未验证 提交 89f00e53 编写于 作者: H Hongyu Liu 提交者: GitHub

Add dygraph ocr model (#2333)

* add pbt lm; test=develop

* add dynamic ocr recognition; test=develop
上级 a0111439
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
import tarfile
import numpy as np
from PIL import Image
from os import path
from paddle.dataset.image import load_image
import paddle
SOS = 0
EOS = 1
NUM_CLASSES = 95
DATA_SHAPE = [1, 48, 512]
DATA_MD5 = "7256b1d5420d8c3e74815196e58cdad5"
DATA_URL = "http://paddle-ocr-data.bj.bcebos.com/data.tar.gz"
CACHE_DIR_NAME = "ctc_data"
SAVED_FILE_NAME = "data.tar.gz"
DATA_DIR_NAME = "data"
TRAIN_DATA_DIR_NAME = "train_images"
TEST_DATA_DIR_NAME = "test_images"
TRAIN_LIST_FILE_NAME = "train.list"
TEST_LIST_FILE_NAME = "test.list"
class DataGenerator(object):
def __init__(self, model="crnn_ctc"):
self.model = model
def train_reader(self,
img_root_dir,
img_label_list,
batchsize,
cycle,
max_length,
shuffle=True):
'''
Reader interface for training.
:param img_root_dir: The root path of the image for training.
:type img_root_dir: str
:param img_label_list: The path of the <image_name, label> file for training.
:type img_label_list: str
:param cycle: If number of iterations is greater than dataset_size / batch_size
it reiterates dataset over as many times as necessary.
:type cycle: bool
'''
img_label_lines = []
to_file = "tmp.txt"
if not shuffle:
cmd = "cat " + img_label_list + " | awk '{print $1,$2,$3,$4;}' > " + to_file
elif batchsize == 1:
cmd = "cat " + img_label_list + " | awk '{print $1,$2,$3,$4;}' | shuf > " + to_file
else:
#cmd1: partial shuffle
cmd = "cat " + img_label_list + " | awk '{printf(\"%04d%.4f %s\\n\", $1, rand(), $0)}' | sort | sed 1,$((1 + RANDOM % 100))d | "
#cmd2: batch merge and shuffle
cmd += "awk '{printf $2\" \"$3\" \"$4\" \"$5\" \"; if(NR % " + str(
batchsize) + " == 0) print \"\";}' | shuf | "
#cmd3: batch split
cmd += "awk '{if(NF == " + str(
batchsize
) + " * 4) {for(i = 0; i < " + str(
batchsize
) + "; i++) print $(4*i+1)\" \"$(4*i+2)\" \"$(4*i+3)\" \"$(4*i+4);}}' > " + to_file
os.system(cmd)
print("finish batch shuffle")
img_label_lines = open(to_file, 'r').readlines()
def reader():
sizes = len(img_label_lines) // batchsize
if sizes == 0:
raise ValueError('batchsize is bigger than the dataset size.')
while True:
for i in range(sizes):
result = []
sz = [0, 0]
max_len = 0
for k in range(batchsize):
line = img_label_lines[i * batchsize + k]
items = line.split(' ')
label = [int(c) for c in items[-1].split(',')]
max_len = max(max_len, len(label))
#print( "max len", max_len, i)
max_length = max_len
#mask = np.zeros( (batchsize, max_length)).astype('float32')
for j in range(batchsize):
line = img_label_lines[i * batchsize + j]
items = line.split(' ')
label = [int(c) for c in items[-1].split(',')]
mask = np.zeros((max_len)).astype('float32')
mask[:len(label) + 1] = 1.0
#mask[ j, :len(label) + 1] = 1.0
if max_length > len(label) + 1:
extend_label = [EOS] * (max_length - len(label) - 1)
label.extend(extend_label)
else:
label = label[0:max_length - 1]
img = Image.open(os.path.join(img_root_dir, items[
2])).convert('L')
if j == 0:
sz = img.size
img = img.resize((sz[0], sz[1]))
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
result.append([img, [SOS] + label, label + [EOS], mask])
yield result
if not cycle:
break
return reader
def test_reader(self, img_root_dir, img_label_list):
'''
Reader interface for inference.
:param img_root_dir: The root path of the images for training.
:type img_root_dir: str
:param img_label_list: The path of the <image_name, label> file for testing.
:type img_label_list: str
'''
def reader():
for line in open(img_label_list):
# h, w, img_name, labels
items = line.split(' ')
label = [int(c) for c in items[-1].split(',')]
img = Image.open(os.path.join(img_root_dir, items[2])).convert(
'L')
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
if self.model == "crnn_ctc":
yield img, label
else:
yield img, [SOS] + label, label + [EOS]
return reader
def infer_reader(self, img_root_dir=None, img_label_list=None, cycle=False):
'''A reader interface for inference.
:param img_root_dir: The root path of the images for training.
:type img_root_dir: str
:param img_label_list: The path of the <image_name, label> file for
inference. It should be the path of <image_path> file if img_root_dir
was None. If img_label_list was set to None, it will read image path
from stdin.
:type img_root_dir: str
:param cycle: If number of iterations is greater than dataset_size /
batch_size it reiterates dataset over as many times as necessary.
:type cycle: bool
'''
def reader():
def yield_img_and_label(lines):
for line in lines:
if img_root_dir is not None:
# h, w, img_name, labels
img_name = line.split(' ')[2]
img_path = os.path.join(img_root_dir, img_name)
else:
img_path = line.strip("\t\n\r")
img = Image.open(img_path).convert('L')
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
label = [int(c) for c in line.split(' ')[3].split(',')]
yield img, label
if img_label_list is not None:
lines = []
with open(img_label_list) as f:
lines = f.readlines()
for img, label in yield_img_and_label(lines):
yield img, label
while cycle:
for img, label in yield_img_and_label(lines):
yield img, label
else:
while True:
img_path = input("Please input the path of image: ")
img = Image.open(img_path).convert('L')
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
yield img, [[0]]
return reader
def num_classes():
'''Get classes number of this dataset.
'''
return NUM_CLASSES
def data_shape():
'''Get image shape of this dataset. It is a dummy shape for this dataset.
'''
return DATA_SHAPE
def train(batch_size,
max_length,
train_images_dir=None,
train_list_file=None,
cycle=False,
shuffle=False,
model="crnn_ctc"):
generator = DataGenerator(model)
if train_images_dir is None:
data_dir = download_data()
train_images_dir = path.join(data_dir, TRAIN_DATA_DIR_NAME)
if train_list_file is None:
train_list_file = path.join(data_dir, TRAIN_LIST_FILE_NAME)
return generator.train_reader(
train_images_dir,
train_list_file,
batch_size,
cycle,
max_length,
shuffle=shuffle)
def test(batch_size=1,
test_images_dir=None,
test_list_file=None,
model="crnn_ctc"):
generator = DataGenerator(model)
if test_images_dir is None:
data_dir = download_data()
test_images_dir = path.join(data_dir, TEST_DATA_DIR_NAME)
if test_list_file is None:
test_list_file = path.join(data_dir, TEST_LIST_FILE_NAME)
return paddle.batch(
generator.test_reader(test_images_dir, test_list_file), batch_size)
def inference(batch_size=1,
infer_images_dir=None,
infer_list_file=None,
cycle=False,
model="crnn_ctc"):
generator = DataGenerator(model)
return paddle.batch(
generator.infer_reader(infer_images_dir, infer_list_file, cycle),
batch_size)
def download_data():
'''Download train and test data.
'''
tar_file = paddle.dataset.common.download(
DATA_URL, CACHE_DIR_NAME, DATA_MD5, save_name=SAVED_FILE_NAME)
data_dir = path.join(path.dirname(tar_file), DATA_DIR_NAME)
if not path.isdir(data_dir):
t = tarfile.open(tar_file, "r:gz")
t.extractall(path=path.dirname(tar_file))
t.close()
return data_dir
export CUDA_VISIBLE_DEVICES=0
python train.py
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import numpy as np
import paddle.fluid.profiler as profiler
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import data_reader
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC, BatchNorm, Embedding, GRUUnit
from paddle.fluid.dygraph.base import to_variable
import argparse
import functools
from utility import add_arguments, print_arguments, get_attention_feeder_data
import time
from paddle.fluid import framework
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 32, "Minibatch size.")
add_arg('total_step', int, 720000, "The number of iterations. Zero or less means whole training set. More than 0 means the training set might be looped until # of iterations is reached.")
add_arg('log_period', int, 1000, "Log period.")
add_arg('save_model_period', int, 15000, "Save model period. '-1' means never saving the model.")
add_arg('eval_period', int, 15000, "Evaluate period. '-1' means never evaluating the model.")
add_arg('save_model_dir', str, "./models", "The directory the model to be saved to.")
add_arg('train_images', str, None, "The directory of images to be used for training.")
add_arg('train_list', str, None, "The list file of images to be used for training.")
add_arg('test_images', str, None, "The directory of images to be used for test.")
add_arg('test_list', str, None, "The list file of images to be used for training.")
add_arg('model', str, "attention", "Which type of network to be used. 'crnn_ctc' or 'attention'")
add_arg('init_model', str, None, "The init model file of directory.")
add_arg('use_gpu', bool, True, "Whether use GPU to train.")
add_arg('min_average_window',int, 10000, "Min average window.")
add_arg('max_average_window',int, 12500, "Max average window. It is proposed to be set as the number of minibatch in a pass.")
add_arg('average_window', float, 0.15, "Average window.")
add_arg('parallel', bool, False, "Whether use parallel training.")
add_arg('profile', bool, False, "Whether to use profiling.")
add_arg('skip_batch_num', int, 0, "The number of first minibatches to skip as warm-up for better performance test.")
add_arg('skip_test', bool, False, "Whether to skip test phase.")
class Config(object):
'''
config for training
'''
# decoder size for decoder stage
decoder_size = 128
# size for word embedding
word_vector_dim = 128
# max length for label padding
max_length = 100
gradient_clip = 10
LR = 1.0
beam_size = 2
learning_rate_decay = None
# batch size to train
batch_size = 32
# class number to classify
num_classes = 95
use_gpu = False
# special label for start and end
SOS = 0
EOS = 1
# settings for ctc data, not use in unittest
DATA_DIR_NAME = "./dataset/ctc_data/data"
TRAIN_DATA_DIR_NAME = "train_images"
TRAIN_LIST_FILE_NAME = "train.list"
# data shape for input image
DATA_SHAPE = [1, 48, 512]
class ConvBNPool(fluid.dygraph.Layer):
def __init__(self,
name_scope,
group,
out_ch,
channels,
act="relu",
is_test=False,
pool=True,
use_cudnn=True):
super(ConvBNPool, self).__init__(name_scope)
self.group = group
self.pool = pool
filter_size = 3
conv_std_0 = (2.0 / (filter_size**2 * channels[0]))**0.5
conv_param_0 = fluid.ParamAttr(
initializer=fluid.initializer.Normal(0.0, conv_std_0))
conv_std_1 = (2.0 / (filter_size**2 * channels[1]))**0.5
conv_param_1 = fluid.ParamAttr(
initializer=fluid.initializer.Normal(0.0, conv_std_1))
self.conv_0_layer = Conv2D(
self.full_name(),
channels[0],
out_ch[0],
3,
padding=1,
param_attr=conv_param_0,
bias_attr=False,
act=None,
use_cudnn=use_cudnn)
self.bn_0_layer = BatchNorm(
self.full_name(), out_ch[0], act=act, is_test=is_test)
self.conv_1_layer = Conv2D(
self.full_name(),
num_channels=channels[1],
num_filters=out_ch[1],
filter_size=3,
padding=1,
param_attr=conv_param_1,
bias_attr=False,
act=None,
use_cudnn=use_cudnn)
self.bn_1_layer = BatchNorm(
self.full_name(), out_ch[1], act=act, is_test=is_test)
print( "pool", self.pool)
if self.pool:
self.pool_layer = Pool2D(
self.full_name(),
pool_size=2,
pool_type='max',
pool_stride=2,
use_cudnn=use_cudnn,
ceil_mode=True)
def forward(self, inputs):
conv_0 = self.conv_0_layer(inputs)
bn_0 = self.bn_0_layer(conv_0)
conv_1 = self.conv_1_layer(bn_0)
bn_1 = self.bn_1_layer(conv_1)
if self.pool:
bn_pool = self.pool_layer(bn_1)
return bn_pool
return bn_1
class OCRConv(fluid.dygraph.Layer):
def __init__(self, name_scope, is_test=False, use_cudnn=True):
super(OCRConv, self).__init__(name_scope)
self.conv_bn_pool_1 = ConvBNPool(
self.full_name(),
2, [16, 16], [1, 16],
is_test=is_test,
use_cudnn=use_cudnn)
self.conv_bn_pool_2 = ConvBNPool(
self.full_name(),
2, [32, 32], [16, 32],
is_test=is_test,
use_cudnn=use_cudnn)
self.conv_bn_pool_3 = ConvBNPool(
self.full_name(),
2, [64, 64], [32, 64],
is_test=is_test,
use_cudnn=use_cudnn)
self.conv_bn_pool_4 = ConvBNPool(
self.full_name(),
2, [128, 128], [64, 128],
is_test=is_test,
pool=False,
use_cudnn=use_cudnn)
def forward(self, inputs):
inputs_1 = self.conv_bn_pool_1(inputs)
inputs_2 = self.conv_bn_pool_2(inputs_1)
inputs_3 = self.conv_bn_pool_3(inputs_2)
inputs_4 = self.conv_bn_pool_4(inputs_3)
#print( inputs_4.numpy() )
return inputs_4
class DynamicGRU(fluid.dygraph.Layer):
def __init__(self,
scope_name,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation='sigmoid',
candidate_activation='tanh',
h_0=None,
origin_mode=False,
init_size = None):
super(DynamicGRU, self).__init__(scope_name)
self.gru_unit = GRUUnit(
self.full_name(),
size * 3,
param_attr=param_attr,
bias_attr=bias_attr,
activation=candidate_activation,
gate_activation=gate_activation,
origin_mode=origin_mode)
self.size = size
self.h_0 = h_0
self.is_reverse = is_reverse
def forward(self, inputs):
hidden = self.h_0
res = []
for i in range(inputs.shape[1]):
if self.is_reverse:
i = inputs.shape[1] - 1 - i
input_ = inputs[ :, i:i+1, :]
input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
res.append(hidden_)
if self.is_reverse:
res = res[::-1]
res = fluid.layers.concat(res, axis=1)
return res
class EncoderNet(fluid.dygraph.Layer):
def __init__(self,
scope_name,
rnn_hidden_size=200,
is_test=False,
use_cudnn=True):
super(EncoderNet, self).__init__(scope_name)
self.rnn_hidden_size = rnn_hidden_size
para_attr = fluid.ParamAttr(initializer=fluid.initializer.Normal(0.0,
0.02))
bias_attr = fluid.ParamAttr(
initializer=fluid.initializer.Normal(0.0, 0.02), learning_rate=2.0)
if fluid.framework.in_dygraph_mode():
h_0 = np.zeros(
(Config.batch_size, rnn_hidden_size), dtype="float32")
h_0 = to_variable(h_0)
else:
h_0 = fluid.layers.fill_constant(
shape=[Config.batch_size, rnn_hidden_size],
dtype='float32',
value=0)
self.ocr_convs = OCRConv(
self.full_name(), is_test=is_test, use_cudnn=use_cudnn)
self.fc_1_layer = FC(self.full_name(),
rnn_hidden_size * 3,
param_attr=para_attr,
bias_attr=False,
num_flatten_dims=2)
self.fc_2_layer = FC(self.full_name(),
rnn_hidden_size * 3,
param_attr=para_attr,
bias_attr=False,
num_flatten_dims=2)
self.gru_forward_layer = DynamicGRU(
self.full_name(),
size=rnn_hidden_size,
h_0=h_0,
param_attr=para_attr,
bias_attr=bias_attr,
candidate_activation='relu')
self.gru_backward_layer = DynamicGRU(
self.full_name(),
size=rnn_hidden_size,
h_0=h_0,
param_attr=para_attr,
bias_attr=bias_attr,
candidate_activation='relu',
is_reverse=True)
self.encoded_proj_fc = FC(self.full_name(),
Config.decoder_size,
bias_attr=False,
num_flatten_dims=2)
def forward(self, inputs):
conv_features = self.ocr_convs(inputs)
transpose_conv_features = fluid.layers.transpose(conv_features, perm=[0,3,1,2])
sliced_feature = fluid.layers.reshape(
transpose_conv_features, [-1, transpose_conv_features.shape[1] , transpose_conv_features.shape[2]*transpose_conv_features.shape[3]], inplace=False)
fc_1 = self.fc_1_layer(sliced_feature)
fc_2 = self.fc_2_layer(sliced_feature)
gru_forward = self.gru_forward_layer(fc_1)
gru_backward = self.gru_backward_layer(fc_2)
encoded_vector = fluid.layers.concat(
input=[gru_forward, gru_backward], axis=2)
encoded_proj = self.encoded_proj_fc(encoded_vector)
return gru_backward, encoded_vector, encoded_proj
class SimpleAttention(fluid.dygraph.Layer):
def __init__(self, scope_name, decoder_size):
super(SimpleAttention, self).__init__(scope_name)
self.fc_1 = FC(self.full_name(),
decoder_size,
act=None,
bias_attr=False)
self.fc_2 = FC(self.full_name(),
1,
num_flatten_dims = 2,
act=None,
bias_attr=False)
def _build_once(self, encoder_vec, encoder_proj, decoder_state):
pass
def forward(self, encoder_vec, encoder_proj, decoder_state):
decoder_state_fc = self.fc_1(decoder_state)
decoder_state_proj_reshape = fluid.layers.reshape(
decoder_state_fc, [-1, 1, decoder_state_fc.shape[1]], inplace=False)
decoder_state_expand = fluid.layers.expand(
decoder_state_proj_reshape, [1, encoder_proj.shape[1], 1])
concated = fluid.layers.elementwise_add(encoder_proj,
decoder_state_expand)
concated = fluid.layers.tanh(x=concated)
attention_weight = self.fc_2(concated)
weights_reshape = fluid.layers.reshape(
x=attention_weight, shape=[ concated.shape[0], -1], inplace=False)
weights_reshape = fluid.layers.softmax( weights_reshape )
scaled = fluid.layers.elementwise_mul(
x=encoder_vec, y=weights_reshape, axis=0)
context = fluid.layers.reduce_sum(scaled, dim=1)
return context
class GRUDecoderWithAttention(fluid.dygraph.Layer):
def __init__(self, scope_name, decoder_size, num_classes):
super(GRUDecoderWithAttention, self).__init__(scope_name)
self.simple_attention = SimpleAttention(self.full_name(), decoder_size)
self.fc_1_layer = FC(self.full_name(),
size=decoder_size * 3,
bias_attr=False)
self.fc_2_layer = FC(self.full_name(),
size=decoder_size * 3,
bias_attr=False)
self.gru_unit = GRUUnit(
self.full_name(),
size=decoder_size * 3,
param_attr=None,
bias_attr=None)
self.out_layer = FC(self.full_name(),
size=num_classes + 2,
bias_attr=None,
act='softmax')
self.decoder_size = decoder_size
def _build_once(self, target_embedding, encoder_vec, encoder_proj,
decoder_boot):
pass
def forward(self, target_embedding, encoder_vec, encoder_proj,
decoder_boot):
res = []
hidden_mem = decoder_boot
for i in range(target_embedding.shape[1]):
current_word = fluid.layers.slice(
target_embedding, axes=[1], starts=[i], ends=[i + 1])
current_word = fluid.layers.reshape(
current_word, [-1, current_word.shape[2]], inplace=False)
context = self.simple_attention(encoder_vec, encoder_proj,
hidden_mem)
fc_1 = self.fc_1_layer(context)
fc_2 = self.fc_2_layer(current_word)
decoder_inputs = fluid.layers.elementwise_add(x=fc_1, y=fc_2)
h, _, _ = self.gru_unit(decoder_inputs, hidden_mem)
hidden_mem = h
out = self.out_layer(h)
res.append(out)
res1 = fluid.layers.concat(res, axis=1)
batch_size = target_embedding.shape[0]
seq_len = target_embedding.shape[1]
res1 = layers.reshape( res1, shape=[batch_size, seq_len, -1])
return res1
class OCRAttention(fluid.dygraph.Layer):
def __init__(self, scope_name):
super(OCRAttention, self).__init__(scope_name)
self.encoder_net = EncoderNet(self.full_name())
self.fc = FC(self.full_name(),
size=Config.decoder_size,
bias_attr=False,
act='relu')
self.embedding = Embedding(
self.full_name(), [Config.num_classes + 2, Config.word_vector_dim],
dtype='float32')
self.gru_decoder_with_attention = GRUDecoderWithAttention(
self.full_name(), Config.decoder_size, Config.num_classes)
def _build_once(self, inputs, label_in):
pass
def forward(self, inputs, label_in):
gru_backward, encoded_vector, encoded_proj = self.encoder_net(inputs)
backward_first = fluid.layers.slice(
gru_backward, axes=[1], starts=[0], ends=[1])
backward_first = fluid.layers.reshape(
backward_first, [-1, backward_first.shape[2]], inplace=False)
decoder_boot = self.fc(backward_first)
label_in = fluid.layers.reshape(label_in, [-1, 1], inplace=False)
trg_embedding = self.embedding(label_in)
trg_embedding = fluid.layers.reshape(
trg_embedding, [Config.batch_size, -1, trg_embedding.shape[1]],
inplace=False)
prediction = self.gru_decoder_with_attention(
trg_embedding, encoded_vector, encoded_proj, decoder_boot)
return prediction
def train(args):
with fluid.dygraph.guard():
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
ocr_attention = OCRAttention("ocr_attention")
if Config.learning_rate_decay == "piecewise_decay":
learning_rate = fluid.layers.piecewise_decay(
[50000], [Config.LR, Config.LR * 0.01])
else:
learning_rate = Config.LR
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
dy_param_init_value = {}
grad_clip = fluid.dygraph_grad_clip.GradClipByGlobalNorm(5.0 )
train_reader = data_reader.train(
Config.batch_size,
max_length=Config.max_length,
train_images_dir=args.train_images,
train_list_file=args.train_list,
cycle=args.total_step > 0,
shuffle=True,
model=args.model)
infer_image= './data/data/test_images/'
infer_files = './data/data/test.list'
test_reader = data_reader.train(
Config.batch_size,
1000,
train_images_dir= infer_image,
train_list_file= infer_files,
cycle=False,
model=args.model)
def eval():
ocr_attention.eval()
total_loss = 0.0
total_step = 0.0
equal_size = 0
for data in test_reader():
data_dict = get_attention_feeder_data(data)
label_in = to_variable(data_dict["label_in"])
label_out = to_variable(data_dict["label_out"])
label_out._stop_gradient = True
label_out.trainable = False
img = to_variable(data_dict["pixel"])
prediction = ocr_attention(img, label_in)
prediction = fluid.layers.reshape( prediction, [label_out.shape[0] * label_out.shape[1], -1], inplace=False)
score, topk = layers.topk( prediction, 1)
seq = topk.numpy()
seq = seq.reshape( ( args.batch_size, -1))
mask = data_dict['mask'].reshape( (args.batch_size, -1))
seq_len = np.sum( mask, -1)
trans_ref = data_dict["label_out"].reshape( (args.batch_size, -1))
for i in range( args.batch_size ):
length = int(seq_len[i] -1 )
trans = seq[i][:length - 1]
ref = trans_ref[i][ : length - 1]
if np.array_equal( trans, ref ):
equal_size += 1
total_step += args.batch_size
print( "eval cost", equal_size / total_step )
total_step = 0
epoch_num = 20
for epoch in range(epoch_num):
batch_id = 0
total_loss = 0.0
for data in train_reader():
total_step += 1
data_dict = get_attention_feeder_data(data)
label_in = to_variable(data_dict["label_in"])
label_out = to_variable(data_dict["label_out"])
label_out._stop_gradient = True
label_out.trainable = False
img = to_variable(data_dict["pixel"])
prediction = ocr_attention(img, label_in)
prediction = fluid.layers.reshape( prediction, [label_out.shape[0] * label_out.shape[1], -1], inplace=False)
label_out = fluid.layers.reshape(label_out, [-1, 1], inplace=False)
loss = fluid.layers.cross_entropy(
input=prediction, label=label_out)
mask = to_variable(data_dict["mask"])
loss = layers.elementwise_mul( loss, mask, axis=0)
avg_loss = fluid.layers.reduce_sum(loss)
total_loss += avg_loss.numpy()
avg_loss.backward()
optimizer.minimize(avg_loss, grad_clip=grad_clip)
ocr_attention.clear_gradients()
framework._dygraph_tracer()._clear_ops()
if batch_id > 0 and batch_id % 1000 == 0:
print("epoch: {}, batch_id: {}, loss {}".format(epoch, batch_id, total_loss / args.batch_size / 1000))
total_loss = 0.0
if total_step > 0 and total_step % 2000 == 0:
model_value = ocr_attention.state_dict()
np.savez( "model/" + str(total_step), **model_value )
ocr_attention.eval()
eval()
ocr_attention.train()
batch_id +=1
if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
if args.profile:
if args.use_gpu:
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
train(args)
else:
with profiler.profiler("CPU", sorted_key='total') as cpuprof:
train(args)
else:
train(args)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册