Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
8ac5d6f4
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8ac5d6f4
编写于
3月 12, 2018
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/models
into mobilenet_ssd
上级
9b7d32d8
3b549867
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
108 addition
and
64 deletion
+108
-64
fluid/adversarial/fluid_mnist.py
fluid/adversarial/fluid_mnist.py
+14
-10
fluid/image_classification/mobilenet.py
fluid/image_classification/mobilenet.py
+22
-16
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+48
-22
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+2
-2
fluid/text_classification/train.py
fluid/text_classification/train.py
+22
-14
未找到文件。
fluid/adversarial/fluid_mnist.py
浏览文件 @
8ac5d6f4
...
@@ -47,7 +47,9 @@ def main():
...
@@ -47,7 +47,9 @@ def main():
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.01
)
optimizer
.
minimize
(
avg_cost
)
optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
logits
,
label
=
label
)
batch_size
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
logits
,
label
=
label
,
total
=
batch_size
)
BATCH_SIZE
=
50
BATCH_SIZE
=
50
PASS_NUM
=
3
PASS_NUM
=
3
...
@@ -63,20 +65,22 @@ def main():
...
@@ -63,20 +65,22 @@ def main():
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
img
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
pass_acc
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
PASS_NUM
):
for
pass_id
in
range
(
PASS_NUM
):
accuracy
.
reset
(
exe
)
pass_acc
.
reset
(
)
for
data
in
train_reader
():
for
data
in
train_reader
():
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
loss
,
acc
,
b_size
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
batch_acc
,
batch_size
]
)
pass_acc
=
accuracy
.
eval
(
ex
e
)
pass_acc
.
add
(
value
=
acc
,
weight
=
b_siz
e
)
print
(
"pass_id="
+
str
(
pass_id
)
+
" acc="
+
str
(
acc
)
+
" pass_acc="
print
(
"pass_id="
+
str
(
pass_id
)
+
" acc="
+
str
(
acc
[
0
])
+
+
str
(
pass_acc
))
" pass_acc="
+
str
(
pass_acc
.
eval
()[
0
]
))
if
loss
<
LOSS_THRESHOLD
and
pass_acc
>
ACC_THRESHOLD
:
if
loss
<
LOSS_THRESHOLD
and
pass_acc
>
ACC_THRESHOLD
:
break
break
p
ass_acc
=
accuracy
.
eval
(
exe
)
p
rint
(
"pass_id="
+
str
(
pass_id
)
+
" pass_acc="
+
str
(
pass_acc
.
eval
()[
print
(
"pass_id="
+
str
(
pass_id
)
+
" pass_acc="
+
str
(
pass_acc
))
0
]
))
fluid
.
io
.
save_params
(
fluid
.
io
.
save_params
(
exe
,
dirname
=
'./mnist'
,
main_program
=
fluid
.
default_main_program
())
exe
,
dirname
=
'./mnist'
,
main_program
=
fluid
.
default_main_program
())
print
(
'train mnist done'
)
print
(
'train mnist done'
)
...
...
fluid/image_classification/mobilenet.py
浏览文件 @
8ac5d6f4
...
@@ -172,15 +172,16 @@ def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
...
@@ -172,15 +172,16 @@ def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
momentum
=
0.9
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
5
*
1e-5
))
regularization
=
fluid
.
regularizer
.
L2Decay
(
5
*
1e-5
))
opts
=
optimizer
.
minimize
(
avg_cost
)
opts
=
optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
out
,
label
=
label
)
b_size_var
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
b_acc_var
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
total
=
b_size_var
)
inference_program
=
fluid
.
default_main_program
().
clone
()
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
with
fluid
.
program_guard
(
inference_program
):
test_accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
out
,
label
=
label
)
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
=
[
avg_cost
]
+
test_accuracy
.
metrics
+
test_accuracy
.
states
target_vars
=
[
b_acc_var
,
b_size_var
])
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
)
place
=
fluid
.
C
UDAPlace
(
0
)
place
=
fluid
.
C
PUPlace
(
)
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
...
@@ -190,24 +191,29 @@ def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
...
@@ -190,24 +191,29 @@ def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
paddle
.
dataset
.
flowers
.
test
(),
batch_size
=
batch_size
)
paddle
.
dataset
.
flowers
.
test
(),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
train_pass_acc_evaluator
=
fluid
.
average
.
WeightedAverage
()
test_pass_acc_evaluator
=
fluid
.
average
.
WeightedAverage
()
for
pass_id
in
range
(
num_passes
):
for
pass_id
in
range
(
num_passes
):
accuracy
.
reset
(
exe
)
train_pass_acc_evaluator
.
reset
(
)
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
loss
,
acc
,
size
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
b_acc_var
,
b_size_var
])
train_pass_acc_evaluator
.
add
(
value
=
acc
,
weight
=
size
)
print
(
"Pass {0}, batch {1}, loss {2}, acc {3}"
.
format
(
print
(
"Pass {0}, batch {1}, loss {2}, acc {3}"
.
format
(
pass_id
,
batch_id
,
loss
[
0
],
acc
[
0
]))
pass_id
,
batch_id
,
loss
[
0
],
acc
[
0
]))
pass_acc
=
accuracy
.
eval
(
exe
)
test_
accuracy
.
reset
(
exe
)
test_
pass_acc_evaluator
.
reset
(
)
for
data
in
test_reader
():
for
data
in
test_reader
():
loss
,
acc
=
exe
.
run
(
inference_program
,
loss
,
acc
,
size
=
exe
.
run
(
inference_program
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
test_accuracy
.
metrics
)
fetch_list
=
[
avg_cost
,
b_acc_var
,
b_size_var
]
)
test_pass_acc
=
test_accuracy
.
eval
(
ex
e
)
test_pass_acc_evaluator
.
add
(
value
=
acc
,
weight
=
siz
e
)
print
(
"End pass {0}, train_acc {1}, test_acc {2}"
.
format
(
print
(
"End pass {0}, train_acc {1}, test_acc {2}"
.
format
(
pass_id
,
pass_acc
,
test_pass_acc
))
pass_id
,
train_pass_acc_evaluator
.
eval
(),
test_pass_acc_evaluator
.
eval
()))
if
pass_id
%
10
==
0
:
if
pass_id
%
10
==
0
:
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
print
'save models to %s'
%
(
model_path
)
print
'save models to %s'
%
(
model_path
)
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
8ac5d6f4
from
functools
import
partial
from
functools
import
partial
import
numpy
as
np
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.layers
as
layers
...
@@ -31,7 +30,7 @@ def multi_head_attention(queries,
...
@@ -31,7 +30,7 @@ def multi_head_attention(queries,
d_key
,
d_key
,
d_value
,
d_value
,
d_model
,
d_model
,
n
um_heads
=
1
,
n
_head
=
1
,
dropout_rate
=
0.
):
dropout_rate
=
0.
):
"""
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
Multi-Head Attention. Note that attn_bias is added to the logit before
...
@@ -42,41 +41,53 @@ def multi_head_attention(queries,
...
@@ -42,41 +41,53 @@ def multi_head_attention(queries,
raise
ValueError
(
raise
ValueError
(
"Inputs: quries, keys and values should all be 3-D tensors."
)
"Inputs: quries, keys and values should all be 3-D tensors."
)
def
__compute_qkv
(
queries
,
keys
,
values
,
n
um_heads
,
d_key
,
d_value
):
def
__compute_qkv
(
queries
,
keys
,
values
,
n
_head
,
d_key
,
d_value
):
"""
"""
Add linear projection to queries, keys, and values.
Add linear projection to queries, keys, and values.
"""
"""
q
=
layers
.
fc
(
input
=
queries
,
q
=
layers
.
fc
(
input
=
queries
,
size
=
d_key
*
num_heads
,
size
=
d_key
*
n_head
,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
,
fan_in
=
d_model
*
d_key
,
fan_out
=
n_head
*
d_key
),
bias_attr
=
False
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
num_flatten_dims
=
2
)
k
=
layers
.
fc
(
input
=
keys
,
k
=
layers
.
fc
(
input
=
keys
,
size
=
d_key
*
num_heads
,
size
=
d_key
*
n_head
,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
,
fan_in
=
d_model
*
d_key
,
fan_out
=
n_head
*
d_key
),
bias_attr
=
False
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
num_flatten_dims
=
2
)
v
=
layers
.
fc
(
input
=
values
,
v
=
layers
.
fc
(
input
=
values
,
size
=
d_value
*
num_heads
,
size
=
d_value
*
n_head
,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
,
fan_in
=
d_model
*
d_value
,
fan_out
=
n_head
*
d_value
),
bias_attr
=
False
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
num_flatten_dims
=
2
)
return
q
,
k
,
v
return
q
,
k
,
v
def
__split_heads
(
x
,
n
um_heads
):
def
__split_heads
(
x
,
n
_head
):
"""
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n
um_heads
* hidden_dim] then output a tensor
[bs, max_sequence_length, n
_head
* hidden_dim] then output a tensor
with shape [bs, n
um_heads
, max_sequence_length, hidden_dim].
with shape [bs, n
_head
, max_sequence_length, hidden_dim].
"""
"""
if
n
um_heads
==
1
:
if
n
_head
==
1
:
return
x
return
x
hidden_size
=
x
.
shape
[
-
1
]
hidden_size
=
x
.
shape
[
-
1
]
# FIXME(guosheng): Decouple the program desc with batch_size.
# FIXME(guosheng): Decouple the program desc with batch_size.
reshaped
=
layers
.
reshape
(
reshaped
=
layers
.
reshape
(
x
=
x
,
shape
=
[
batch_size
,
-
1
,
n
um_heads
,
hidden_size
//
num_heads
])
x
=
x
,
shape
=
[
batch_size
,
-
1
,
n
_head
,
hidden_size
//
n_head
])
# permuate the dimensions into:
# permuate the dimensions into:
# [batch_size, n
um_heads
, max_sequence_len, hidden_size_per_head]
# [batch_size, n
_head
, max_sequence_len, hidden_size_per_head]
return
layers
.
transpose
(
x
=
reshaped
,
perm
=
[
0
,
2
,
1
,
3
])
return
layers
.
transpose
(
x
=
reshaped
,
perm
=
[
0
,
2
,
1
,
3
])
def
__combine_heads
(
x
):
def
__combine_heads
(
x
):
...
@@ -95,7 +106,7 @@ def multi_head_attention(queries,
...
@@ -95,7 +106,7 @@ def multi_head_attention(queries,
shape
=
map
(
int
,
shape
=
map
(
int
,
[
batch_size
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
[
batch_size
,
-
1
,
trans_x
.
shape
[
2
]
*
trans_x
.
shape
[
3
]]))
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_
key
,
dropout_rate
):
def
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_
model
,
dropout_rate
):
"""
"""
Scaled Dot-Product Attention
Scaled Dot-Product Attention
"""
"""
...
@@ -114,7 +125,7 @@ def multi_head_attention(queries,
...
@@ -114,7 +125,7 @@ def multi_head_attention(queries,
sum_out
=
layers
.
reduce_sum
(
exp_out
,
dim
=-
1
,
keep_dim
=
False
)
sum_out
=
layers
.
reduce_sum
(
exp_out
,
dim
=-
1
,
keep_dim
=
False
)
return
layers
.
elementwise_div
(
x
=
exp_out
,
y
=
sum_out
,
axis
=
0
)
return
layers
.
elementwise_div
(
x
=
exp_out
,
y
=
sum_out
,
axis
=
0
)
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
d_
key
**-
0.5
)
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
d_
model
**-
0.5
)
product
=
layers
.
matmul
(
x
=
scaled_q
,
y
=
k
,
transpose_y
=
True
)
product
=
layers
.
matmul
(
x
=
scaled_q
,
y
=
k
,
transpose_y
=
True
)
weights
=
__softmax
(
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
))
weights
=
__softmax
(
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
))
if
dropout_rate
:
if
dropout_rate
:
...
@@ -123,13 +134,13 @@ def multi_head_attention(queries,
...
@@ -123,13 +134,13 @@ def multi_head_attention(queries,
out
=
layers
.
matmul
(
weights
,
v
)
out
=
layers
.
matmul
(
weights
,
v
)
return
out
return
out
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
n
um_heads
,
d_key
,
d_value
)
q
,
k
,
v
=
__compute_qkv
(
queries
,
keys
,
values
,
n
_head
,
d_key
,
d_value
)
q
=
__split_heads
(
q
,
n
um_heads
)
q
=
__split_heads
(
q
,
n
_head
)
k
=
__split_heads
(
k
,
n
um_heads
)
k
=
__split_heads
(
k
,
n
_head
)
v
=
__split_heads
(
v
,
n
um_heads
)
v
=
__split_heads
(
v
,
n
_head
)
ctx_multiheads
=
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_
key
,
ctx_multiheads
=
scaled_dot_product_attention
(
q
,
k
,
v
,
attn_bias
,
d_
model
,
dropout_rate
)
dropout_rate
)
out
=
__combine_heads
(
ctx_multiheads
)
out
=
__combine_heads
(
ctx_multiheads
)
...
@@ -137,6 +148,7 @@ def multi_head_attention(queries,
...
@@ -137,6 +148,7 @@ def multi_head_attention(queries,
# Project back to the model size.
# Project back to the model size.
proj_out
=
layers
.
fc
(
input
=
out
,
proj_out
=
layers
.
fc
(
input
=
out
,
size
=
d_model
,
size
=
d_model
,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
bias_attr
=
False
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
num_flatten_dims
=
2
)
return
proj_out
return
proj_out
...
@@ -151,8 +163,14 @@ def positionwise_feed_forward(x, d_inner_hid, d_hid):
...
@@ -151,8 +163,14 @@ def positionwise_feed_forward(x, d_inner_hid, d_hid):
hidden
=
layers
.
fc
(
input
=
x
,
hidden
=
layers
.
fc
(
input
=
x
,
size
=
d_inner_hid
,
size
=
d_inner_hid
,
num_flatten_dims
=
2
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
initializer
.
Uniform
(
low
=-
(
d_hid
**-
0.5
),
high
=
(
d_hid
**-
0.5
)),
act
=
"relu"
)
act
=
"relu"
)
out
=
layers
.
fc
(
input
=
hidden
,
size
=
d_hid
,
num_flatten_dims
=
2
)
out
=
layers
.
fc
(
input
=
hidden
,
size
=
d_hid
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
initializer
.
Uniform
(
low
=-
(
d_inner_hid
**-
0.5
),
high
=
(
d_inner_hid
**-
0.5
)))
return
out
return
out
...
@@ -168,7 +186,11 @@ def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.):
...
@@ -168,7 +186,11 @@ def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.):
if
cmd
==
"a"
:
# add residual connection
if
cmd
==
"a"
:
# add residual connection
out
=
out
+
prev_out
if
prev_out
else
out
out
=
out
+
prev_out
if
prev_out
else
out
elif
cmd
==
"n"
:
# add layer normalization
elif
cmd
==
"n"
:
# add layer normalization
out
=
layers
.
layer_norm
(
out
,
begin_norm_axis
=
len
(
out
.
shape
)
-
1
)
out
=
layers
.
layer_norm
(
out
,
begin_norm_axis
=
len
(
out
.
shape
)
-
1
,
param_attr
=
fluid
.
initializer
.
Constant
(
1.
),
bias_attr
=
fluid
.
initializer
.
Constant
(
0.
))
elif
cmd
==
"d"
:
# add dropout
elif
cmd
==
"d"
:
# add dropout
if
dropout
:
if
dropout
:
out
=
layers
.
dropout
(
out
,
dropout_prob
=
dropout
,
is_test
=
False
)
out
=
layers
.
dropout
(
out
,
dropout_prob
=
dropout
,
is_test
=
False
)
...
@@ -195,7 +217,10 @@ def prepare_encoder(src_word,
...
@@ -195,7 +217,10 @@ def prepare_encoder(src_word,
This module is used at the bottom of the encoder stacks.
This module is used at the bottom of the encoder stacks.
"""
"""
src_word_emb
=
layers
.
embedding
(
src_word_emb
=
layers
.
embedding
(
src_word
,
size
=
[
src_vocab_size
,
src_emb_dim
],
padding_idx
=
src_pad_idx
)
src_word
,
size
=
[
src_vocab_size
,
src_emb_dim
],
padding_idx
=
src_pad_idx
,
param_attr
=
fluid
.
initializer
.
Normal
(
0.
,
1.
))
src_pos_enc
=
layers
.
embedding
(
src_pos_enc
=
layers
.
embedding
(
src_pos
,
src_pos
,
size
=
[
src_max_len
,
src_emb_dim
],
size
=
[
src_max_len
,
src_emb_dim
],
...
@@ -462,6 +487,7 @@ def transformer(
...
@@ -462,6 +487,7 @@ def transformer(
predict
=
layers
.
reshape
(
predict
=
layers
.
reshape
(
x
=
layers
.
fc
(
input
=
dec_output
,
x
=
layers
.
fc
(
input
=
dec_output
,
size
=
trg_vocab_size
,
size
=
trg_vocab_size
,
param_attr
=
fluid
.
initializer
.
Xavier
(
uniform
=
False
),
bias_attr
=
False
,
bias_attr
=
False
,
num_flatten_dims
=
2
),
num_flatten_dims
=
2
),
shape
=
[
-
1
,
trg_vocab_size
],
shape
=
[
-
1
,
trg_vocab_size
],
...
...
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
8ac5d6f4
...
@@ -115,7 +115,7 @@ def main():
...
@@ -115,7 +115,7 @@ def main():
paddle
.
reader
.
shuffle
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
paddle
.
dataset
.
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
),
ModelHyperParams
.
trg_vocab_size
),
buf_size
=
512
00
),
buf_size
=
1000
00
),
batch_size
=
TrainTaskConfig
.
batch_size
)
batch_size
=
TrainTaskConfig
.
batch_size
)
# Initialize the parameters.
# Initialize the parameters.
...
@@ -143,7 +143,7 @@ def main():
...
@@ -143,7 +143,7 @@ def main():
fetch_list
=
[
cost
])
fetch_list
=
[
cost
])
cost_val
=
np
.
array
(
outs
[
0
])
cost_val
=
np
.
array
(
outs
[
0
])
print
(
"pass_id = "
+
str
(
pass_id
)
+
" batch = "
+
str
(
batch_id
)
+
print
(
"pass_id = "
+
str
(
pass_id
)
+
" batch = "
+
str
(
batch_id
)
+
"
avg_
cost = "
+
str
(
cost_val
))
" cost = "
+
str
(
cost_val
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
fluid/text_classification/train.py
浏览文件 @
8ac5d6f4
...
@@ -89,12 +89,14 @@ def main(dict_path):
...
@@ -89,12 +89,14 @@ def main(dict_path):
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
conf
.
learning_rate
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
conf
.
learning_rate
)
sgd_optimizer
.
minimize
(
avg_cost
)
sgd_optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
prediction
,
label
=
label
)
batch_size_var
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc_var
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
,
total
=
batch_size_var
)
inference_program
=
fluid
.
default_main_program
().
clone
()
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
with
fluid
.
program_guard
(
inference_program
):
test_target
=
accuracy
.
metrics
+
accuracy
.
states
inference_program
=
fluid
.
io
.
get_inference_program
(
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
)
target_vars
=
[
batch_acc_var
,
batch_size_var
]
)
# The training data set.
# The training data set.
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
...
@@ -119,31 +121,37 @@ def main(dict_path):
...
@@ -119,31 +121,37 @@ def main(dict_path):
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
train_pass_acc_evaluator
=
fluid
.
average
.
WeightedAverage
()
test_pass_acc_evaluator
=
fluid
.
average
.
WeightedAverage
()
def
test
(
exe
):
def
test
(
exe
):
accuracy
.
reset
(
exe
)
test_pass_acc_evaluator
.
reset
(
)
for
batch_id
,
data
in
enumerate
(
test_reader
()):
for
batch_id
,
data
in
enumerate
(
test_reader
()):
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
y_data
=
y_data
.
reshape
([
-
1
,
1
])
acc
=
exe
.
run
(
inference_program
,
b_acc
,
b_size
=
exe
.
run
(
inference_program
,
feed
=
{
"words"
:
input_seq
,
feed
=
{
"words"
:
input_seq
,
"label"
:
y_data
})
"label"
:
y_data
},
test_acc
=
accuracy
.
eval
(
exe
)
fetch_list
=
[
batch_acc_var
,
batch_size_var
])
test_pass_acc_evaluator
.
add
(
value
=
b_acc
,
weight
=
b_size
)
test_acc
=
test_pass_acc_evaluator
.
eval
()
return
test_acc
return
test_acc
total_time
=
0.
total_time
=
0.
for
pass_id
in
xrange
(
conf
.
num_passes
):
for
pass_id
in
xrange
(
conf
.
num_passes
):
accuracy
.
reset
(
exe
)
train_pass_acc_evaluator
.
reset
(
)
start_time
=
time
.
time
()
start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
cost_val
,
acc_val
=
exe
.
run
(
cost_val
,
acc_val
,
size_val
=
exe
.
run
(
fluid
.
default_main_program
(),
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
accuracy
.
metrics
[
0
]
])
fetch_list
=
[
avg_cost
,
batch_acc_var
,
batch_size_var
])
pass_acc
=
accuracy
.
eval
(
exe
)
train_pass_acc_evaluator
.
add
(
value
=
acc_val
,
weight
=
size_val
)
if
batch_id
and
batch_id
%
conf
.
log_period
==
0
:
if
batch_id
and
batch_id
%
conf
.
log_period
==
0
:
print
(
"Pass id: %d, batch id: %d, cost: %f, pass_acc %f"
%
print
(
"Pass id: %d, batch id: %d, cost: %f, pass_acc: %f"
%
(
pass_id
,
batch_id
,
cost_val
,
pass_acc
))
(
pass_id
,
batch_id
,
cost_val
,
train_pass_acc_evaluator
.
eval
()))
end_time
=
time
.
time
()
end_time
=
time
.
time
()
total_time
+=
(
end_time
-
start_time
)
total_time
+=
(
end_time
-
start_time
)
pass_test_acc
=
test
(
exe
)
pass_test_acc
=
test
(
exe
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录