diff --git a/word_embedding/README.md b/word_embedding/README.md index 32d33ad1740194ba299ad1bc7c217a2a1e112411..66798f9a2fe8e7921dd819a444b19183bd70de67 100644 --- a/word_embedding/README.md +++ b/word_embedding/README.md @@ -1,25 +1,60 @@ -# Hsigmoid加速Word Embedding训练 +# Hsigmoid加速词向量训练 ## 背景介绍 -在自然语言处理领域中,传统做法通常使用one-hot向量来表示词,比如词典为['我', '你', '喜欢'],可以用[1,0,0]、[0,1,0]和[0,0,1]这三个向量分别表示'我'、'你'和'喜欢'。这种表示方式比较简洁,但是当词表很大时,容易产生维度爆炸问题,而且任意两个词的向量是正交的,向量包含的信息有限。为了避免或减轻one-hot表示的缺点,目前通常使用词嵌入向量来取代one-hot表示,词嵌入向量也就是word embedding,具体地,使用一个低维稠密的实向量取代高维稀疏的one-hot向量。训练embedding词表的方法有很多种,神经网络模型是其中之一,包括CBOW等,这些模型本质上是一个分类模型,当词表较大也即类别较多时,传统的softmax将非常消耗时间,针对这类场景,PaddlePaddle提供了hsigmoid等层,来加速模型的训练过程。 +在自然语言处理领域中,传统做法通常使用one-hot向量来表示词,比如词典为['我', '你', '喜欢'],可以用[1,0,0]、[0,1,0]和[0,0,1]这三个向量分别表示'我'、'你'和'喜欢'。这种表示方式比较简洁,但是当词表很大时,容易产生维度爆炸问题;而且任意两个词的向量是正交的,向量包含的信息有限。为了避免或减轻one-hot表示的缺点,目前通常使用词向量来取代one-hot表示,词向量也就是word embedding,即使用一个低维稠密的实向量取代高维稀疏的one-hot向量。训练词向量的方法有很多种,神经网络模型是其中之一,包括CBOW、Skip-gram等,这些模型本质上都是一个分类模型,当词表较大即类别较多时,传统的softmax将非常消耗时间。PaddlePaddle提供了Hsigmoid Layer、NCE Layer,来加速模型的训练过程。本文主要介绍如何使用Hsigmoid Layer来加速训练,词向量相关内容请查阅PaddlePaddle Book中的[词向量章节](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)。 + ## Hsigmoid Layer -Hsigmoid Layer引用自论文\[[1](#参考文献)\],原理是通过构建一个分类二叉树来降低计算复杂度,二叉树中每个叶子节点代表一个类别,每个非叶子节点代表一个二类别分类器。例如我们一共有4个类别分别是0,1,2,3,softmax会分别计算4个类别的得分,然后归一化得到概率,当类别数很多时,计算每个类别的概率将非常耗时,Hsigmoid Layer会根据类别数构建一个平衡二叉树,如下: +Hsigmoid Layer引用自论文\[[1](#参考文献)\],Hsigmoid指Hierarchical-sigmoid,原理是通过构建一个分类二叉树来降低计算复杂度,二叉树中每个叶子节点代表一个类别,每个非叶子节点代表一个二类别分类器。例如我们一共有4个类别分别是0、1、2、3,softmax会分别计算4个类别的得分,然后归一化得到概率。当类别数很多时,计算每个类别的概率非常耗时,Hsigmoid Layer会根据类别数构建一个平衡二叉树,如下:


-左图为平衡分类二叉树,右图展示了从根节点到类别1的路径 +图1. (a)为平衡二叉树,(b)为根节点到类别1的路径

-二叉树中每个非叶子节点是一个二类别分类器(例如sigmoid),如果类别是0,则取左子节点继续分类判断,反之取右子节点,直至达到叶节点。按照这种方式,每个类别均对应一条路径,例如从root到类别1的路径编码为0,1。训练阶段我们按照真实类别对应的路径,依次计算对应分类器的损失,然后综合所有损失得到最终损失,详细理论细节可参照论文。预测阶段,模型会输出各个非叶节点分类器的概率,我们可以根据概率获取路径编码,然后遍历路径编码就可以得到最终预测类别,具体实现细节见下文。 +二叉树中每个非叶子节点是一个二类别分类器(sigmoid),如果类别是0,则取左子节点继续分类判断,反之取右子节点,直至达到叶节点。按照这种方式,每个类别均对应一条路径,例如从root到类别1的路径编码为0、1。训练阶段我们按照真实类别对应的路径,依次计算对应分类器的损失,然后综合所有损失得到最终损失。预测阶段,模型会输出各个非叶节点分类器的概率,我们可以根据概率获取路径编码,然后遍历路径编码就可以得到最终预测类别。传统softmax的计算复杂度为N(N为词典大小),Hsigmoid可以将复杂度降至log(N),详细理论细节可参照论文\[[1](#参考文献)\]。 + +## 数据准备 +### PTB数据 +本文采用Penn Treebank (PTB)数据集([Tomas Mikolov预处理版本](http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz)),共包含train、valid和test三个文件。其中使用train作为训练数据,valid作为测试数据。本文训练的是5-gram模型,即用每条数据的前4个词来预测第5个词。PaddlePaddle提供了对应PTB数据集的python包[paddle.dataset.imikolov](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/dataset/imikolov.py) ,自动做数据的下载与预处理。预处理会把数据集中的每一句话前后加上开始符号\以及结束符号\,然后依据窗口大小(本文为5),从头到尾每次向右滑动窗口并生成一条数据。如"I have a dream that one day"可以生成\ I have a dream、I have a dream that、have a dream that one、a dream that one day、dream that one day \,PaddlePaddle会把词转换成id数据作为预处理的输出。 + +### 自定义数据 +用户可以使用自己的数据集训练模型,自定义数据集最关键的地方是实现reader接口做数据处理,reader需要产生一个迭代器,迭代器负责解析文件中的每一行数据,返回一个python list,例如[1, 2, 3, 4, 5],分别是第一个到第四个词在字典中的id,PaddlePaddle会进一步将该list转化成`paddle.data_type.inter_value`类型作为data layer的输入,一个封装样例如下: + +```python +def reader_creator(filename, word_dict, n): + def reader(): + with open(filename) as f: + UNK = word_dict[''] + for l in f: + l = [''] + l.strip().split() + [''] + if len(l) >= n: + l = [word_dict.get(w, UNK) for w in l] + for i in range(n, len(l) + 1): + yield tuple(l[i - n:i]) + return reader + + +def train_data(filename, word_dict, n): + """ + Reader interface for training data. + + It returns a reader creator, each sample in the reader is a word ID tuple. + + :param filename: path of data file + :type filename: str + :param word_dict: word dictionary + :type word_dict: dict + :param n: sliding window size + :type n: int + """ + return reader_creator(filename, word_dict, n) +``` -# 数据准备 -本文采用Penn Treebank (PTB)数据集(Tomas Mikolov预处理版本),共包含train、valid和test三个文件。其中使用train作为训练数据,valid作为测试数据。本文训练的是5-gram模型,每条数据的前4个词用来预测第5个词。PaddlePaddle提供了对应PTB数据集的python包paddle.dataset.imikolov,自动做数据的下载与预处理。预处理会把数据集中的每一句话前后加上开始符号\以及结束符号\。然后依据窗口大小(本文为5),从头到尾每次向右滑动窗口并生成一条数据。如"I have a dream that one day"可以生成\ I have a dream、I have a dream that、have a dream that one、a dream that one day、dream that one day \,PaddlePaddle会把词转换成id数据作为最终输入。 -# 编程实现 ## 网络结构 -本文通过训练N-gram语言模型来获得词向量,具体地使用前4个词来预测当前词。网络输入为词的id,然后查询embedding词表获取embedding向量,接着拼接4个词的embedding向量,然后接入一个全连接隐层,最后是hsigmoid层。详细网络结构见下图: +本文通过训练N-gram语言模型来获得词向量,具体地使用前4个词来预测当前词。网络输入为词在字典中的id,然后查询词向量词表获取词向量,接着拼接4个词的词向量,然后接入一个全连接隐层,最后是Hsigmoid层。详细网络结构见图2:


-网络配置结构 +图2. 网络配置结构

代码实现如下: @@ -86,8 +121,11 @@ def network_conf(hidden_size, embed_size, dict_size, is_train=True): 需要注意,在预测阶段,我们需要对hsigmoid参数做一次转置,这里输出的类别数为词典大小减1,对应非叶节点的数量。 +## 训练阶段 +训练比较简单,直接运行``` python hsigmoid_train.py ```。程序第一次运行会检测用户缓存文件夹中是否包含imikolov数据集,如果未包含,则自动下载。运行过程中,每100个iteration会打印模型训练信息,主要包含训练损失和测试损失,每个pass会保存一次模型。 + ## 预测阶段 -预测阶段最重要的就是根据概率得到编码路径,然后遍历路径获取最终的预测类别,这部分逻辑如下: +预测时,直接运行``` python hsigmoid_predict.py ```,程序会首先load模型,然后按照batch方式进行预测,并打印预测结果。预测阶段最重要的就是根据概率得到编码路径,然后遍历路径获取最终的预测类别,这部分逻辑如下: ```python def decode_res(infer_res, dict_size): @@ -120,6 +158,6 @@ def decode_res(infer_res, dict_size): return predict_lbls ``` -函数的输入是一个batch样本的预测概率以及词表的大小,里面的循环是对每条样本的输出概率进行解码,解码方式就是按照左0右1的准则,不断遍历路径,直至到达叶子节点。需要注意的是,本文选用的数据集需要较长的时间训练才能得到较好的结果,预测程序选用第一轮的模型,仅为展示方便,不保证效果。 -# 参考文献 +预测程序的输入数据格式与训练阶段相同,如have a dream that one,程序会根据have a dream that生成一组概率,通过对概率解码生成预测词,one作为真实词,方便评估。解码函数的输入是一个batch样本的预测概率以及词表的大小,里面的循环是对每条样本的输出概率进行解码,解码方式就是按照左0右1的准则,不断遍历路径,直至到达叶子节点。需要注意的是,本文选用的数据集需要较长的时间训练才能得到较好的结果,预测程序选用第一轮的模型,仅为展示方便,学习效果不能保证。 +## 参考文献 1. Morin, F., & Bengio, Y. (2005, January). [Hierarchical Probabilistic Neural Network Language Model](http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf). In Aistats (Vol. 5, pp. 246-252). diff --git a/word_embedding/images/binary_tree.png b/word_embedding/images/binary_tree.png index 878b01da6aa7b74750ebfb6ffed2f8dd3e4aa68e..3ea43c81356a658f3ca4469af98fd72b32799188 100644 Binary files a/word_embedding/images/binary_tree.png and b/word_embedding/images/binary_tree.png differ diff --git a/word_embedding/images/network_conf.png b/word_embedding/images/network_conf.png index fff171386211c4e4bd3237a0c575ac3f32713285..02f8c257d4d7406aab760920a69bc94298fb48ea 100644 Binary files a/word_embedding/images/network_conf.png and b/word_embedding/images/network_conf.png differ diff --git a/word_embedding/images/path_to_1.png b/word_embedding/images/path_to_1.png index 69cd62d35bf98a11f09eec17f4d6f57acfd539e0..d07b046680393e2098cf3c9b7fc1a3c6045e9f65 100644 Binary files a/word_embedding/images/path_to_1.png and b/word_embedding/images/path_to_1.png differ