diff --git a/image_classification/tf2paddle/README.md b/image_classification/tf2paddle/README.md new file mode 100644 index 0000000000000000000000000000000000000000..f9bb4e4d284003cdd8d4d3cf5c2787176c78be7f --- /dev/null +++ b/image_classification/tf2paddle/README.md @@ -0,0 +1,42 @@ +## 使用说明 + +`tf2paddle.py`提供了将TensorFlow训练的模型转换为PaddlePaddle可使用的模型的接口`TFModelConverter`,其封装了图像领域常用的Convolution、BatchNorm等layer的转换函数,可以完成VGG、ResNet等常用模型的转换。模型转换的基本过程是:基于TensorFlow的Python API获取variable,将各variable对应到PaddlePaddle中layer的参数,进行适配后序列化保存输出可以直接为PaddlePaddle的Python API加载使用的模型文件。 + +为使TensorFlow模型中的variable能够正确对应到PaddlePaddle模型中layer的参数,正确完成转换,模型转换具有如下约束: + +- 支持TensorFlow中conv2d,batchnorm,fc这三种带有trainable variable的Operator中参数的转换。 - TensorFlow配置中同一Operator内的variable属于相同的scope,以此将variable划分到不同的layer。 +- conv2d、batchnorm、fc的scope需分别包含conv、bn、fc,以此获取对应layer的type;亦可以通过为`TFModelConverter`传入`layer_type_map`的`dict`,将scope映射到对应的layer type来规避此项约束。 +- conv2d、fc中variable的顺序为先weight后bias,batchnorm中variable的顺序为scale、shift、mean、var,以此将variable对应到layer中相应位置的参数。 +- TensorFlow网络拓扑顺序需和PaddlePaddle网络拓扑顺序一致,尤其注意具有分支时左右分支的顺序。这是针对模型转换和PaddlePaddle网络配置均使用PaddlePaddle默认参数命名的情况,此时将根据拓扑顺序进行参数命名;若PaddlePaddle网络配置中自定义了param的name,可以通过为`TFModelConverter`传入`layer_name_map`或`param_name_map`的`dict`,在模型转换时将variable的name映射为PaddlePaddle配置中param的name。 + +此外,要求提供`build_model`接口以从此构建TensorFlow网络,加载模型并返回session。可参照如下示例: + +```python +def build_model(): + build_graph() + sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) + sess.run(tf.tables_initializer()) + saver = tf.train.Saver() + saver.restore(sess, 'model/model.ckpt') + return sess +``` + +在完成以上内容后,`TFModelConverter`使用如下: + +```python +# 定义相关变量 +tf_net = "TF_ResNet50" # 提供build_model的module名 +paddle_tar_name = "Paddle_ResNet50.tar.gz" # 输出的Paddle模型的文件名 + +# 初始化并加载模型 +converter = TFModelConverter(tf_net=tf_net, + paddle_tar_name=paddle_tar_name) +# 进行模型转换 +converter.convert() +``` + +`tf2paddle.py`中已提供以上步骤,修改其中相关变量的值后执行`python tf2paddle.py`即可完成模型转换。 + +此外,在使用转换得到的模型时需要注意: + +- 由于TensorFlow中的padding机制较为特殊,在编写PaddlePaddle网络配置时对conv这种需要padding的layer可能需要推算size后在conv外使用pad_layer进行padding。 - 与TensorFlow多使用NHWC的data_format不同,PaddlePaddle使用NCHW的输入数据。 diff --git a/image_classification/tf2paddle/tf2paddle.py b/image_classification/tf2paddle/tf2paddle.py new file mode 100644 index 0000000000000000000000000000000000000000..4cc8b77097ec97fa04936f0e9a518f6a1602a06e --- /dev/null +++ b/image_classification/tf2paddle/tf2paddle.py @@ -0,0 +1,174 @@ +import os +import re +import collections +import struct +import gzip +import tarfile +import cStringIO +import numpy as np +from paddle.proto.ParameterConfig_pb2 import ParameterConfig +from paddle.trainer_config_helpers.default_decorators import wrap_name_default +import tensorflow as tf + + +class ModelConverter(object): + def __init__(self, + paddle_tar_name, + param_name_map=None, + layer_name_map=None, + layer_type_map=None): + self.tar_name = paddle_tar_name + self.param_name_map = param_name_map + self.layer_name_map = layer_name_map + self.layer_type_map = layer_type_map + self.params = dict() + + def convert(self): + layers_params = self.arrange_layer_params() + for layer_name in layers_params.keys(): + layer_params, layer_params_names, layer_type = layers_params[ + layer_name] + if len(layer_params) > 0: + if not layer_type: + assert layer_type_map and ( + layer_type_map.get(layer_name) in ["conv", "bn", "fc"]) + layer_type = layer_type_map[layer_name] + self.pre_layer_name = getattr( + self, "convert_" + layer_type + "_layer")( + layer_params, + params_names=[ + self.param_name_map.get(name) + if self.param_name_map else None + for name in layer_params_names + ], + name=None if self.layer_name_map == None else + self.layer_name_map.get(layer_name)) + with gzip.open(self.tar_name, 'w') as f: + self.to_tar(f) + return + + def to_tar(self, f): + tar = tarfile.TarFile(fileobj=f, mode='w') + for param_name in self.params.keys(): + param_conf, param_data = self.params[param_name] + + confStr = param_conf.SerializeToString() + tarinfo = tarfile.TarInfo(name="%s.protobuf" % param_name) + tarinfo.size = len(confStr) + buf = cStringIO.StringIO(confStr) + buf.seek(0) + tar.addfile(tarinfo, fileobj=buf) + + buf = cStringIO.StringIO() + self.serialize(param_data, buf) + tarinfo = tarfile.TarInfo(name=param_name) + buf.seek(0) + tarinfo.size = len(buf.getvalue()) + tar.addfile(tarinfo, buf) + + @staticmethod + def serialize(data, f): + f.write(struct.pack("IIQ", 0, 4, data.size)) + f.write(data.tobytes()) + + +class TFModelConverter(ModelConverter): + def __init__(self, + tf_net, + paddle_tar_name, + param_name_map=None, + layer_name_map=None, + layer_type_map=None): + super(TFModelConverter, self).__init__(paddle_tar_name, param_name_map, + layer_name_map, layer_type_map) + self.sess = __import__(tf_net).build_model() + + def arrange_layer_params(self): + all_vars = tf.global_variables() + layers_params = collections.OrderedDict() + for var in all_vars: + var_name = var.name + scope_pos = var_name.rfind('/') + if scope_pos != -1: + layer_scope = var_name[:scope_pos] + if layers_params.has_key(layer_scope): + layer_params, layer_params_names, layer_type = layers_params[ + layer_scope] + layer_params.append(var.eval(self.sess)) + layer_params_names.append(var_name) + else: + layer_type = re.search('conv|bn|fc', layer_scope) + layers_params[layer_scope] = ([var.eval(self.sess)], + [var_name], layer_type.group() + if layer_type else None) + return layers_params + + @wrap_name_default("conv") + def convert_conv_layer(self, params, params_names=None, name=None): + for i in range(len(params)): + data = np.transpose(params[i], (3, 2, 0, 1)) + if len(params) == 2: + suffix = "0" if i == 0 else "bias" + file_name = "_%s.w%s" % (name, suffix) if not ( + params_names and params_names[i]) else params_names[i] + else: + file_name = "_%s.w%s" % (name, str(i)) if not ( + params_names and params_names[i]) else params_names[i] + param_conf = ParameterConfig() + param_conf.name = file_name + dims = list(data.shape) + if len(dims) == 1: + dims.insert(1, 1) + param_conf.dims.extend(dims) + param_conf.size = reduce(lambda a, b: a * b, data.shape) + self.params[file_name] = (param_conf, data.flatten()) + + @wrap_name_default("fc_layer") + def convert_fc_layer(self, params, params_names=None, name=None): + for i in range(len(params)): + data = params[i] + if len(params) == 2: + suffix = "0" if i == 0 else "bias" + file_name = "_%s.w%s" % (name, suffix) if not ( + params_names and params_names[i]) else params_names[i] + else: + file_name = "_%s.w%s" % (name, str(i)) if not ( + params_names and params_names[i]) else params_names[i] + param_conf = ParameterConfig() + param_conf.name = file_name + dims = list(data.shape) + if len(dims) < 2: + dims.insert(0, 1) + param_conf.size = reduce(lambda a, b: a * b, dims) + param_conf.dims.extend(dims) + self.params[file_name] = (param_conf, data.flatten()) + return name + + @wrap_name_default("batch_norm") + def convert_bn_layer(self, params, params_names=None, name=None): + params = [params[i] for i in (0, 2, 3, 1)] + params_names = [params_names[i] + for i in (0, 2, 3, 1)] if params_names else params_names + for i in range(len(params)): + data = params[i] + file_name = "_%s.w%s" % (name, str(i)) if i < 3 else "_%s.w%s" % ( + name, "bias") + file_name = file_name if not (params_names and + params_names[i]) else params_names[i] + param_conf = ParameterConfig() + param_conf.name = file_name + dims = list(data.shape) + assert len(dims) == 1 + dims.insert(0, 1) + param_conf.size = reduce(lambda a, b: a * b, dims) + param_conf.dims.extend(dims) + self.params[file_name] = (param_conf, data.flatten()) + return name + + +if __name__ == "__main__": + tf_net = "TF_ResNet" + paddle_tar_name = "Paddle_ResNet50.tar.gz" + + converter = TFModelConverter(tf_net=tf_net, paddle_tar_name=paddle_tar_name) + converter.convert()