Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
8db0319c
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8db0319c
编写于
10月 21, 2019
作者:
SYSU_BOND
提交者:
bbking
10月 21, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix infer bug on Release/1.6 (#3693)
* update downloads.py * fix bug on ernie based inferring
上级
03f81264
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
199 addition
and
105 deletion
+199
-105
PaddleNLP/lexical_analysis/creator.py
PaddleNLP/lexical_analysis/creator.py
+68
-48
PaddleNLP/lexical_analysis/run_ernie_sequence_labeling.py
PaddleNLP/lexical_analysis/run_ernie_sequence_labeling.py
+87
-57
PaddleNLP/lexical_analysis/utils.py
PaddleNLP/lexical_analysis/utils.py
+44
-0
未找到文件。
PaddleNLP/lexical_analysis/creator.py
浏览文件 @
8db0319c
...
...
@@ -12,7 +12,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Define the function to create lexical analysis model and model's data reader
"""
...
...
@@ -37,15 +36,22 @@ def create_model(args, vocab_size, num_labels, mode='train'):
# model's input data
words
=
fluid
.
data
(
name
=
'words'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
,
lod_level
=
1
)
targets
=
fluid
.
data
(
name
=
'targets'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
,
lod_level
=
1
)
targets
=
fluid
.
data
(
name
=
'targets'
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
,
lod_level
=
1
)
# for inference process
if
mode
==
'infer'
:
crf_decode
=
nets
.
lex_net
(
words
,
args
,
vocab_size
,
num_labels
,
for_infer
=
True
,
target
=
None
)
return
{
"feed_list"
:
[
words
],
"words"
:
words
,
"crf_decode"
:
crf_decode
,
}
crf_decode
=
nets
.
lex_net
(
words
,
args
,
vocab_size
,
num_labels
,
for_infer
=
True
,
target
=
None
)
return
{
"feed_list"
:
[
words
],
"words"
:
words
,
"crf_decode"
:
crf_decode
,
}
# for test or train process
avg_cost
,
crf_decode
=
nets
.
lex_net
(
words
,
args
,
vocab_size
,
num_labels
,
for_infer
=
False
,
target
=
targets
)
avg_cost
,
crf_decode
=
nets
.
lex_net
(
words
,
args
,
vocab_size
,
num_labels
,
for_infer
=
False
,
target
=
targets
)
(
precision
,
recall
,
f1_score
,
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
)
=
fluid
.
layers
.
chunk_eval
(
...
...
@@ -73,7 +79,14 @@ def create_model(args, vocab_size, num_labels, mode='train'):
return
ret
def
create_pyreader
(
args
,
file_name
,
feed_list
,
place
,
model
=
'lac'
,
reader
=
None
,
return_reader
=
False
,
mode
=
'train'
):
def
create_pyreader
(
args
,
file_name
,
feed_list
,
place
,
model
=
'lac'
,
reader
=
None
,
return_reader
=
False
,
mode
=
'train'
):
# init reader
if
model
==
'lac'
:
...
...
@@ -81,8 +94,7 @@ def create_pyreader(args, file_name, feed_list, place, model='lac', reader=None,
feed_list
=
feed_list
,
capacity
=
50
,
use_double_buffer
=
True
,
iterable
=
True
)
iterable
=
True
)
if
reader
==
None
:
reader
=
Dataset
(
args
)
...
...
@@ -93,20 +105,16 @@ def create_pyreader(args, file_name, feed_list, place, model='lac', reader=None,
fluid
.
io
.
batch
(
fluid
.
io
.
shuffle
(
reader
.
file_reader
(
file_name
),
buf_size
=
args
.
traindata_shuffle_buffer
),
batch_size
=
args
.
batch_size
),
places
=
place
)
buf_size
=
args
.
traindata_shuffle_buffer
),
batch_size
=
args
.
batch_size
),
places
=
place
)
else
:
pyreader
.
decorate_sample_list_generator
(
fluid
.
io
.
batch
(
reader
.
file_reader
(
file_name
,
mode
=
mode
),
batch_size
=
args
.
batch_size
),
places
=
place
)
reader
.
file_reader
(
file_name
,
mode
=
mode
),
batch_size
=
args
.
batch_size
),
places
=
place
)
elif
model
==
'ernie'
:
# create ernie pyreader
...
...
@@ -114,8 +122,7 @@ def create_pyreader(args, file_name, feed_list, place, model='lac', reader=None,
feed_list
=
feed_list
,
capacity
=
50
,
use_double_buffer
=
True
,
iterable
=
True
)
iterable
=
True
)
if
reader
==
None
:
reader
=
SequenceLabelReader
(
vocab_path
=
args
.
vocab_path
,
...
...
@@ -127,17 +134,21 @@ def create_pyreader(args, file_name, feed_list, place, model='lac', reader=None,
if
mode
==
'train'
:
pyreader
.
set_batch_generator
(
reader
.
data_generator
(
file_name
,
args
.
batch_size
,
args
.
epoch
,
shuffle
=
True
,
phase
=
"train"
),
places
=
place
)
file_name
,
args
.
batch_size
,
args
.
epoch
,
shuffle
=
True
,
phase
=
"train"
),
places
=
place
)
else
:
pyreader
.
set_batch_generator
(
reader
.
data_generator
(
file_name
,
args
.
batch_size
,
epoch
=
1
,
shuffle
=
False
,
phase
=
mode
),
places
=
place
)
file_name
,
args
.
batch_size
,
epoch
=
1
,
shuffle
=
False
,
phase
=
mode
),
places
=
place
)
if
return_reader
:
return
pyreader
,
reader
else
:
...
...
@@ -150,14 +161,20 @@ def create_ernie_model(args, ernie_config):
"""
# ERNIE's input data
src_ids
=
fluid
.
data
(
name
=
'src_ids'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
sent_ids
=
fluid
.
data
(
name
=
'sent_ids'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
pos_ids
=
fluid
.
data
(
name
=
'pos_ids'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
input_mask
=
fluid
.
data
(
name
=
'input_mask'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'float32'
)
src_ids
=
fluid
.
data
(
name
=
'src_ids'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
sent_ids
=
fluid
.
data
(
name
=
'sent_ids'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
pos_ids
=
fluid
.
data
(
name
=
'pos_ids'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
input_mask
=
fluid
.
data
(
name
=
'input_mask'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'float32'
)
padded_labels
=
fluid
.
data
(
name
=
'padded_labels'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
padded_labels
=
fluid
.
data
(
name
=
'padded_labels'
,
shape
=
[
-
1
,
args
.
max_seq_len
,
1
],
dtype
=
'int64'
)
seq_lens
=
fluid
.
data
(
name
=
'seq_lens'
,
shape
=
[
-
1
],
dtype
=
'int64'
,
lod_level
=
0
)
seq_lens
=
fluid
.
data
(
name
=
'seq_lens'
,
shape
=
[
-
1
],
dtype
=
'int64'
,
lod_level
=
0
)
squeeze_labels
=
fluid
.
layers
.
squeeze
(
padded_labels
,
axes
=
[
-
1
])
...
...
@@ -187,13 +204,14 @@ def create_ernie_model(args, ernie_config):
input
=
emission
,
label
=
padded_labels
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
args
.
crf_learning_rate
),
name
=
'crfw'
,
learning_rate
=
args
.
crf_learning_rate
),
length
=
seq_lens
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
crf_cost
)
crf_decode
=
fluid
.
layers
.
crf_decoding
(
input
=
emission
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
),
length
=
seq_lens
)
input
=
emission
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
),
length
=
seq_lens
)
(
precision
,
recall
,
f1_score
,
num_infer_chunks
,
num_label_chunks
,
num_correct_chunks
)
=
fluid
.
layers
.
chunk_eval
(
...
...
@@ -206,9 +224,11 @@ def create_ernie_model(args, ernie_config):
chunk_evaluator
.
reset
()
ret
=
{
"feed_list"
:
[
src_ids
,
sent_ids
,
pos_ids
,
input_mask
,
padded_labels
,
seq_lens
],
"feed_list"
:
[
src_ids
,
sent_ids
,
pos_ids
,
input_mask
,
padded_labels
,
seq_lens
],
"words"
:
src_ids
,
"labels"
:
padded_labels
,
"seq_lens"
:
seq_lens
,
"avg_cost"
:
avg_cost
,
"crf_decode"
:
crf_decode
,
"precision"
:
precision
,
...
...
PaddleNLP/lexical_analysis/run_ernie_sequence_labeling.py
浏览文件 @
8db0319c
...
...
@@ -39,6 +39,7 @@ from models.representation.ernie import ErnieConfig
from
models.model_check
import
check_cuda
from
models.model_check
import
check_version
def
evaluate
(
exe
,
test_program
,
test_pyreader
,
test_ret
):
"""
Evaluation Function
...
...
@@ -55,8 +56,7 @@ def evaluate(exe, test_program, test_pyreader, test_ret):
test_ret
[
"num_label_chunks"
],
test_ret
[
"num_correct_chunks"
],
],
feed
=
data
[
0
]
)
feed
=
data
[
0
])
total_loss
.
append
(
loss
)
test_ret
[
"chunk_evaluator"
].
update
(
nums_infer
,
nums_label
,
nums_correct
)
...
...
@@ -64,9 +64,11 @@ def evaluate(exe, test_program, test_pyreader, test_ret):
precision
,
recall
,
f1
=
test_ret
[
"chunk_evaluator"
].
eval
()
end_time
=
time
.
time
()
print
(
"
\t
[test] loss: %.5f, P: %.5f, R: %.5f, F1: %.5f, elapsed time: %.3f s"
print
(
"
\t
[test] loss: %.5f, P: %.5f, R: %.5f, F1: %.5f, elapsed time: %.3f s"
%
(
np
.
mean
(
total_loss
),
precision
,
recall
,
f1
,
end_time
-
start_time
))
def
do_train
(
args
):
"""
Main Function
...
...
@@ -80,14 +82,15 @@ def do_train(args):
else
:
dev_count
=
min
(
multiprocessing
.
cpu_count
(),
args
.
cpu_num
)
if
(
dev_count
<
args
.
cpu_num
):
print
(
"WARNING: The total CPU NUM in this machine is %d, which is less than cpu_num parameter you set. "
"Change the cpu_num from %d to %d"
%
(
dev_count
,
args
.
cpu_num
,
dev_count
))
print
(
"WARNING: The total CPU NUM in this machine is %d, which is less than cpu_num parameter you set. "
"Change the cpu_num from %d to %d"
%
(
dev_count
,
args
.
cpu_num
,
dev_count
))
os
.
environ
[
'CPU_NUM'
]
=
str
(
dev_count
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
startup_prog
=
fluid
.
Program
()
if
args
.
random_seed
is
not
None
:
startup_prog
.
random_seed
=
args
.
random_seed
...
...
@@ -99,22 +102,27 @@ def do_train(args):
train_ret
=
creator
.
create_ernie_model
(
args
,
ernie_config
)
# ernie pyreader
train_pyreader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
train_data
,
train_pyreader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
train_data
,
feed_list
=
train_ret
[
'feed_list'
],
model
=
"ernie"
,
place
=
place
)
test_program
=
train_program
.
clone
(
for_test
=
True
)
test_pyreader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
test_data
,
test_pyreader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
test_data
,
feed_list
=
train_ret
[
'feed_list'
],
model
=
"ernie"
,
place
=
place
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
base_learning_rate
)
fluid
.
clip
.
set_gradient_clip
(
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
1.0
))
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
base_learning_rate
)
fluid
.
clip
.
set_gradient_clip
(
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
1.0
))
optimizer
.
minimize
(
train_ret
[
"avg_cost"
])
lower_mem
,
upper_mem
,
unit
=
fluid
.
contrib
.
memory_usage
(
program
=
train_program
,
batch_size
=
args
.
batch_size
)
print
(
"Theoretical memory usage in training: %.3f - %.3f %s"
%
...
...
@@ -129,16 +137,18 @@ def do_train(args):
if
args
.
init_checkpoint
:
utils
.
init_checkpoint
(
exe
,
args
.
init_checkpoint
,
startup_prog
)
elif
args
.
init_pretraining_params
:
utils
.
init_pretraining_params
(
exe
,
args
.
init_pretraining_params
,
startup_prog
)
utils
.
init_pretraining_params
(
exe
,
args
.
init_pretraining_params
,
startup_prog
)
if
dev_count
>
1
and
not
args
.
use_cuda
:
if
dev_count
>
1
and
not
args
.
use_cuda
:
device
=
"GPU"
if
args
.
use_cuda
else
"CPU"
print
(
"%d %s are used to train model"
%
(
dev_count
,
device
))
print
(
"%d %s are used to train model"
%
(
dev_count
,
device
))
# multi cpu/gpu config
exec_strategy
=
fluid
.
ExecutionStrategy
()
build_strategy
=
fluid
.
BuildStrategy
()
compiled_prog
=
fluid
.
compiler
.
CompiledProgram
(
train_program
).
with_data_parallel
(
compiled_prog
=
fluid
.
compiler
.
CompiledProgram
(
train_program
).
with_data_parallel
(
loss_name
=
train_ret
[
'avg_cost'
].
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
...
...
@@ -162,16 +172,23 @@ def do_train(args):
start_time
=
time
.
time
()
outputs
=
exe
.
run
(
program
=
compiled_prog
,
feed
=
data
[
0
],
fetch_list
=
fetch_list
)
outputs
=
exe
.
run
(
program
=
compiled_prog
,
feed
=
data
[
0
],
fetch_list
=
fetch_list
)
end_time
=
time
.
time
()
if
steps
%
args
.
print_steps
==
0
:
loss
,
precision
,
recall
,
f1_score
=
[
np
.
mean
(
x
)
for
x
in
outputs
]
print
(
"[train] batch_id = %d, loss = %.5f, P: %.5f, R: %.5f, F1: %.5f, elapsed time %.5f, "
"pyreader queue_size: %d "
%
(
steps
,
loss
,
precision
,
recall
,
f1_score
,
loss
,
precision
,
recall
,
f1_score
=
[
np
.
mean
(
x
)
for
x
in
outputs
]
print
(
"[train] batch_id = %d, loss = %.5f, P: %.5f, R: %.5f, F1: %.5f, elapsed time %.5f, "
"pyreader queue_size: %d "
%
(
steps
,
loss
,
precision
,
recall
,
f1_score
,
end_time
-
start_time
,
train_pyreader
.
queue
.
size
()))
if
steps
%
args
.
save_steps
==
0
:
save_path
=
os
.
path
.
join
(
args
.
model_save_dir
,
"step_"
+
str
(
steps
))
save_path
=
os
.
path
.
join
(
args
.
model_save_dir
,
"step_"
+
str
(
steps
))
print
(
"
\t
saving model as %s"
%
(
save_path
))
fluid
.
io
.
save_persistables
(
exe
,
save_path
,
train_program
)
...
...
@@ -182,7 +199,6 @@ def do_train(args):
fluid
.
io
.
save_persistables
(
exe
,
save_path
,
train_program
)
def
do_eval
(
args
):
# init executor
if
args
.
use_cuda
:
...
...
@@ -198,11 +214,13 @@ def do_eval(args):
test_ret
=
creator
.
create_ernie_model
(
args
,
ernie_config
)
test_program
=
test_program
.
clone
(
for_test
=
True
)
pyreader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
test_data
,
pyreader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
test_data
,
feed_list
=
test_ret
[
'feed_list'
],
model
=
"ernie"
,
place
=
place
,
mode
=
'test'
,
)
mode
=
'test'
,
)
print
(
'program startup'
)
...
...
@@ -212,11 +230,13 @@ def do_eval(args):
print
(
'program loading'
)
# load model
if
not
args
.
init_checkpoint
:
raise
ValueError
(
"args 'init_checkpoint' should be set if only doing test or infer!"
)
raise
ValueError
(
"args 'init_checkpoint' should be set if only doing test or infer!"
)
utils
.
init_checkpoint
(
exe
,
args
.
init_checkpoint
,
test_program
)
evaluate
(
exe
,
test_program
,
pyreader
,
test_ret
)
def
do_infer
(
args
):
# init executor
if
args
.
use_cuda
:
...
...
@@ -233,7 +253,9 @@ def do_infer(args):
infer_ret
=
creator
.
create_ernie_model
(
args
,
ernie_config
)
infer_program
=
infer_program
.
clone
(
for_test
=
True
)
print
(
args
.
test_data
)
pyreader
,
reader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
test_data
,
pyreader
,
reader
=
creator
.
create_pyreader
(
args
,
file_name
=
args
.
test_data
,
feed_list
=
infer_ret
[
'feed_list'
],
model
=
"ernie"
,
place
=
place
,
...
...
@@ -245,29 +267,38 @@ def do_infer(args):
# load model
if
not
args
.
init_checkpoint
:
raise
ValueError
(
"args 'init_checkpoint' should be set if only doing test or infer!"
)
raise
ValueError
(
"args 'init_checkpoint' should be set if only doing test or infer!"
)
utils
.
init_checkpoint
(
exe
,
args
.
init_checkpoint
,
infer_program
)
# create dict
id2word_dict
=
dict
([(
str
(
word_id
),
word
)
for
word
,
word_id
in
reader
.
vocab
.
items
()])
id2label_dict
=
dict
([(
str
(
label_id
),
label
)
for
label
,
label_id
in
reader
.
label_map
.
items
()])
id2word_dict
=
dict
(
[(
str
(
word_id
),
word
)
for
word
,
word_id
in
reader
.
vocab
.
items
()])
id2label_dict
=
dict
([(
str
(
label_id
),
label
)
for
label
,
label_id
in
reader
.
label_map
.
items
()])
Dataset
=
namedtuple
(
"Dataset"
,
[
"id2word_dict"
,
"id2label_dict"
])
dataset
=
Dataset
(
id2word_dict
,
id2label_dict
)
# make prediction
for
data
in
pyreader
():
(
words
,
crf_decode
)
=
exe
.
run
(
infer_program
,
fetch_list
=
[
infer_ret
[
"words"
],
infer_ret
[
"crf_decode"
]],
(
words
,
crf_decode
,
seq_lens
)
=
exe
.
run
(
infer_program
,
fetch_list
=
[
infer_ret
[
"words"
],
infer_ret
[
"crf_decode"
],
infer_ret
[
"seq_lens"
]
],
feed
=
data
[
0
],
return_numpy
=
Fals
e
)
return_numpy
=
Tru
e
)
# User should notice that words had been clipped if long than args.max_seq_len
results
=
utils
.
parse_result
(
words
,
crf_decode
,
dataset
)
results
=
utils
.
parse_padding_result
(
words
,
crf_decode
,
seq_lens
,
dataset
)
for
sent
,
tags
in
results
:
result_list
=
[
'(%s, %s)'
%
(
ch
,
tag
)
for
ch
,
tag
in
zip
(
sent
,
tags
)]
result_list
=
[
'(%s, %s)'
%
(
ch
,
tag
)
for
ch
,
tag
in
zip
(
sent
,
tags
)
]
print
(
''
.
join
(
result_list
))
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
__doc__
)
utils
.
load_yaml
(
parser
,
'./conf/ernie_args.yaml'
)
...
...
@@ -284,4 +315,3 @@ if __name__ == "__main__":
do_infer
(
args
)
else
:
print
(
"Usage: %s --mode train|eval|infer "
%
sys
.
argv
[
0
])
PaddleNLP/lexical_analysis/utils.py
浏览文件 @
8db0319c
...
...
@@ -148,6 +148,50 @@ def parse_result(words, crf_decode, dataset):
return
batch_out
def
parse_padding_result
(
words
,
crf_decode
,
seq_lens
,
dataset
):
""" parse padding result """
words
=
np
.
squeeze
(
words
)
batch_size
=
len
(
seq_lens
)
batch_out
=
[]
for
sent_index
in
range
(
batch_size
):
sent
=
[
dataset
.
id2word_dict
[
str
(
id
)]
for
id
in
words
[
sent_index
][
1
:
seq_lens
[
sent_index
]
-
1
]
]
tags
=
[
dataset
.
id2label_dict
[
str
(
id
)]
for
id
in
crf_decode
[
sent_index
][
1
:
seq_lens
[
sent_index
]
-
1
]
]
sent_out
=
[]
tags_out
=
[]
parital_word
=
""
for
ind
,
tag
in
enumerate
(
tags
):
# for the first word
if
parital_word
==
""
:
parital_word
=
sent
[
ind
]
tags_out
.
append
(
tag
.
split
(
'-'
)[
0
])
continue
# for the beginning of word
if
tag
.
endswith
(
"-B"
)
or
(
tag
==
"O"
and
tags
[
ind
-
1
]
!=
"O"
):
sent_out
.
append
(
parital_word
)
tags_out
.
append
(
tag
.
split
(
'-'
)[
0
])
parital_word
=
sent
[
ind
]
continue
parital_word
+=
sent
[
ind
]
# append the last word, except for len(tags)=0
if
len
(
sent_out
)
<
len
(
tags_out
):
sent_out
.
append
(
parital_word
)
batch_out
.
append
([
sent_out
,
tags_out
])
return
batch_out
def
init_checkpoint
(
exe
,
init_checkpoint_path
,
main_program
):
"""
Init CheckPoint
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录