浏览文件 @
95c0277d
...
...
@@ -2,7 +2,6 @@
import
sys
import
gzip
import
sqlite3
import
paddle.v2
as
paddle
### Parameters
...
...
@@ -16,29 +15,21 @@ max_length = 50
def
seq2seq_net
(
source_dict_dim
,
target_dict_dim
,
generating
=
False
):
decoder_size
=
encoder_size
=
latent_chain_dim
### Encoder
###
#
Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
)
encode
r_forward
=
paddle
.
networks
.
simple
_gru
(
# use bidirectional_gru
encode
d_vector
=
paddle
.
networks
.
bidirectional
_gru
(
input
=
src_embedding
,
act
=
paddle
.
activation
.
Tanh
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
size
=
encoder_size
,
reverse
=
False
)
encoder_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
act
=
paddle
.
activation
.
Tanh
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
encoder_forward
,
encoder_backward
])
fwd_act
=
paddle
.
activation
.
Tanh
(),
fwd_gate_act
=
paddle
.
activation
.
Sigmoid
(),
bwd_act
=
paddle
.
activation
.
Tanh
(),
bwd_gate_act
=
paddle
.
activation
.
Sigmoid
(),
return_seq
=
True
)
#### Decoder
encoder_last
=
paddle
.
layer
.
last_seq
(
input
=
encoded_vector
)
with
paddle
.
layer
.
mixed
(
...
...
@@ -146,18 +137,8 @@ def train(source_dict_dim, target_dict_dim):
parameters
.
to_tar
(
f
)
if
event
.
batch_id
%
10
==
0
:
# wmt14_test_batch = paddle.batch(
# paddle.reader.shuffle(
# paddle.dataset.wmt14.test(source_dict_dim),
# buf_size=8192), batch_size=1)
#test_result = trainer.test(wmt14_test_batch)
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
,
# test_result.cost, test_result.metrics
)
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
...
...
@@ -167,7 +148,7 @@ def train(source_dict_dim, target_dict_dim):
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
2
)
def
generate
(
source_dict_dim
,
target_dict_dim
):
def
generate
(
source_dict_dim
,
target_dict_dim
,
init_models_path
):
# load data samples for generation
gen_creator
=
paddle
.
dataset
.
wmt14
.
gen
(
source_dict_dim
)
gen_data
=
[]
...
...
@@ -175,8 +156,7 @@ def generate(source_dict_dim, target_dict_dim):
gen_data
.
append
((
item
[
0
],
))
beam_gen
=
seq2seq_net
(
source_dict_dim
,
target_dict_dim
,
True
)
with
gzip
.
open
(
'models/nmt_without_att_params_batch_400.tar.gz'
)
as
f
:
with
gzip
.
open
(
init_models_path
)
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
# prob is the prediction probabilities, and id is the prediction word.
beam_result
=
paddle
.
infer
(
...
...
@@ -208,15 +188,37 @@ def generate(source_dict_dim, target_dict_dim):
print
"prob = %f:"
%
(
prob
[
i
][
j
]),
seq_list
[
i
*
beam_size
+
j
]
def
usage_helper
():
print
"Please specify training/generating phase!"
print
"Usage: python nmt_without_attention_v2.py --train/generate"
exit
(
1
)
def
main
():
if
not
(
len
(
sys
.
argv
)
==
2
):
usage_helper
()
if
sys
.
argv
[
1
]
==
'--train'
:
generating
=
False
elif
sys
.
argv
[
1
]
==
'--generate'
:
generating
=
True
else
:
usage_helper
()
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
4
)
source_language_dict_dim
=
30000
target_language_dict_dim
=
30000
generating
=
True
if
generating
:
generate
(
source_language_dict_dim
,
target_language_dict_dim
)
# shoud pass the right generated model's path here
init_models_path
=
'models/nmt_without_att_params_batch_400.tar.gz'
if
not
os
.
path
.
exists
(
init_models_path
):
print
"Cannot find models for generation"
exit
(
1
)
generate
(
source_language_dict_dim
,
target_language_dict_dim
,
init_models_path
)
else
:
if
not
os
.
path
.
exists
(
'./models'
):
os
.
system
(
'mkdir ./models'
)
train
(
source_language_dict_dim
,
target_language_dict_dim
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录