Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
803ee976
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
803ee976
编写于
5月 03, 2017
作者:
K
kuke
提交者:
Yibing
5月 24, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add example for NMT without attention
上级
10ab8b5e
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
243 addition
and
0 deletion
+243
-0
seq2seq/nmt_without_attention_v2.py
seq2seq/nmt_without_attention_v2.py
+243
-0
未找到文件。
seq2seq/nmt_without_attention_v2.py
0 → 100644
浏览文件 @
803ee976
#!/usr/bin/env python
import
sys
import
gzip
import
sqlite3
import
paddle.v2
as
paddle
### Parameters
word_vector_dim
=
620
latent_chain_dim
=
1000
beam_size
=
3
max_length
=
50
def
seq2seq_net
(
source_dict_dim
,
target_dict_dim
,
generating
=
False
):
decoder_size
=
encoder_size
=
latent_chain_dim
### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
encoder_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
act
=
paddle
.
activation
.
Tanh
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
size
=
encoder_size
,
reverse
=
False
)
encoder_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
act
=
paddle
.
activation
.
Tanh
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
encoder_forward
,
encoder_backward
])
#### Decoder
encoder_last
=
paddle
.
layer
.
last_seq
(
input
=
encoded_vector
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
encoder_last_projected
:
encoder_last_projected
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoder_last
)
def
gru_decoder_without_attention
(
enc_vec
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
encoder_last_projected
)
context
=
paddle
.
layer
.
last_seq
(
input
=
enc_vec
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
act
=
paddle
.
activation
.
Tanh
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_inputs
=
[
group_input1
]
if
not
generating
:
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped without attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_without_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
else
:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
trg_embedding
=
paddle
.
layer
.
GeneratedInputV2
(
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
embedding_size
=
word_vector_dim
)
group_inputs
.
append
(
trg_embedding
)
beam_gen
=
paddle
.
layer
.
beam_search
(
name
=
decoder_group_name
,
step
=
gru_decoder_without_attention
,
input
=
group_inputs
,
bos_id
=
0
,
eos_id
=
1
,
beam_size
=
beam_size
,
max_length
=
max_length
)
return
beam_gen
def
train
(
source_dict_dim
,
target_dict_dim
):
cost
=
seq2seq_net
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
# define optimize method and trainer
optimizer
=
paddle
.
optimizer
.
RMSProp
(
learning_rate
=
1e-3
,
gradient_clipping_threshold
=
10.0
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
))
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
wmt14_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
source_dict_dim
),
buf_size
=
8192
),
batch_size
=
55
)
# define event_handler callback
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
and
event
.
batch_id
>
0
:
with
gzip
.
open
(
'models/nmt_without_att_params_batch_%d.tar.gz'
%
event
.
batch_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
if
event
.
batch_id
%
10
==
0
:
# wmt14_test_batch = paddle.batch(
# paddle.reader.shuffle(
# paddle.dataset.wmt14.test(source_dict_dim),
# buf_size=8192), batch_size=1)
#test_result = trainer.test(wmt14_test_batch)
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
,
# test_result.cost, test_result.metrics
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
# start to train
trainer
.
train
(
reader
=
wmt14_reader
,
event_handler
=
event_handler
,
num_passes
=
2
)
def
generate
(
source_dict_dim
,
target_dict_dim
):
# use the first 3 samples for generation
gen_creator
=
paddle
.
dataset
.
wmt14
.
gen
(
source_dict_dim
)
gen_data
=
[]
gen_num
=
3
for
item
in
gen_creator
():
gen_data
.
append
((
item
[
0
],
))
if
len
(
gen_data
)
==
gen_num
:
break
beam_gen
=
seq2seq_net
(
source_dict_dim
,
target_dict_dim
,
True
)
# get the pretrained model, whose bleu = 26.92
# parameters = paddle.dataset.wmt14.model()
with
gzip
.
open
(
'models/nmt_without_att_params_batch_400.tar.gz'
)
as
f
:
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
f
)
# prob is the prediction probabilities, and id is the prediction word.
beam_result
=
paddle
.
infer
(
output_layer
=
beam_gen
,
parameters
=
parameters
,
input
=
gen_data
,
field
=
[
'prob'
,
'id'
])
# get the dictionary
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
source_dict_dim
)
# the delimited element of generated sequences is -1,
# the first element of each generated sequence is the sequence length
seq_list
=
[]
seq
=
[]
for
w
in
beam_result
[
1
]:
if
w
!=
-
1
:
seq
.
append
(
w
)
else
:
seq_list
.
append
(
' '
.
join
([
trg_dict
.
get
(
w
)
for
w
in
seq
[
1
:]]))
seq
=
[]
prob
=
beam_result
[
0
]
beam_size
=
3
for
i
in
xrange
(
gen_num
):
print
"
\n
*******************************************************
\n
"
print
"src:"
,
' '
.
join
([
src_dict
.
get
(
w
)
for
w
in
gen_data
[
i
][
0
]]),
"
\n
"
for
j
in
xrange
(
beam_size
):
print
"prob = %f:"
%
(
prob
[
i
][
j
]),
seq_list
[
i
*
beam_size
+
j
]
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
4
)
source_language_dict_dim
=
30000
target_language_dict_dim
=
30000
generating
=
True
if
generating
:
generate
(
source_language_dict_dim
,
target_language_dict_dim
)
else
:
train
(
source_language_dict_dim
,
target_language_dict_dim
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录