Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
87c5cf65
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
87c5cf65
编写于
6月 28, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
distributed trainning for transformer
上级
8761ab3d
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
273 addition
and
184 deletion
+273
-184
fluid/neural_machine_translation/transformer/train.py
fluid/neural_machine_translation/transformer/train.py
+273
-184
未找到文件。
fluid/neural_machine_translation/transformer/train.py
浏览文件 @
87c5cf65
...
...
@@ -3,6 +3,7 @@ import time
import
argparse
import
ast
import
numpy
as
np
import
multiprocessing
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -80,6 +81,18 @@ def parse_args():
help
=
'See config.py for all options'
,
default
=
None
,
nargs
=
argparse
.
REMAINDER
)
parser
.
add_argument
(
'--local'
,
type
=
ast
.
literal_eval
,
default
=
True
,
help
=
'Whether to run as local mode.'
)
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'GPU'
,
choices
=
[
'CPU'
,
'GPU'
],
help
=
"The device type."
)
args
=
parser
.
parse_args
()
# Append args related to dict
src_dict
=
reader
.
DataReader
.
load_dict
(
args
.
src_vocab_fpath
)
...
...
@@ -205,7 +218,61 @@ def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
[
num_token
],
dtype
=
"float32"
)
def
read_multiple
(
reader
,
count
,
clip_last
=
True
):
def
train
(
args
):
# priority: ENV > args > config
is_local
=
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
if
is_local
==
'0'
:
args
.
local
=
False
print
args
if
args
.
device
==
'CPU'
:
TrainTaskConfig
.
use_gpu
=
False
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
"TRAINER"
)
if
training_role
==
"PSERVER"
or
(
not
TrainTaskConfig
.
use_gpu
):
place
=
fluid
.
CPUPlace
()
dev_count
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
else
:
place
=
fluid
.
CUDAPlace
(
0
)
dev_count
=
fluid
.
core
.
get_cuda_device_count
()
exe
=
fluid
.
Executor
(
place
)
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
weight_sharing
,
TrainTaskConfig
.
label_smooth_eps
)
if
args
.
local
:
lr_scheduler
=
LearningRateScheduler
(
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
,
TrainTaskConfig
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr_scheduler
.
learning_rate
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
optimizer
.
minimize
(
sum_cost
)
else
:
lr_decay
=
fluid
.
layers
\
.
learning_rate_scheduler
\
.
noam_decay
(
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr_decay
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
optimizer
.
minimize
(
sum_cost
)
def
train_loop
(
exe
,
train_progm
):
def
read_multiple
(
reader
,
count
=
dev_count
if
args
.
use_token_batch
else
1
,
clip_last
=
True
):
"""
Stack data from reader for multi-devices.
"""
...
...
@@ -226,14 +293,14 @@ def read_multiple(reader, count, clip_last=True):
if
len
(
data
)
>
count
:
inst_num_per_part
=
len
(
data
)
//
count
yield
[
data
[
inst_num_per_part
*
i
:
inst_num_per_part
*
(
i
+
1
)]
data
[
inst_num_per_part
*
i
:
inst_num_per_part
*
(
i
+
1
)]
for
i
in
range
(
count
)
]
return
__impl__
def
split_data
(
data
,
num_part
):
def
split_data
(
data
,
num_part
=
dev_count
):
"""
Split data for each device.
"""
...
...
@@ -246,35 +313,12 @@ def split_data(data, num_part):
for
i
in
range
(
num_part
)
]
def
train
(
args
):
dev_count
=
fluid
.
core
.
get_cuda_device_count
()
sum_cost
,
avg_cost
,
predict
,
token_num
=
transformer
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
ModelHyperParams
.
weight_sharing
,
TrainTaskConfig
.
label_smooth_eps
)
lr_scheduler
=
LearningRateScheduler
(
ModelHyperParams
.
d_model
,
TrainTaskConfig
.
warmup_steps
,
TrainTaskConfig
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr_scheduler
.
learning_rate
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
optimizer
.
minimize
(
sum_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
TrainTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Initialize the parameters.
if
TrainTaskConfig
.
ckpt_path
:
fluid
.
io
.
load_persistables
(
exe
,
TrainTaskConfig
.
ckpt_path
)
lr_scheduler
.
current_steps
=
TrainTaskConfig
.
start_step
#
lr_scheduler.current_steps = TrainTaskConfig.start_step
else
:
print
"init fluid.framework.default_startup_program"
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
train_data
=
reader
.
DataReader
(
...
...
@@ -282,7 +326,8 @@ def train(args):
trg_vocab_fpath
=
args
.
trg_vocab_fpath
,
fpattern
=
args
.
train_file_pattern
,
use_token_batch
=
args
.
use_token_batch
,
batch_size
=
args
.
batch_size
*
(
1
if
args
.
use_token_batch
else
dev_count
),
batch_size
=
args
.
batch_size
*
(
1
if
args
.
use_token_batch
else
dev_count
),
pool_size
=
args
.
pool_size
,
sort_type
=
args
.
sort_type
,
shuffle
=
args
.
shuffle
,
...
...
@@ -290,12 +335,9 @@ def train(args):
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
train_data
=
read_multiple
(
reader
=
train_data
.
batch_generator
,
count
=
dev_count
if
args
.
use_token_batch
else
1
)
train_data
=
read_multiple
(
reader
=
train_data
.
batch_generator
)
build_strategy
=
fluid
.
BuildStrategy
()
# Since the token number differs among devices, customize gradient scale to
# use token average cost among multi-devices. and the gradient scale is
...
...
@@ -304,15 +346,14 @@ def train(args):
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
TrainTaskConfig
.
use_gpu
,
loss_name
=
sum_cost
.
name
,
main_program
=
train_progm
,
build_strategy
=
build_strategy
)
def
test_context
():
# Context to do validation.
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
TrainTaskConfig
.
use_gpu
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
test_program
=
train_progm
.
clone
()
with
fluid
.
program_guard
(
test_program
):
test_program
=
fluid
.
io
.
get_inference_program
([
avg_cost
])
val_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
...
...
@@ -326,33 +367,34 @@ def train(args):
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
,
shuffle
=
False
,
shuffle_batch
=
False
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
TrainTaskConfig
.
use_gpu
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
def
test
(
exe
=
test_exe
):
test_total_cost
=
0
test_total_token
=
0
test_data
=
read_multiple
(
reader
=
val_data
.
batch_generator
,
count
=
dev_count
if
args
.
use_token_batch
else
1
)
test_data
=
read_multiple
(
reader
=
val_data
.
batch_generator
)
for
batch_id
,
data
in
enumerate
(
test_data
()):
feed_list
=
[]
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
,
num_part
=
dev_count
)):
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
)):
data_input_dict
,
util_input_dict
,
_
=
prepare_batch_input
(
data_buffer
,
data_input_names
,
util_input_names
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
feed_list
.
append
(
dict
(
data_input_dict
.
items
()
+
util_input_dict
.
items
()))
dict
(
data_input_dict
.
items
()
+
util_input_dict
.
items
()))
outs
=
exe
.
run
(
feed
=
feed_list
,
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
])
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
test_total_cost
+=
sum_cost_val
.
sum
()
test_total_token
+=
token_num_val
.
sum
()
test_avg_cost
=
test_total_cost
/
test_total_token
...
...
@@ -373,20 +415,22 @@ def train(args):
for
batch_id
,
data
in
enumerate
(
train_data
()):
feed_list
=
[]
total_num_token
=
0
lr_rate
=
lr_scheduler
.
update_learning_rate
()
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
,
num_part
=
dev_count
)):
for
place_id
,
data_buffer
in
enumerate
(
split_data
(
data
)):
data_input_dict
,
util_input_dict
,
num_token
=
prepare_batch_input
(
data_buffer
,
data_input_names
,
util_input_names
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
)
total_num_token
+=
num_token
feed_list
.
append
(
dict
(
data_input_dict
.
items
()
+
util_input_dict
.
items
()
+
{
lr_scheduler
.
learning_rate
.
name
:
lr_rate
}.
items
()))
feed_kv_pairs
=
data_input_dict
.
items
(
)
+
util_input_dict
.
items
()
if
args
.
local
:
lr_rate
=
lr_scheduler
.
update_learning_rate
()
feed_kv_pairs
+=
{
lr_scheduler
.
learning_rate
.
name
:
lr_rate
}.
items
()
feed_list
.
append
(
dict
(
feed_kv_pairs
))
if
not
init
:
# init the position encoding table
if
not
init
:
for
pos_enc_param_name
in
pos_enc_param_names
:
pos_enc
=
position_encoding_init
(
ModelHyperParams
.
max_length
+
1
,
...
...
@@ -394,22 +438,25 @@ def train(args):
feed_list
[
place_id
][
pos_enc_param_name
]
=
pos_enc
for
feed_dict
in
feed_list
:
feed_dict
[
sum_cost
.
name
+
"@GRAD"
]
=
1.
/
total_num_token
outs
=
train_exe
.
run
(
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
],
feed
=
feed_list
)
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
outs
=
train_exe
.
run
(
fetch_list
=
[
sum_cost
.
name
,
token_num
.
name
],
feed
=
feed_list
)
train_exe
.
bcast_params
()
sum_cost_val
,
token_num_val
=
np
.
array
(
outs
[
0
]),
np
.
array
(
outs
[
1
])
total_sum_cost
=
sum_cost_val
.
sum
(
)
# sum the cost from multi-devices
total_token_num
=
token_num_val
.
sum
()
total_avg_cost
=
total_sum_cost
/
total_token_num
print
(
"epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f"
%
(
pass_id
,
batch_id
,
total_sum_cost
,
total_avg_cost
,
print
(
"epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f"
%
(
pass_id
,
batch_id
,
total_sum_cost
,
total_avg_cost
,
np
.
exp
([
min
(
total_avg_cost
,
100
)])))
init
=
True
# Validate and save the model for inference.
print
(
"epoch: %d, "
%
pass_id
+
(
"val avg loss: %f, val ppl: %f, "
%
test
()
if
args
.
val_file_pattern
is
not
None
else
""
)
+
"consumed %fs"
%
(
time
.
time
()
-
pass_start_time
))
if
args
.
val_file_pattern
is
not
None
else
""
)
+
"consumed %fs"
%
(
time
.
time
()
-
pass_start_time
))
fluid
.
io
.
save_persistables
(
exe
,
os
.
path
.
join
(
TrainTaskConfig
.
ckpt_dir
,
...
...
@@ -419,6 +466,48 @@ def train(args):
"pass_"
+
str
(
pass_id
)
+
".infer.model"
),
data_input_names
[:
-
2
]
+
util_input_names
,
[
predict
],
exe
)
if
args
.
local
:
print
(
"local start_up:"
)
train_loop
(
exe
,
fluid
.
default_main_program
())
else
:
port
=
os
.
getenv
(
"PADDLE_PORT"
,
"6174"
)
pserver_ips
=
os
.
getenv
(
"PADDLE_PSERVERS"
)
# ip,ip...
eplist
=
[]
for
ip
in
pserver_ips
.
split
(
","
):
eplist
.
append
(
':'
.
join
([
ip
,
port
]))
pserver_endpoints
=
","
.
join
(
eplist
)
# ip:port,ip:port...
trainers
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
,
"0"
))
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
port
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
os
.
getenv
(
"PADDLE_PORT"
)
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
print
"psserver begin run"
with
open
(
'pserver_startup.desc'
,
'w'
)
as
f
:
f
.
write
(
str
(
pserver_startup
))
with
open
(
'pserver_prog.desc'
,
'w'
)
as
f
:
f
.
write
(
str
(
pserver_prog
))
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
trainer_prog
=
t
.
get_trainer_program
()
with
open
(
'trainer_prog.desc'
,
'w'
)
as
f
:
f
.
write
(
str
(
trainer_prog
))
train_loop
(
exe
,
trainer_prog
)
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
if
__name__
==
"__main__"
:
args
=
parse_args
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录