diff --git a/dssm/README.md b/dssm/README.md index 6729cf6663c113e16f1721b34955c6254f1679be..2afa6cbccb7172b72d11bc111bd0b94e10c83c7b 100644 --- a/dssm/README.md +++ b/dssm/README.md @@ -438,6 +438,16 @@ optional arguments: number of batches to output model, (default: 400) ``` +重要的参数描述如下 + +- `train_data_path` 训练数据路径 +- `test_data_path` 测试数据路局,可以不设置 +- `source_dic_path` 源字典字典路径 +- `target_dic_path` 目标字典路径 +- `model_type` 模型的损失函数的类型,分类0,排序1,回归2 +- `model_arch` 模型结构,FC 0, CNN 1, RNN 2 +- `dnn_dims` 模型各层的维度设置,默认为 `256,128,64,32`,即模型有4层,各层维度如上设置 + ## 用训练好的模型预测 ```python usage: infer.py [-h] --model_path MODEL_PATH -i DATA_PATH -o @@ -480,6 +490,11 @@ optional arguments: number of categories for classification task. ``` +部分参数可以参考 `train.py`,重要参数解释如下 + +- `data_path` 需要预测的数据路径 +- `prediction_output_path` 预测的输出路径 + ## 参考文献 1. Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013: 2333-2338.