diff --git a/fluid/text_matching_on_quora/README.md b/fluid/text_matching_on_quora/README.md index 17776d7bce4811304f535c20b569e2ecd641fa0c..b5a43d5d9dc4d17ffee4de1a7196021bd1f0dbc5 100644 --- a/fluid/text_matching_on_quora/README.md +++ b/fluid/text_matching_on_quora/README.md @@ -25,7 +25,7 @@ Based on the Quora Question Pair Dataset, we will implement some classic models ## Environment Preparation -### Install fluid release 1.0 +### Install release 1.0 You can follow the fluid's [official document](http://www.paddlepaddle.org/documentation/docs/en/1.0/build_and_install/pip_install_en.html) to install the fluid. @@ -100,6 +100,18 @@ fluid train_and_evaluate.py \ You are supposed to get log like cdssm_base.log +All configs used in our experiments: + +|Model|Config|command +|:----:|:----:|:----:| +|cdssmNet|cdssm_base|python train_and_evaluate.py --model_name=cdssmNet --config=cdssm_base +|DecAttNet|decatt_glove|python train_and_evaluate.py --model_name=DecAttNet --config=decatt_glove +|InferSentNet|infer_sent_v1|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1 +|InferSentNet|infer_sent_v2|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1 +|SSENet|sse_base|python train_and_evaluate.py --model_name=SSENet --config=sse_base + +If you want to know more about the configs, please go to the `configs` directory. + ## Results We have implemeted 4 models for now, CDSSM(Convolutional Deep Structured Semantic Models) is a convolution-based model, Infer Sent Model and SSE(Shortcut-Stacked Encoders) are RNN-based models, and DecAtt(Decompose Attention) model is a attention-based model. In our experiment, we found that LSTM-based models outperform convolution-based model in test set accuracy. DecAtt model has fewer parameters than LSTM-based models, but it is very sensitive to the hyper-parameters when training. @@ -161,10 +173,10 @@ We have implemeted 4 models for now, CDSSM(Convolutional Deep Structured Semanti ### Test Accuracy -|Model|dev accuracy| test accuracy -|:----:|:----:|:----:| -|CDSSM|83.56%|82.83%| -|DecAtt|86.31%|86.22%| -|InferSentV1|86.91%|86.65%| -|InferSentV2|88.55%|88.43%| -|SSE||| +|Model|Config|dev accuracy| test accuracy +|:----:|:----:|:----:|:----:| +|cdssmNet|cdssm_base|83.56%|82.83%| +|DecAttNet|decatt_glove|86.31%|86.22%| +|InferSentNet|infer_sent_v1|86.91%|86.65%| +|InferSentNet|infer_sent_v2|88.55%|88.43%| +|SSENet|sse_base|||