diff --git a/deep_speech_2/data_utils/featurizer/audio_featurizer.py b/deep_speech_2/data_utils/featurizer/audio_featurizer.py index 00f0e8a35bc8e67ab285b7d509a0992c02dc54ca..f0d223cfbe8bbae039de84fbbffcf0cd3975b790 100644 --- a/deep_speech_2/data_utils/featurizer/audio_featurizer.py +++ b/deep_speech_2/data_utils/featurizer/audio_featurizer.py @@ -159,24 +159,27 @@ class AudioFeaturizer(object): if max_freq is None: max_freq = sample_rate / 2 if max_freq > sample_rate / 2: - raise ValueError("max_freq must be greater than half of " + raise ValueError("max_freq must not be greater than half of " "sample rate.") if stride_ms > window_ms: raise ValueError("Stride size must not be greater than " "window size.") - # compute 13 cepstral coefficients, and the first one is replaced + # compute the 13 cepstral coefficients, and the first one is replaced # by log(frame energy) - mfcc_feat = np.transpose( - mfcc( - signal=samples, - samplerate=sample_rate, - winlen=0.001 * window_ms, - winstep=0.001 * stride_ms, - highfreq=max_freq)) + mfcc_feat = mfcc( + signal=samples, + samplerate=sample_rate, + winlen=0.001 * window_ms, + winstep=0.001 * stride_ms, + highfreq=max_freq) # Deltas d_mfcc_feat = delta(mfcc_feat, 2) # Deltas-Deltas dd_mfcc_feat = delta(d_mfcc_feat, 2) + # transpose + mfcc_feat = np.transpose(mfcc_feat) + d_mfcc_feat = np.transpose(d_mfcc_feat) + dd_mfcc_feat = np.transpose(dd_mfcc_feat) # concat above three features concat_mfcc_feat = np.concatenate( (mfcc_feat, d_mfcc_feat, dd_mfcc_feat))