diff --git a/PaddleCV/gan/network/CycleGAN_network.py b/PaddleCV/gan/network/CycleGAN_network.py index afea491307ec76dfb2fe0dc453221b49bf485b91..ed1934b62513e96832f0fe5f81fe27c7fd89872e 100644 --- a/PaddleCV/gan/network/CycleGAN_network.py +++ b/PaddleCV/gan/network/CycleGAN_network.py @@ -162,7 +162,7 @@ def build_generator_resnet_blocks(inputgen, name=name + "_c3", norm=norm_type, activation_fn='relu') - for i in xrange(n_gen_res): + for i in range(n_gen_res): conv_name = name + "_r{}".format(i + 1) res_output = build_resnet_block( res_input, @@ -375,7 +375,7 @@ def build_discriminator_Nlayers(inputdisc, relufactor=0.2, use_bias=True) d_dims = d_base_dims - for i in xrange(d_nlayers - 1): + for i in range(d_nlayers - 1): conv_name = name + "_c{}".format(i + 2) d_dims *= 2 dis_output = conv2d( diff --git a/PaddleCV/gan/network/Pix2pix_network.py b/PaddleCV/gan/network/Pix2pix_network.py index 6ba949d4e05d06a7b9ac15a6c48326b7334e1c67..d7c93b98697a513e8a1c0c8d3f1cad96f3ba3741 100644 --- a/PaddleCV/gan/network/Pix2pix_network.py +++ b/PaddleCV/gan/network/Pix2pix_network.py @@ -162,7 +162,7 @@ def build_generator_resnet_blocks(inputgen, name=name + "_c3", norm=norm_type, activation_fn='relu') - for i in xrange(n_gen_res): + for i in range(n_gen_res): conv_name = name + "_r{}".format(i + 1) res_output = build_resnet_block( res_input, @@ -494,7 +494,7 @@ def build_discriminator_Nlayers(inputdisc, relufactor=0.2, use_bias=True) d_dims = d_base_dims - for i in xrange(d_nlayers - 1): + for i in range(d_nlayers - 1): conv_name = name + "_c{}".format(i + 2) d_dims *= 2 dis_output = conv2d( diff --git a/PaddleCV/gan/scripts/infer_cyclegan.sh b/PaddleCV/gan/scripts/infer_cyclegan.sh index c6b31b4038d4b75775211e203c9fed3ff8264598..c23da33466de1684a2b7144e2038dac24e65c7d8 100644 --- a/PaddleCV/gan/scripts/infer_cyclegan.sh +++ b/PaddleCV/gan/scripts/infer_cyclegan.sh @@ -1 +1 @@ -python infer.py --init_model output/checkpoints/199/ --input data/cityscapes/testA/* --input_style A --model_net cyclegan --net_G resnet_6block --g_bash_dims 32 +python infer.py --init_model output/checkpoints/199/ --input "data/cityscapes/testA/*" --input_style A --model_net cyclegan --net_G resnet_6block --g_bash_dims 32 diff --git a/PaddleCV/gan/scripts/infer_pix2pix.sh b/PaddleCV/gan/scripts/infer_pix2pix.sh index 6a8bafbbb9779a71219baf5b1daeccc838bbc799..99db1e1b066ce57560a28b122a5cbcbed25142d0 100644 --- a/PaddleCV/gan/scripts/infer_pix2pix.sh +++ b/PaddleCV/gan/scripts/infer_pix2pix.sh @@ -1 +1 @@ -python infer.py --init_model output/chechpoints/199/ --input data/cityscapes/testB/* --model_net Pix2pix --net_G unet_256 +python infer.py --init_model output/chechpoints/199/ --input "data/cityscapes/testB/*" --model_net Pix2pix --net_G unet_256 diff --git a/PaddleCV/gan/trainer/CycleGAN.py b/PaddleCV/gan/trainer/CycleGAN.py index 56b10c334eb9d789ae2bf440fce5f3b7dd90fb45..61145216297031fe14be046cd1997ba8f0a51f6a 100644 --- a/PaddleCV/gan/trainer/CycleGAN.py +++ b/PaddleCV/gan/trainer/CycleGAN.py @@ -91,10 +91,10 @@ class GTrainer(): optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[99 * step_per_epoch] + - [x * step_per_epoch for x in xrange(100, cfg.epoch - 1)], + [x * step_per_epoch for x in range(100, cfg.epoch - 1)], values=[lr] + [ lr * (1.0 - (x - 99.0) / 101.0) - for x in xrange(100, cfg.epoch) + for x in range(100, cfg.epoch) ]), beta1=0.5, beta2=0.999, @@ -125,10 +125,10 @@ class DATrainer(): optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[99 * step_per_epoch] + - [x * step_per_epoch for x in xrange(100, cfg.epoch - 1)], + [x * step_per_epoch for x in range(100, cfg.epoch - 1)], values=[lr] + [ lr * (1.0 - (x - 99.0) / 101.0) - for x in xrange(100, cfg.epoch) + for x in range(100, cfg.epoch) ]), beta1=0.5, beta2=0.999, @@ -158,10 +158,10 @@ class DBTrainer(): optimizer = fluid.optimizer.Adam( learning_rate=fluid.layers.piecewise_decay( boundaries=[99 * step_per_epoch] + - [x * step_per_epoch for x in xrange(100, cfg.epoch - 1)], + [x * step_per_epoch for x in range(100, cfg.epoch - 1)], values=[lr] + [ lr * (1.0 - (x - 99.0) / 101.0) - for x in xrange(100, cfg.epoch) + for x in range(100, cfg.epoch) ]), beta1=0.5, beta2=0.999,