Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
87765744
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
87765744
编写于
3月 06, 2018
作者:
Q
qingqing01
提交者:
GitHub
3月 06, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #679 from Noplz/ssd_mobilenet
add fluid mobilenet ssd
上级
50f72550
25ccc63c
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
710 addition
and
0 deletion
+710
-0
fluid/object_detection/data/label_list
fluid/object_detection/data/label_list
+21
-0
fluid/object_detection/data/prepare_voc_data.py
fluid/object_detection/data/prepare_voc_data.py
+63
-0
fluid/object_detection/image_util.py
fluid/object_detection/image_util.py
+161
-0
fluid/object_detection/mobilenet_ssd_fluid.py
fluid/object_detection/mobilenet_ssd_fluid.py
+287
-0
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+178
-0
未找到文件。
fluid/object_detection/data/label_list
0 → 100644
浏览文件 @
87765744
background
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor
fluid/object_detection/data/prepare_voc_data.py
0 → 100644
浏览文件 @
87765744
import
os
import
os.path
as
osp
import
re
import
random
devkit_dir
=
'./VOCdevkit'
years
=
[
'2007'
,
'2012'
]
def
get_dir
(
devkit_dir
,
year
,
type
):
return
osp
.
join
(
devkit_dir
,
'VOC'
+
year
,
type
)
def
walk_dir
(
devkit_dir
,
year
):
filelist_dir
=
get_dir
(
devkit_dir
,
year
,
'ImageSets/Main'
)
annotation_dir
=
get_dir
(
devkit_dir
,
year
,
'Annotations'
)
img_dir
=
get_dir
(
devkit_dir
,
year
,
'JPEGImages'
)
trainval_list
=
[]
test_list
=
[]
added
=
set
()
for
_
,
_
,
files
in
os
.
walk
(
filelist_dir
):
for
fname
in
files
:
img_ann_list
=
[]
if
re
.
match
(
'[a-z]+_trainval\.txt'
,
fname
):
img_ann_list
=
trainval_list
elif
re
.
match
(
'[a-z]+_test\.txt'
,
fname
):
img_ann_list
=
test_list
else
:
continue
fpath
=
osp
.
join
(
filelist_dir
,
fname
)
for
line
in
open
(
fpath
):
name_prefix
=
line
.
strip
().
split
()[
0
]
if
name_prefix
in
added
:
continue
added
.
add
(
name_prefix
)
ann_path
=
osp
.
join
(
annotation_dir
,
name_prefix
+
'.xml'
)
img_path
=
osp
.
join
(
img_dir
,
name_prefix
+
'.jpg'
)
assert
os
.
path
.
isfile
(
ann_path
),
'file %s not found.'
%
ann_path
assert
os
.
path
.
isfile
(
img_path
),
'file %s not found.'
%
img_path
img_ann_list
.
append
((
img_path
,
ann_path
))
return
trainval_list
,
test_list
def
prepare_filelist
(
devkit_dir
,
years
,
output_dir
):
trainval_list
=
[]
test_list
=
[]
for
year
in
years
:
trainval
,
test
=
walk_dir
(
devkit_dir
,
year
)
trainval_list
.
extend
(
trainval
)
test_list
.
extend
(
test
)
random
.
shuffle
(
trainval_list
)
with
open
(
osp
.
join
(
output_dir
,
'trainval.txt'
),
'w'
)
as
ftrainval
:
for
item
in
trainval_list
:
ftrainval
.
write
(
item
[
0
]
+
' '
+
item
[
1
]
+
'
\n
'
)
with
open
(
osp
.
join
(
output_dir
,
'test.txt'
),
'w'
)
as
ftest
:
for
item
in
test_list
:
ftest
.
write
(
item
[
0
]
+
' '
+
item
[
1
]
+
'
\n
'
)
prepare_filelist
(
devkit_dir
,
years
,
'.'
)
fluid/object_detection/image_util.py
0 → 100644
浏览文件 @
87765744
from
PIL
import
Image
import
numpy
as
np
import
random
import
math
class
sampler
():
def
__init__
(
self
,
max_sample
,
max_trial
,
min_scale
,
max_scale
,
min_aspect_ratio
,
max_aspect_ratio
,
min_jaccard_overlap
,
max_jaccard_overlap
):
self
.
max_sample
=
max_sample
self
.
max_trial
=
max_trial
self
.
min_scale
=
min_scale
self
.
max_scale
=
max_scale
self
.
min_aspect_ratio
=
min_aspect_ratio
self
.
max_aspect_ratio
=
max_aspect_ratio
self
.
min_jaccard_overlap
=
min_jaccard_overlap
self
.
max_jaccard_overlap
=
max_jaccard_overlap
class
bbox
():
def
__init__
(
self
,
xmin
,
ymin
,
xmax
,
ymax
):
self
.
xmin
=
xmin
self
.
ymin
=
ymin
self
.
xmax
=
xmax
self
.
ymax
=
ymax
def
bbox_area
(
src_bbox
):
width
=
src_bbox
.
xmax
-
src_bbox
.
xmin
height
=
src_bbox
.
ymax
-
src_bbox
.
ymin
return
width
*
height
def
generate_sample
(
sampler
):
scale
=
random
.
uniform
(
sampler
.
min_scale
,
sampler
.
max_scale
)
min_aspect_ratio
=
max
(
sampler
.
min_aspect_ratio
,
(
scale
**
2.0
))
max_aspect_ratio
=
min
(
sampler
.
max_aspect_ratio
,
1
/
(
scale
**
2.0
))
aspect_ratio
=
random
.
uniform
(
min_aspect_ratio
,
max_aspect_ratio
)
bbox_width
=
scale
*
(
aspect_ratio
**
0.5
)
bbox_height
=
scale
/
(
aspect_ratio
**
0.5
)
xmin_bound
=
1
-
bbox_width
ymin_bound
=
1
-
bbox_height
xmin
=
random
.
uniform
(
0
,
xmin_bound
)
ymin
=
random
.
uniform
(
0
,
ymin_bound
)
xmax
=
xmin
+
bbox_width
ymax
=
ymin
+
bbox_height
sampled_bbox
=
bbox
(
xmin
,
ymin
,
xmax
,
ymax
)
return
sampled_bbox
def
jaccard_overlap
(
sample_bbox
,
object_bbox
):
if
sample_bbox
.
xmin
>=
object_bbox
.
xmax
or
\
sample_bbox
.
xmax
<=
object_bbox
.
xmin
or
\
sample_bbox
.
ymin
>=
object_bbox
.
ymax
or
\
sample_bbox
.
ymax
<=
object_bbox
.
ymin
:
return
0
intersect_xmin
=
max
(
sample_bbox
.
xmin
,
object_bbox
.
xmin
)
intersect_ymin
=
max
(
sample_bbox
.
ymin
,
object_bbox
.
ymin
)
intersect_xmax
=
min
(
sample_bbox
.
xmax
,
object_bbox
.
xmax
)
intersect_ymax
=
min
(
sample_bbox
.
ymax
,
object_bbox
.
ymax
)
intersect_size
=
(
intersect_xmax
-
intersect_xmin
)
*
(
intersect_ymax
-
intersect_ymin
)
sample_bbox_size
=
bbox_area
(
sample_bbox
)
object_bbox_size
=
bbox_area
(
object_bbox
)
overlap
=
intersect_size
/
(
sample_bbox_size
+
object_bbox_size
-
intersect_size
)
return
overlap
def
satisfy_sample_constraint
(
sampler
,
sample_bbox
,
bbox_labels
):
if
sampler
.
min_jaccard_overlap
==
0
and
sampler
.
max_jaccard_overlap
==
0
:
return
True
for
i
in
range
(
len
(
bbox_labels
)):
object_bbox
=
bbox
(
bbox_labels
[
i
][
1
],
bbox_labels
[
i
][
2
],
bbox_labels
[
i
][
3
],
bbox_labels
[
i
][
4
])
overlap
=
jaccard_overlap
(
sample_bbox
,
object_bbox
)
if
sampler
.
min_jaccard_overlap
!=
0
and
\
overlap
<
sampler
.
min_jaccard_overlap
:
continue
if
sampler
.
max_jaccard_overlap
!=
0
and
\
overlap
>
sampler
.
max_jaccard_overlap
:
continue
return
True
return
False
def
generate_batch_samples
(
batch_sampler
,
bbox_labels
,
image_width
,
image_height
):
sampled_bbox
=
[]
index
=
[]
c
=
0
for
sampler
in
batch_sampler
:
found
=
0
for
i
in
range
(
sampler
.
max_trial
):
if
found
>=
sampler
.
max_sample
:
break
sample_bbox
=
generate_sample
(
sampler
)
if
satisfy_sample_constraint
(
sampler
,
sample_bbox
,
bbox_labels
):
sampled_bbox
.
append
(
sample_bbox
)
found
=
found
+
1
index
.
append
(
c
)
c
=
c
+
1
return
sampled_bbox
def
clip_bbox
(
src_bbox
):
src_bbox
.
xmin
=
max
(
min
(
src_bbox
.
xmin
,
1.0
),
0.0
)
src_bbox
.
ymin
=
max
(
min
(
src_bbox
.
ymin
,
1.0
),
0.0
)
src_bbox
.
xmax
=
max
(
min
(
src_bbox
.
xmax
,
1.0
),
0.0
)
src_bbox
.
ymax
=
max
(
min
(
src_bbox
.
ymax
,
1.0
),
0.0
)
return
src_bbox
def
meet_emit_constraint
(
src_bbox
,
sample_bbox
):
center_x
=
(
src_bbox
.
xmax
+
src_bbox
.
xmin
)
/
2
center_y
=
(
src_bbox
.
ymax
+
src_bbox
.
ymin
)
/
2
if
center_x
>=
sample_bbox
.
xmin
and
\
center_x
<=
sample_bbox
.
xmax
and
\
center_y
>=
sample_bbox
.
ymin
and
\
center_y
<=
sample_bbox
.
ymax
:
return
True
return
False
def
transform_labels
(
bbox_labels
,
sample_bbox
):
proj_bbox
=
bbox
(
0
,
0
,
0
,
0
)
sample_labels
=
[]
for
i
in
range
(
len
(
bbox_labels
)):
sample_label
=
[]
object_bbox
=
bbox
(
bbox_labels
[
i
][
1
],
bbox_labels
[
i
][
2
],
bbox_labels
[
i
][
3
],
bbox_labels
[
i
][
4
])
if
not
meet_emit_constraint
(
object_bbox
,
sample_bbox
):
continue
sample_width
=
sample_bbox
.
xmax
-
sample_bbox
.
xmin
sample_height
=
sample_bbox
.
ymax
-
sample_bbox
.
ymin
proj_bbox
.
xmin
=
(
object_bbox
.
xmin
-
sample_bbox
.
xmin
)
/
sample_width
proj_bbox
.
ymin
=
(
object_bbox
.
ymin
-
sample_bbox
.
ymin
)
/
sample_height
proj_bbox
.
xmax
=
(
object_bbox
.
xmax
-
sample_bbox
.
xmin
)
/
sample_width
proj_bbox
.
ymax
=
(
object_bbox
.
ymax
-
sample_bbox
.
ymin
)
/
sample_height
proj_bbox
=
clip_bbox
(
proj_bbox
)
if
bbox_area
(
proj_bbox
)
>
0
:
sample_label
.
append
(
bbox_labels
[
i
][
0
])
sample_label
.
append
(
float
(
proj_bbox
.
xmin
))
sample_label
.
append
(
float
(
proj_bbox
.
ymin
))
sample_label
.
append
(
float
(
proj_bbox
.
xmax
))
sample_label
.
append
(
float
(
proj_bbox
.
ymax
))
sample_label
.
append
(
bbox_labels
[
i
][
5
])
sample_labels
.
append
(
sample_label
)
return
sample_labels
def
crop_image
(
img
,
bbox_labels
,
sample_bbox
,
image_width
,
image_height
):
sample_bbox
=
clip_bbox
(
sample_bbox
)
xmin
=
int
(
sample_bbox
.
xmin
*
image_width
)
xmax
=
int
(
sample_bbox
.
xmax
*
image_width
)
ymin
=
int
(
sample_bbox
.
ymin
*
image_height
)
ymax
=
int
(
sample_bbox
.
ymax
*
image_height
)
sample_img
=
img
[
ymin
:
ymax
,
xmin
:
xmax
]
sample_labels
=
transform_labels
(
bbox_labels
,
sample_bbox
)
return
sample_img
,
sample_labels
fluid/object_detection/mobilenet_ssd_fluid.py
0 → 100644
浏览文件 @
87765744
import
os
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
import
reader
parameter_attr
=
ParamAttr
(
initializer
=
MSRA
())
def
conv_bn_layer
(
input
,
filter_size
,
num_filters
,
stride
,
padding
,
channels
=
None
,
num_groups
=
1
,
act
=
'relu'
,
use_cudnn
=
True
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
parameter_attr
,
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
def
depthwise_separable
(
input
,
num_filters1
,
num_filters2
,
num_groups
,
stride
,
scale
):
"""
"""
depthwise_conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
int
(
num_filters1
*
scale
),
stride
=
stride
,
padding
=
1
,
num_groups
=
int
(
num_groups
*
scale
),
use_cudnn
=
False
)
pointwise_conv
=
conv_bn_layer
(
input
=
depthwise_conv
,
filter_size
=
1
,
num_filters
=
int
(
num_filters2
*
scale
),
stride
=
1
,
padding
=
0
)
return
pointwise_conv
def
extra_block
(
input
,
num_filters1
,
num_filters2
,
num_groups
,
stride
,
scale
):
"""
"""
pointwise_conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
int
(
num_filters1
*
scale
),
stride
=
1
,
num_groups
=
int
(
num_groups
*
scale
),
padding
=
0
)
normal_conv
=
conv_bn_layer
(
input
=
pointwise_conv
,
filter_size
=
3
,
num_filters
=
int
(
num_filters2
*
scale
),
stride
=
2
,
num_groups
=
int
(
num_groups
*
scale
),
padding
=
1
)
return
normal_conv
def
mobile_net
(
img
,
img_shape
,
scale
=
1.0
):
# 300x300
tmp
=
conv_bn_layer
(
img
,
filter_size
=
3
,
channels
=
3
,
num_filters
=
int
(
32
*
scale
),
stride
=
2
,
padding
=
1
)
# 150x150
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
32
,
num_filters2
=
64
,
num_groups
=
32
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
64
,
num_filters2
=
128
,
num_groups
=
64
,
stride
=
2
,
scale
=
scale
)
# 75x75
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
128
,
num_filters2
=
128
,
num_groups
=
128
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
128
,
stride
=
2
,
scale
=
scale
)
# 38x38
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
256
,
num_filters2
=
256
,
num_groups
=
256
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
256
,
num_filters2
=
512
,
num_groups
=
256
,
stride
=
2
,
scale
=
scale
)
# 19x19
for
i
in
range
(
5
):
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
512
,
num_filters2
=
512
,
num_groups
=
512
,
stride
=
1
,
scale
=
scale
)
module11
=
tmp
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
512
,
num_filters2
=
1024
,
num_groups
=
512
,
stride
=
2
,
scale
=
scale
)
# 10x10
module13
=
depthwise_separable
(
tmp
,
num_filters1
=
1024
,
num_filters2
=
1024
,
num_groups
=
1024
,
stride
=
1
,
scale
=
scale
)
module14
=
extra_block
(
module13
,
num_filters1
=
256
,
num_filters2
=
512
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
# 5x5
module15
=
extra_block
(
module14
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
# 3x3
module16
=
extra_block
(
module15
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
# 2x2
module17
=
extra_block
(
module16
,
num_filters1
=
64
,
num_filters2
=
128
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
mbox_locs
,
mbox_confs
,
box
,
box_var
=
fluid
.
layers
.
multi_box_head
(
inputs
=
[
module11
,
module13
,
module14
,
module15
,
module16
,
module17
],
image
=
img
,
num_classes
=
21
,
min_ratio
=
20
,
max_ratio
=
90
,
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
]],
base_size
=
img_shape
[
2
],
offset
=
0.5
,
flip
=
True
,
clip
=
True
)
return
mbox_locs
,
mbox_confs
,
box
,
box_var
def
train
(
train_file_list
,
val_file_list
,
data_args
,
learning_rate
,
batch_size
,
num_passes
,
model_save_dir
=
'model'
,
init_model_path
=
None
):
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
)
mbox_locs
,
mbox_confs
,
box
,
box_var
=
mobile_net
(
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
mbox_locs
,
mbox_confs
,
box
,
box_var
)
loss
=
fluid
.
layers
.
ssd_loss
(
mbox_locs
,
mbox_confs
,
gt_box
,
gt_label
,
box
,
box_var
)
avg_loss
=
fluid
.
layers
.
mean
(
x
=
loss
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
learning_rate_decay
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
40000
,
decay_rate
=
0.1
,
staircase
=
True
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
5
*
1e-5
))
opts
=
optimizer
.
minimize
(
avg_loss
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
])
for
pass_id
in
range
(
num_passes
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
avg_loss_v
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_loss
])
print
(
"Pass {0}, batch {1}, loss {2}"
.
format
(
pass_id
,
batch_id
,
avg_loss_v
[
0
]))
if
pass_id
%
10
==
0
:
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
print
'save models to %s'
%
(
model_path
)
fluid
.
io
.
save_inference_model
(
model_path
,
[
'image'
],
[
nmsed_out
],
exe
)
if
__name__
==
'__main__'
:
data_args
=
reader
.
Settings
(
data_dir
=
'./data'
,
label_file
=
'label_list'
,
resize_h
=
300
,
resize_w
=
300
,
mean_value
=
[
104
,
117
,
124
])
train
(
train_file_list
=
'./data/trainval.txt'
,
val_file_list
=
'./data/test.txt'
,
data_args
=
data_args
,
learning_rate
=
0.001
,
batch_size
=
32
,
num_passes
=
300
)
fluid/object_detection/reader.py
0 → 100644
浏览文件 @
87765744
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
image_util
from
paddle.utils.image_util
import
*
import
random
from
PIL
import
Image
import
numpy
as
np
import
xml.etree.ElementTree
import
os
class
Settings
(
object
):
def
__init__
(
self
,
data_dir
,
label_file
,
resize_h
,
resize_w
,
mean_value
):
self
.
_data_dir
=
data_dir
self
.
_label_list
=
[]
label_fpath
=
os
.
path
.
join
(
data_dir
,
label_file
)
for
line
in
open
(
label_fpath
):
self
.
_label_list
.
append
(
line
.
strip
())
self
.
_resize_height
=
resize_h
self
.
_resize_width
=
resize_w
self
.
_img_mean
=
np
.
array
(
mean_value
)[:,
np
.
newaxis
,
np
.
newaxis
].
astype
(
'float32'
)
@
property
def
data_dir
(
self
):
return
self
.
_data_dir
@
property
def
label_list
(
self
):
return
self
.
_label_list
@
property
def
resize_h
(
self
):
return
self
.
_resize_height
@
property
def
resize_w
(
self
):
return
self
.
_resize_width
@
property
def
img_mean
(
self
):
return
self
.
_img_mean
def
_reader_creator
(
settings
,
file_list
,
mode
,
shuffle
):
def
reader
():
with
open
(
file_list
)
as
flist
:
lines
=
[
line
.
strip
()
for
line
in
flist
]
if
shuffle
:
random
.
shuffle
(
lines
)
for
line
in
lines
:
if
mode
==
'train'
or
mode
==
'test'
:
img_path
,
label_path
=
line
.
split
()
img_path
=
os
.
path
.
join
(
settings
.
data_dir
,
img_path
)
label_path
=
os
.
path
.
join
(
settings
.
data_dir
,
label_path
)
elif
mode
==
'infer'
:
img_path
=
os
.
path
.
join
(
settings
.
data_dir
,
line
)
img
=
Image
.
open
(
img_path
)
img_width
,
img_height
=
img
.
size
img
=
np
.
array
(
img
)
# layout: label | xmin | ymin | xmax | ymax | difficult
if
mode
==
'train'
or
mode
==
'test'
:
bbox_labels
=
[]
root
=
xml
.
etree
.
ElementTree
.
parse
(
label_path
).
getroot
()
for
object
in
root
.
findall
(
'object'
):
bbox_sample
=
[]
# start from 1
bbox_sample
.
append
(
float
(
settings
.
label_list
.
index
(
object
.
find
(
'name'
).
text
)))
bbox
=
object
.
find
(
'bndbox'
)
difficult
=
float
(
object
.
find
(
'difficult'
).
text
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmin'
).
text
)
/
img_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymin'
).
text
)
/
img_height
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'xmax'
).
text
)
/
img_width
)
bbox_sample
.
append
(
float
(
bbox
.
find
(
'ymax'
).
text
)
/
img_height
)
bbox_sample
.
append
(
difficult
)
bbox_labels
.
append
(
bbox_sample
)
sample_labels
=
bbox_labels
if
mode
==
'train'
:
batch_sampler
=
[]
# hard-code here
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
1
,
1.0
,
1.0
,
1.0
,
1.0
,
0.0
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.1
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.3
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.5
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.7
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.9
,
0.0
))
batch_sampler
.
append
(
image_util
.
sampler
(
1
,
50
,
0.3
,
1.0
,
0.5
,
2.0
,
0.0
,
1.0
))
""" random crop """
sampled_bbox
=
image_util
.
generate_batch_samples
(
batch_sampler
,
bbox_labels
,
img_width
,
img_height
)
if
len
(
sampled_bbox
)
>
0
:
idx
=
int
(
random
.
uniform
(
0
,
len
(
sampled_bbox
)))
img
,
sample_labels
=
image_util
.
crop_image
(
img
,
bbox_labels
,
sampled_bbox
[
idx
],
img_width
,
img_height
)
img
=
Image
.
fromarray
(
img
)
img
=
img
.
resize
((
settings
.
resize_w
,
settings
.
resize_h
),
Image
.
ANTIALIAS
)
img
=
np
.
array
(
img
)
if
mode
==
'train'
:
mirror
=
int
(
random
.
uniform
(
0
,
2
))
if
mirror
==
1
:
img
=
img
[:,
::
-
1
,
:]
for
i
in
xrange
(
len
(
sample_labels
)):
tmp
=
sample_labels
[
i
][
1
]
sample_labels
[
i
][
1
]
=
1
-
sample_labels
[
i
][
3
]
sample_labels
[
i
][
3
]
=
1
-
tmp
if
len
(
img
.
shape
)
==
3
:
img
=
np
.
swapaxes
(
img
,
1
,
2
)
img
=
np
.
swapaxes
(
img
,
1
,
0
)
img
=
img
.
astype
(
'float32'
)
img
-=
settings
.
img_mean
img
=
img
.
flatten
()
sample_labels
=
np
.
array
(
sample_labels
)
if
mode
==
'train'
or
mode
==
'test'
:
if
mode
==
'train'
and
len
(
sample_labels
)
==
0
:
continue
yield
img
.
astype
(
'float32'
),
sample_labels
[:,
1
:
5
],
sample_labels
[:,
0
].
astype
(
'int'
)
elif
mode
==
'infer'
:
yield
img
.
astype
(
'float32'
)
return
reader
def
train
(
settings
,
file_list
,
shuffle
=
True
):
return
_reader_creator
(
settings
,
file_list
,
'train'
,
shuffle
)
def
test
(
settings
,
file_list
):
return
_reader_creator
(
settings
,
file_list
,
'test'
,
False
)
def
infer
(
settings
,
file_list
):
return
_reader_creator
(
settings
,
file_list
,
'infer'
,
False
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录