Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
844c7bec
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
844c7bec
编写于
4月 09, 2018
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug
上级
12c371e3
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
388 addition
and
10 deletion
+388
-10
fluid/neural_machine_translation/benmark/machine_translation.py
...neural_machine_translation/benmark/machine_translation.py
+349
-0
fluid/neural_machine_translation/transformer/nmt_fluid.py
fluid/neural_machine_translation/transformer/nmt_fluid.py
+35
-10
fluid/neural_machine_translation/transformer/optim.py
fluid/neural_machine_translation/transformer/optim.py
+4
-0
未找到文件。
fluid/neural_machine_translation/benmark/machine_translation.py
0 → 100644
浏览文件 @
844c7bec
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""seq2seq model for fluid."""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
argparse
import
time
import
distutils.util
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.framework
as
framework
from
paddle.fluid.executor
import
Executor
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--embedding_dim"
,
type
=
int
,
default
=
512
,
help
=
"The dimension of embedding table. (default: %(default)d)"
)
parser
.
add_argument
(
"--encoder_size"
,
type
=
int
,
default
=
512
,
help
=
"The size of encoder bi-rnn unit. (default: %(default)d)"
)
parser
.
add_argument
(
"--decoder_size"
,
type
=
int
,
default
=
512
,
help
=
"The size of decoder rnn unit. (default: %(default)d)"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
16
,
help
=
"The sequence number of a mini-batch data. (default: %(default)d)"
)
parser
.
add_argument
(
"--dict_size"
,
type
=
int
,
default
=
30000
,
help
=
"The dictionary capacity. Dictionaries of source sequence and "
"target dictionary have same capacity. (default: %(default)d)"
)
parser
.
add_argument
(
"--pass_num"
,
type
=
int
,
default
=
2
,
help
=
"The pass number to train. (default: %(default)d)"
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
0.0002
,
help
=
"Learning rate used to train the model. (default: %(default)f)"
)
parser
.
add_argument
(
"--infer_only"
,
action
=
'store_true'
,
help
=
"If set, run forward only."
)
parser
.
add_argument
(
"--beam_size"
,
type
=
int
,
default
=
3
,
help
=
"The width for beam searching. (default: %(default)d)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
distutils
.
util
.
strtobool
,
default
=
True
,
help
=
"Whether to use gpu. (default: %(default)d)"
)
parser
.
add_argument
(
"--max_length"
,
type
=
int
,
default
=
250
,
help
=
"The maximum length of sequence when doing generation. "
"(default: %(default)d)"
)
def
lstm_step
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
size
):
def
linear
(
inputs
):
return
fluid
.
layers
.
fc
(
input
=
inputs
,
size
=
size
,
bias_attr
=
True
)
forget_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
input_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
output_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
cell_tilde
=
fluid
.
layers
.
tanh
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
cell_t
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
elementwise_mul
(
x
=
forget_gate
,
y
=
cell_t_prev
),
fluid
.
layers
.
elementwise_mul
(
x
=
input_gate
,
y
=
cell_tilde
)
])
hidden_t
=
fluid
.
layers
.
elementwise_mul
(
x
=
output_gate
,
y
=
fluid
.
layers
.
tanh
(
x
=
cell_t
))
return
hidden_t
,
cell_t
def
seq_to_seq_net
(
embedding_dim
,
encoder_size
,
decoder_size
,
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
,
max_length
):
"""Construct a seq2seq network."""
def
bi_lstm_encoder
(
input_seq
,
gate_size
):
# Linear transformation part for input gate, output gate, forget gate
# and cell activation vectors need be done outside of dynamic_lstm.
# So the output size is 4 times of gate_size.
input_forward_proj
=
fluid
.
layers
.
fc
(
input
=
input_seq
,
size
=
gate_size
*
4
,
act
=
None
,
bias_attr
=
False
)
forward
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
input_forward_proj
,
size
=
gate_size
*
4
,
use_peepholes
=
False
)
input_reversed_proj
=
fluid
.
layers
.
fc
(
input
=
input_seq
,
size
=
gate_size
*
4
,
act
=
None
,
bias_attr
=
False
)
reversed
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
input_reversed_proj
,
size
=
gate_size
*
4
,
is_reverse
=
True
,
use_peepholes
=
False
)
return
forward
,
reversed
src_word_idx
=
fluid
.
layers
.
data
(
name
=
'source_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
fluid
.
layers
.
embedding
(
input
=
src_word_idx
,
size
=
[
source_dict_dim
,
embedding_dim
],
dtype
=
'float32'
)
src_forward
,
src_reversed
=
bi_lstm_encoder
(
input_seq
=
src_embedding
,
gate_size
=
encoder_size
)
encoded_vector
=
fluid
.
layers
.
concat
(
input
=
[
src_forward
,
src_reversed
],
axis
=
1
)
encoded_proj
=
fluid
.
layers
.
fc
(
input
=
encoded_vector
,
size
=
decoder_size
,
bias_attr
=
False
)
backward_first
=
fluid
.
layers
.
sequence_pool
(
input
=
src_reversed
,
pool_type
=
'first'
)
decoder_boot
=
fluid
.
layers
.
fc
(
input
=
backward_first
,
size
=
decoder_size
,
bias_attr
=
False
,
act
=
'tanh'
)
def
lstm_decoder_with_attention
(
target_embedding
,
encoder_vec
,
encoder_proj
,
decoder_boot
,
decoder_size
):
def
simple_attention
(
encoder_vec
,
encoder_proj
,
decoder_state
):
decoder_state_proj
=
fluid
.
layers
.
fc
(
input
=
decoder_state
,
size
=
decoder_size
,
bias_attr
=
False
)
decoder_state_expand
=
fluid
.
layers
.
sequence_expand
(
x
=
decoder_state_proj
,
y
=
encoder_proj
)
concated
=
fluid
.
layers
.
concat
(
input
=
[
encoder_proj
,
decoder_state_expand
],
axis
=
1
)
attention_weights
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
1
,
act
=
'tanh'
,
bias_attr
=
False
)
attention_weights
=
fluid
.
layers
.
sequence_softmax
(
input
=
attention_weights
)
weigths_reshape
=
fluid
.
layers
.
reshape
(
x
=
attention_weights
,
shape
=
[
-
1
])
scaled
=
fluid
.
layers
.
elementwise_mul
(
x
=
encoder_vec
,
y
=
weigths_reshape
,
axis
=
0
)
context
=
fluid
.
layers
.
sequence_pool
(
input
=
scaled
,
pool_type
=
'sum'
)
return
context
rnn
=
fluid
.
layers
.
DynamicRNN
()
cell_init
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
decoder_boot
,
value
=
0.0
,
shape
=
[
-
1
,
decoder_size
],
dtype
=
'float32'
)
cell_init
.
stop_gradient
=
False
with
rnn
.
block
():
current_word
=
rnn
.
step_input
(
target_embedding
)
encoder_vec
=
rnn
.
static_input
(
encoder_vec
)
encoder_proj
=
rnn
.
static_input
(
encoder_proj
)
hidden_mem
=
rnn
.
memory
(
init
=
decoder_boot
,
need_reorder
=
True
)
cell_mem
=
rnn
.
memory
(
init
=
cell_init
)
context
=
simple_attention
(
encoder_vec
,
encoder_proj
,
hidden_mem
)
decoder_inputs
=
fluid
.
layers
.
concat
(
input
=
[
context
,
current_word
],
axis
=
1
)
h
,
c
=
lstm_step
(
decoder_inputs
,
hidden_mem
,
cell_mem
,
decoder_size
)
rnn
.
update_memory
(
hidden_mem
,
h
)
rnn
.
update_memory
(
cell_mem
,
c
)
out
=
fluid
.
layers
.
fc
(
input
=
h
,
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
'softmax'
)
rnn
.
output
(
out
)
return
rnn
()
if
not
is_generating
:
trg_word_idx
=
fluid
.
layers
.
data
(
name
=
'target_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
fluid
.
layers
.
embedding
(
input
=
trg_word_idx
,
size
=
[
target_dict_dim
,
embedding_dim
],
dtype
=
'float32'
)
prediction
=
lstm_decoder_with_attention
(
trg_embedding
,
encoded_vector
,
encoded_proj
,
decoder_boot
,
decoder_size
)
label
=
fluid
.
layers
.
data
(
name
=
'label_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
feeding_list
=
[
"source_sequence"
,
"target_sequence"
,
"label_sequence"
]
return
avg_cost
,
feeding_list
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
lod_t
=
core
.
LoDTensor
()
lod_t
.
set
(
flattened_data
,
place
)
lod_t
.
set_lod
([
lod
])
return
lod_t
,
lod
[
-
1
]
def
lodtensor_to_ndarray
(
lod_tensor
):
dims
=
lod_tensor
.
get_dims
()
ndarray
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
for
i
in
xrange
(
np
.
product
(
dims
)):
ndarray
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
return
ndarray
def
train
():
avg_cost
,
feeding_list
=
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
False
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
# clone from default main program
inference_program
=
fluid
.
default_main_program
().
clone
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
)
optimizer
.
minimize
(
avg_cost
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
train_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
test_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
)
place
=
core
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
def
do_validation
():
total_loss
=
0.0
count
=
0
for
batch_id
,
data
in
enumerate
(
test_batch_generator
()):
src_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)[
0
]
trg_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)[
0
]
lbl_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)[
0
]
fetch_outs
=
exe
.
run
(
inference_program
,
feed
=
{
feeding_list
[
0
]:
src_seq
,
feeding_list
[
1
]:
trg_seq
,
feeding_list
[
2
]:
lbl_seq
},
fetch_list
=
[
avg_cost
],
return_numpy
=
False
)
total_loss
+=
lodtensor_to_ndarray
(
fetch_outs
[
0
])[
0
]
count
+=
1
return
total_loss
/
count
for
pass_id
in
xrange
(
args
.
pass_num
):
pass_start_time
=
time
.
time
()
words_seen
=
0
for
batch_id
,
data
in
enumerate
(
train_batch_generator
()):
src_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
words_seen
+=
word_num
trg_seq
,
word_num
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
words_seen
+=
word_num
lbl_seq
,
_
=
to_lodtensor
(
map
(
lambda
x
:
x
[
2
],
data
),
place
)
fetch_outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
{
feeding_list
[
0
]:
src_seq
,
feeding_list
[
1
]:
trg_seq
,
feeding_list
[
2
]:
lbl_seq
},
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
fetch_outs
[
0
])
print
(
'pass_id=%d, batch_id=%d, train_loss: %f'
%
(
pass_id
,
batch_id
,
avg_cost_val
))
pass_end_time
=
time
.
time
()
test_loss
=
do_validation
()
time_consumed
=
pass_end_time
-
pass_start_time
words_per_sec
=
words_seen
/
time_consumed
print
(
"pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f"
%
(
pass_id
,
test_loss
,
words_per_sec
,
time_consumed
))
def
infer
():
pass
if
__name__
==
'__main__'
:
args
=
parser
.
parse_args
()
if
args
.
infer_only
:
infer
()
else
:
train
()
fluid/neural_machine_translation/transformer/nmt_fluid.py
浏览文件 @
844c7bec
...
...
@@ -11,6 +11,7 @@ from model import transformer, position_encoding_init
from
optim
import
LearningRateScheduler
from
config
import
TrainTaskConfig
,
ModelHyperParams
,
pos_enc_param_names
,
\
encoder_input_data_names
,
decoder_input_data_names
,
label_data_names
import
paddle.fluid.debuger
as
debuger
def
str2bool
(
v
):
if
v
.
lower
()
in
(
'yes'
,
'true'
,
't'
,
'y'
,
'1'
):
...
...
@@ -117,6 +118,7 @@ def pad_batch_data(insts,
def
prepare_batch_input
(
insts
,
input_data_names
,
src_pad_idx
,
trg_pad_idx
,
max_length
,
n_head
):
print
(
"input_data_name:"
,
input_data_names
)
"""
Put all padded data needed by training into a dict.
"""
...
...
@@ -150,6 +152,7 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
trg_src_attn_pre_softmax_shape
,
trg_src_attn_post_softmax_shape
,
lbl_word
,
lbl_weight
]))
#print("input_dict", input_dict)
return
input_dict
...
...
@@ -171,7 +174,8 @@ def main():
TrainTaskConfig
.
warmup_steps
,
place
,
TrainTaskConfig
.
learning_rate
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr_scheduler
.
learning_rate
,
#learning_rate=lr_scheduler.learning_rate,
learning_rate
=
TrainTaskConfig
.
learning_rate
,
beta1
=
TrainTaskConfig
.
beta1
,
beta2
=
TrainTaskConfig
.
beta2
,
epsilon
=
TrainTaskConfig
.
eps
)
...
...
@@ -185,7 +189,6 @@ def main():
def
test
(
exe
):
test_costs
=
[]
#for batch_id, data in enumerate(val_data()):
for
batch_id
,
data
in
enumerate
(
test_reader
()):
if
len
(
data
)
!=
args
.
batch_size
:
continue
...
...
@@ -207,6 +210,7 @@ def main():
ts
=
time
.
time
()
for
pass_id
in
xrange
(
args
.
pass_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
print
(
"batch_id:"
,
batch_id
)
# The current program desc is coupled with batch_size, thus all
# mini-batches must have the same number of instances currently.
if
len
(
data
)
!=
args
.
batch_size
:
...
...
@@ -219,16 +223,17 @@ def main():
ModelHyperParams
.
trg_pad_idx
,
ModelHyperParams
.
max_length
,
ModelHyperParams
.
n_head
)
lr_scheduler
.
update_learning_rate
(
data_input
)
#print("feed0:", data_input)
#print("fetch_list0:", [cost])
outs
=
exe
.
run
(
fluid
.
framework
.
default_main_program
(),
feed
=
data_input
,
fetch_list
=
[
cost
],
use_program_cache
=
True
)
lr_scheduler
.
update_learning_rate
(
data_input
)
print
(
"before exe run in train_loop"
)
outs
=
exe
.
run
(
trainer_prog
,
feed
=
data_input
,
fetch_list
=
[
cost
],
use_program_cache
=
True
)
cost_val
=
np
.
array
(
outs
[
0
])
#print("pass_id = " + str(pass_id) + " batch = " + str(batch_id) +
# " cost = " + str(cost_val) + "Speed = %.2f img/s")
print
(
"pass_id = %d batch = %d cost = %f speed = %.2f sample/s"
%
(
pass_id
,
batch_id
,
cost_val
,
len
(
data
)
/
(
time
.
time
()
-
start_time
)))
...
...
@@ -242,7 +247,10 @@ def main():
if
args
.
local
:
# Initialize the parameters.
exe
.
run
(
fluid
.
framework
.
default_startup_program
())
#print("local start_up:")
#print(debuger.pprint_program_codes(fluid.framework.default_startup_program()))
for
pos_enc_param_name
in
pos_enc_param_names
:
#print("pos_enc_param_name:", pos_enc_param_name)
pos_enc_param
=
fluid
.
global_scope
().
find_var
(
pos_enc_param_name
).
get_tensor
()
pos_enc_param
.
set
(
...
...
@@ -290,9 +298,23 @@ def main():
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
#print("cost 0:", cost)
#print("before run start up")
# Parameter initialization
exe
.
run
(
fluid
.
default_startup_program
())
#print("cluster start_up:")
#print(debuger.pprint_program_codes(fluid.framework.default_startup_program()))
for
pos_enc_param_name
in
pos_enc_param_names
:
#print("pos_enc_param_name:", pos_enc_param_name)
pos_enc_param
=
fluid
.
global_scope
().
find_var
(
pos_enc_param_name
).
get_tensor
()
pos_enc_param
.
set
(
position_encoding_init
(
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
d_model
),
place
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt16
.
train
(
ModelHyperParams
.
src_vocab_size
,
...
...
@@ -305,10 +327,13 @@ def main():
ModelHyperParams
.
trg_vocab_size
),
batch_size
=
args
.
batch_size
)
#print("before get trainer program")
trainer_prog
=
t
.
get_trainer_program
()
#print("before start")
# feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
# TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
exe
.
run
(
fluid
.
default_startup_program
())
# exe.run(fluid.default_startup_program())
train_loop
(
exe
,
trainer_prog
)
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
...
...
fluid/neural_machine_translation/transformer/optim.py
浏览文件 @
844c7bec
...
...
@@ -28,6 +28,7 @@ class LearningRateScheduler(object):
dtype
=
"float32"
,
persistable
=
True
)
self
.
place
=
place
#print("LearningRateScheduler init learning_rate_name:", self.learning_rate.name)
def
update_learning_rate
(
self
,
data_input
):
self
.
current_steps
+=
1
...
...
@@ -37,4 +38,7 @@ class LearningRateScheduler(object):
])
lr_tensor
=
fluid
.
LoDTensor
()
lr_tensor
.
set
(
np
.
array
([
lr_value
],
dtype
=
"float32"
),
self
.
place
)
#print("in learning_rate")
#print("learning_rate_name:", self.learning_rate.name)
#print("data_input:", data_input)
data_input
[
self
.
learning_rate
.
name
]
=
lr_tensor
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录