Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
7d7ab3af
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7d7ab3af
编写于
5月 26, 2020
作者:
F
FrostML
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
align the behavior of simnet with static graph, test=develop
上级
1bf72647
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
179 addition
and
113 deletion
+179
-113
dygraph/similarity_net/nets/gru.py
dygraph/similarity_net/nets/gru.py
+17
-15
dygraph/similarity_net/nets/lstm.py
dygraph/similarity_net/nets/lstm.py
+16
-17
dygraph/similarity_net/nets/paddle_layers.py
dygraph/similarity_net/nets/paddle_layers.py
+30
-0
dygraph/similarity_net/reader.py
dygraph/similarity_net/reader.py
+27
-21
dygraph/similarity_net/run.sh
dygraph/similarity_net/run.sh
+2
-2
dygraph/similarity_net/run_classifier.py
dygraph/similarity_net/run_classifier.py
+0
-25
dygraph/similarity_net/utils.py
dygraph/similarity_net/utils.py
+87
-33
未找到文件。
dygraph/similarity_net/nets/gru.py
浏览文件 @
7d7ab3af
...
...
@@ -21,6 +21,8 @@ from paddle.fluid.dygraph.nn import Linear
from
paddle.fluid.dygraph
import
Layer
from
paddle
import
fluid
import
numpy
as
np
from
utils
import
seq_length
class
GRU
(
Layer
):
"""
...
...
@@ -37,13 +39,16 @@ class GRU(Layer):
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
gru_dim
=
conf_dict
[
"net"
][
"gru_dim"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
emb_layer
=
layers
.
EmbeddingLayer
(
self
.
dict_size
,
self
.
emb_dim
,
"emb"
).
ops
()
self
.
emb_layer
=
layers
.
EmbeddingLayer
(
self
.
dict_size
,
self
.
emb_dim
,
"emb"
).
ops
()
self
.
gru_layer
=
layers
.
DynamicGRULayer
(
self
.
gru_dim
,
"gru"
).
ops
()
self
.
fc_layer
=
layers
.
FCLayer
(
self
.
hidden_dim
,
None
,
"fc"
).
ops
()
self
.
proj_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
gru_dim
*
3
)
self
.
proj_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
gru_dim
*
3
)
self
.
softmax_layer
=
layers
.
FCLayer
(
2
,
"softmax"
,
"cos_sim"
).
ops
()
self
.
seq_len
=
conf_dict
[
"seq_len"
]
self
.
last_layer
=
layers
.
ExtractLastLayer
()
self
.
seq_len
=
conf_dict
[
"seq_len"
]
def
forward
(
self
,
left
,
right
):
"""
...
...
@@ -60,17 +65,14 @@ class GRU(Layer):
h_0
=
to_variable
(
h_0
)
left_gru
=
self
.
gru_layer
(
left_emb
,
h_0
=
h_0
)
right_gru
=
self
.
gru_layer
(
right_emb
,
h_0
=
h_0
)
left_emb
=
fluid
.
layers
.
reduce_max
(
left_gru
,
dim
=
1
)
right_emb
=
fluid
.
layers
.
reduce_max
(
right_gru
,
dim
=
1
)
left_emb
=
fluid
.
layers
.
reshape
(
left_emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
right_emb
=
fluid
.
layers
.
reshape
(
right_emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
left_emb
=
fluid
.
layers
.
reduce_sum
(
left_emb
,
dim
=
1
)
right_emb
=
fluid
.
layers
.
reduce_sum
(
right_emb
,
dim
=
1
)
left_last
=
fluid
.
layers
.
tanh
(
left_emb
)
right_last
=
fluid
.
layers
.
tanh
(
right_emb
)
# Get sequence length before padding
left_len
=
seq_length
(
left
)
left_len
.
stop_gradient
=
True
right_len
=
seq_length
(
right
)
right_len
.
stop_gradient
=
True
# Extract last step
left_last
=
self
.
last_layer
.
ops
(
left_gru
,
left_len
)
right_last
=
self
.
last_layer
.
ops
(
right_gru
,
right_len
)
if
self
.
task_mode
==
"pairwise"
:
left_fc
=
self
.
fc_layer
(
left_last
)
...
...
dygraph/similarity_net/nets/lstm.py
浏览文件 @
7d7ab3af
...
...
@@ -17,6 +17,8 @@ lstm class
import
paddle_layers
as
layers
from
paddle.fluid.dygraph
import
Layer
,
Linear
from
paddle
import
fluid
from
utils
import
seq_length
class
LSTM
(
Layer
):
"""
...
...
@@ -27,20 +29,22 @@ class LSTM(Layer):
"""
initialize
"""
super
(
LSTM
,
self
).
__init__
()
super
(
LSTM
,
self
).
__init__
()
self
.
dict_size
=
conf_dict
[
"dict_size"
]
self
.
task_mode
=
conf_dict
[
"task_mode"
]
self
.
emb_dim
=
conf_dict
[
"net"
][
"emb_dim"
]
self
.
lstm_dim
=
conf_dict
[
"net"
][
"lstm_dim"
]
self
.
hidden_dim
=
conf_dict
[
"net"
][
"hidden_dim"
]
self
.
emb_layer
=
layers
.
EmbeddingLayer
(
self
.
dict_size
,
self
.
emb_dim
,
"emb"
).
ops
()
self
.
emb_layer
=
layers
.
EmbeddingLayer
(
self
.
dict_size
,
self
.
emb_dim
,
"emb"
).
ops
()
self
.
lstm_layer
=
layers
.
DynamicLSTMLayer
(
self
.
lstm_dim
,
"lstm"
).
ops
()
self
.
fc_layer
=
layers
.
FCLayer
(
self
.
hidden_dim
,
None
,
"fc"
).
ops
()
self
.
softmax_layer
=
layers
.
FCLayer
(
2
,
"softmax"
,
"cos_sim"
).
ops
()
self
.
proj_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
lstm_dim
*
4
)
self
.
proj_layer
=
Linear
(
input_dim
=
self
.
hidden_dim
,
output_dim
=
self
.
lstm_dim
*
4
)
self
.
last_layer
=
layers
.
ExtractLastLayer
()
self
.
seq_len
=
conf_dict
[
"seq_len"
]
def
forward
(
self
,
left
,
right
):
"""
Forward network
...
...
@@ -53,19 +57,14 @@ class LSTM(Layer):
right_proj
=
self
.
proj_layer
(
right_emb
)
left_lstm
,
_
=
self
.
lstm_layer
(
left_proj
)
right_lstm
,
_
=
self
.
lstm_layer
(
right_proj
)
left_emb
=
fluid
.
layers
.
reduce_max
(
left_lstm
,
dim
=
1
)
right_emb
=
fluid
.
layers
.
reduce_max
(
right_lstm
,
dim
=
1
)
left_emb
=
fluid
.
layers
.
reshape
(
left_emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
right_emb
=
fluid
.
layers
.
reshape
(
right_emb
,
shape
=
[
-
1
,
self
.
seq_len
,
self
.
hidden_dim
])
left_emb
=
fluid
.
layers
.
reduce_sum
(
left_emb
,
dim
=
1
)
right_emb
=
fluid
.
layers
.
reduce_sum
(
right_emb
,
dim
=
1
)
left_last
=
fluid
.
layers
.
tanh
(
left_emb
)
right_last
=
fluid
.
layers
.
tanh
(
right_emb
)
# Get sequence length before padding
left_len
=
seq_length
(
left
)
left_len
.
stop_gradient
=
True
right_len
=
seq_length
(
right
)
right_len
.
stop_gradient
=
True
# Extract last step
left_last
=
self
.
last_layer
.
ops
(
left_lstm
,
left_len
)
right_last
=
self
.
last_layer
.
ops
(
right_lstm
,
right_len
)
# matching layer
if
self
.
task_mode
==
"pairwise"
:
...
...
dygraph/similarity_net/nets/paddle_layers.py
浏览文件 @
7d7ab3af
...
...
@@ -1051,3 +1051,33 @@ class BasicGRUUnit(Layer):
new_hidden
=
u
*
pre_hidden
+
(
1
-
u
)
*
c
return
new_hidden
class
ExtractLastLayer
(
object
):
"""
a layer class: get the last step layer
"""
def
__init__
(
self
):
"""
init function
"""
pass
def
ops
(
self
,
input_hidden
,
seq_length
=
None
):
"""
operation
"""
if
seq_length
is
not
None
:
output
=
input_hidden
output_shape
=
output
.
shape
batch_size
=
output_shape
[
0
]
max_length
=
output_shape
[
1
]
emb_size
=
output_shape
[
2
]
index
=
fluid
.
layers
.
range
(
0
,
batch_size
,
1
,
'int32'
)
*
max_length
+
(
seq_length
-
1
)
flat
=
fluid
.
layers
.
reshape
(
output
,
[
-
1
,
emb_size
])
return
fluid
.
layers
.
gather
(
flat
,
index
)
else
:
output
=
fluid
.
layers
.
transpose
(
input_hidden
,
[
1
,
0
,
2
])
return
fluid
.
layers
.
gather
(
output
,
output
.
shape
[
0
]
-
1
)
dygraph/similarity_net/reader.py
浏览文件 @
7d7ab3af
...
...
@@ -32,12 +32,11 @@ class SimNetProcessor(object):
def
padding_text
(
self
,
x
):
if
len
(
x
)
<
self
.
seq_len
:
x
+=
[
0
]
*
(
self
.
seq_len
-
len
(
x
))
x
+=
[
0
]
*
(
self
.
seq_len
-
len
(
x
))
if
len
(
x
)
>
self
.
seq_len
:
x
=
x
[
0
:
self
.
seq_len
]
return
x
def
get_reader
(
self
,
mode
,
epoch
=
0
):
"""
Get Reader
...
...
@@ -48,8 +47,8 @@ class SimNetProcessor(object):
Reader with Pairwise
"""
if
mode
==
"valid"
:
with
io
.
open
(
self
.
args
.
valid_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
with
io
.
open
(
self
.
args
.
valid_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
for
line
in
file
:
query
,
title
,
label
=
line
.
strip
().
split
(
"
\t
"
)
if
len
(
query
)
==
0
or
len
(
title
)
==
0
or
len
(
...
...
@@ -76,7 +75,8 @@ class SimNetProcessor(object):
yield
[
query
,
title
]
elif
mode
==
"test"
:
with
io
.
open
(
self
.
args
.
test_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
with
io
.
open
(
self
.
args
.
test_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
for
line
in
file
:
query
,
title
,
label
=
line
.
strip
().
split
(
"
\t
"
)
if
len
(
query
)
==
0
or
len
(
title
)
==
0
or
len
(
...
...
@@ -104,25 +104,29 @@ class SimNetProcessor(object):
yield
[
query
,
title
]
else
:
for
idx
in
range
(
epoch
):
with
io
.
open
(
self
.
args
.
train_data_dir
,
"r"
,
with
io
.
open
(
self
.
args
.
train_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
for
line
in
file
:
query
,
pos_title
,
neg_title
=
line
.
strip
().
split
(
"
\t
"
)
query
,
pos_title
,
neg_title
=
line
.
strip
().
split
(
"
\t
"
)
if
len
(
query
)
==
0
or
len
(
pos_title
)
==
0
or
len
(
neg_title
)
==
0
:
logging
.
warning
(
"line not match format in t
est
file"
)
"line not match format in t
rain
file"
)
continue
query
=
[
self
.
vocab
[
word
]
for
word
in
query
.
split
(
" "
)
if
word
in
self
.
vocab
]
pos_title
=
[
self
.
vocab
[
word
]
for
word
in
pos_title
.
split
(
" "
)
self
.
vocab
[
word
]
for
word
in
pos_title
.
split
(
" "
)
if
word
in
self
.
vocab
]
neg_title
=
[
self
.
vocab
[
word
]
for
word
in
neg_title
.
split
(
" "
)
self
.
vocab
[
word
]
for
word
in
neg_title
.
split
(
" "
)
if
word
in
self
.
vocab
]
if
len
(
query
)
==
0
:
...
...
@@ -143,8 +147,8 @@ class SimNetProcessor(object):
Reader with Pointwise
"""
if
mode
==
"valid"
:
with
io
.
open
(
self
.
args
.
valid_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
with
io
.
open
(
self
.
args
.
valid_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
for
line
in
file
:
query
,
title
,
label
=
line
.
strip
().
split
(
"
\t
"
)
if
len
(
query
)
==
0
or
len
(
title
)
==
0
or
len
(
...
...
@@ -171,7 +175,8 @@ class SimNetProcessor(object):
yield
[
query
,
title
]
elif
mode
==
"test"
:
with
io
.
open
(
self
.
args
.
test_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
with
io
.
open
(
self
.
args
.
test_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
for
line
in
file
:
query
,
title
,
label
=
line
.
strip
().
split
(
"
\t
"
)
if
len
(
query
)
==
0
or
len
(
title
)
==
0
or
len
(
...
...
@@ -199,7 +204,8 @@ class SimNetProcessor(object):
yield
[
query
,
title
]
else
:
for
idx
in
range
(
epoch
):
with
io
.
open
(
self
.
args
.
train_data_dir
,
"r"
,
with
io
.
open
(
self
.
args
.
train_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
file
:
for
line
in
file
:
query
,
title
,
label
=
line
.
strip
().
split
(
"
\t
"
)
...
...
dygraph/similarity_net/run.sh
浏览文件 @
7d7ab3af
...
...
@@ -48,7 +48,7 @@ train() {
evaluate
()
{
python run_classifier.py
\
--task_name
${
TASK_NAME
}
\
--use_cuda
f
alse
\
--use_cuda
F
alse
\
--do_test
True
\
--verbose_result
True
\
--batch_size
128
\
...
...
@@ -65,7 +65,7 @@ evaluate() {
infer
()
{
python run_classifier.py
\
--task_name
${
TASK_NAME
}
\
--use_cuda
f
alse
\
--use_cuda
F
alse
\
--do_infer
True
\
--batch_size
128
\
--infer_data_dir
${
INFER_DATA_PATH
}
\
...
...
dygraph/similarity_net/run_classifier.py
浏览文件 @
7d7ab3af
...
...
@@ -161,10 +161,6 @@ def train(conf_dict, args):
if
args
.
task_mode
==
"pairwise"
:
for
left
,
pos_right
,
neg_right
in
train_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
neg_right
=
fluid
.
layers
.
reshape
(
neg_right
,
shape
=
[
-
1
,
1
])
net
.
train
()
global_step
+=
1
left_feat
,
pos_score
=
net
(
left
,
pos_right
)
...
...
@@ -178,9 +174,6 @@ def train(conf_dict, args):
if
args
.
do_valid
and
global_step
%
args
.
validation_steps
==
0
:
for
left
,
pos_right
in
valid_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
net
.
eval
()
left_feat
,
pos_score
=
net
(
left
,
pos_right
)
pred
=
pos_score
...
...
@@ -212,9 +205,6 @@ def train(conf_dict, args):
logging
.
info
(
"saving infer model in %s"
%
model_path
)
else
:
for
left
,
right
,
label
in
train_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
label
=
fluid
.
layers
.
reshape
(
label
,
shape
=
[
-
1
,
1
])
net
.
train
()
global_step
+=
1
left_feat
,
pred
=
net
(
left
,
right
)
...
...
@@ -226,8 +216,6 @@ def train(conf_dict, args):
if
args
.
do_valid
and
global_step
%
args
.
validation_steps
==
0
:
for
left
,
right
in
valid_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
net
.
eval
()
left_feat
,
pred
=
net
(
left
,
right
)
pred_list
+=
list
(
pred
.
numpy
())
...
...
@@ -296,11 +284,7 @@ def train(conf_dict, args):
place
)
pred_list
=
[]
for
left
,
pos_right
in
test_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
net
.
eval
()
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
left_feat
,
pos_score
=
net
(
left
,
pos_right
)
pred
=
pos_score
pred_list
+=
list
(
pred
.
numpy
())
...
...
@@ -351,9 +335,6 @@ def test(conf_dict, args):
"predictions.txt"
,
"w"
,
encoding
=
"utf8"
)
as
predictions_file
:
if
args
.
task_mode
==
"pairwise"
:
for
left
,
pos_right
in
test_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
left_feat
,
pos_score
=
net
(
left
,
pos_right
)
pred
=
pos_score
...
...
@@ -365,8 +346,6 @@ def test(conf_dict, args):
else
:
for
left
,
right
in
test_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
left_feat
,
pred
=
net
(
left
,
right
)
pred_list
+=
list
(
...
...
@@ -433,8 +412,6 @@ def infer(conf_dict, args):
pred_list
=
[]
if
args
.
task_mode
==
"pairwise"
:
for
left
,
pos_right
in
infer_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
pos_right
,
shape
=
[
-
1
,
1
])
left_feat
,
pos_score
=
net
(
left
,
pos_right
)
pred
=
pos_score
...
...
@@ -443,8 +420,6 @@ def infer(conf_dict, args):
else
:
for
left
,
right
in
infer_loader
():
left
=
fluid
.
layers
.
reshape
(
left
,
shape
=
[
-
1
,
1
])
pos_right
=
fluid
.
layers
.
reshape
(
right
,
shape
=
[
-
1
,
1
])
left_feat
,
pred
=
net
(
left
,
right
)
pred_list
+=
map
(
lambda
item
:
str
(
np
.
argmax
(
item
)),
pred
.
numpy
())
...
...
dygraph/similarity_net/utils.py
浏览文件 @
7d7ab3af
...
...
@@ -33,6 +33,7 @@ from functools import partial
******functions for file processing******
"""
def
load_vocab
(
file_path
):
"""
load the given vocabulary
...
...
@@ -59,8 +60,11 @@ def get_result_file(args):
"""
with
io
.
open
(
args
.
test_data_dir
,
"r"
,
encoding
=
"utf8"
)
as
test_file
:
with
io
.
open
(
"predictions.txt"
,
"r"
,
encoding
=
"utf8"
)
as
predictions_file
:
with
io
.
open
(
args
.
test_result_path
,
"w"
,
encoding
=
"utf8"
)
as
test_result_file
:
with
io
.
open
(
"predictions.txt"
,
"r"
,
encoding
=
"utf8"
)
as
predictions_file
:
with
io
.
open
(
args
.
test_result_path
,
"w"
,
encoding
=
"utf8"
)
as
test_result_file
:
test_datas
=
[
line
.
strip
(
"
\n
"
)
for
line
in
test_file
]
predictions
=
[
line
.
strip
(
"
\n
"
)
for
line
in
predictions_file
]
for
test_data
,
prediction
in
zip
(
test_datas
,
predictions
):
...
...
@@ -168,52 +172,82 @@ class ArgumentGroup(object):
help
=
help
+
' Default: %(default)s.'
,
**
kwargs
)
class
ArgConfig
(
object
):
def
__init__
(
self
):
parser
=
argparse
.
ArgumentParser
()
model_g
=
ArgumentGroup
(
parser
,
"model"
,
"model configuration and paths."
)
model_g
.
add_arg
(
"config_path"
,
str
,
None
,
"Path to the json file for EmoTect model config."
)
model_g
.
add_arg
(
"init_checkpoint"
,
str
,
None
,
"Init checkpoint to resume training from."
)
model_g
.
add_arg
(
"output_dir"
,
str
,
None
,
"Directory path to save checkpoints"
)
model_g
.
add_arg
(
"task_mode"
,
str
,
None
,
"task mode: pairwise or pointwise"
)
model_g
=
ArgumentGroup
(
parser
,
"model"
,
"model configuration and paths."
)
model_g
.
add_arg
(
"config_path"
,
str
,
None
,
"Path to the json file for EmoTect model config."
)
model_g
.
add_arg
(
"init_checkpoint"
,
str
,
None
,
"Init checkpoint to resume training from."
)
model_g
.
add_arg
(
"output_dir"
,
str
,
None
,
"Directory path to save checkpoints"
)
model_g
.
add_arg
(
"task_mode"
,
str
,
None
,
"task mode: pairwise or pointwise"
)
train_g
=
ArgumentGroup
(
parser
,
"training"
,
"training options."
)
train_g
.
add_arg
(
"epoch"
,
int
,
10
,
"Number of epoches for training."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
200
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"validation_steps"
,
int
,
100
,
"The steps interval to evaluate model performance."
)
train_g
.
add_arg
(
"save_steps"
,
int
,
200
,
"The steps interval to save checkpoints."
)
train_g
.
add_arg
(
"validation_steps"
,
int
,
100
,
"The steps interval to evaluate model performance."
)
log_g
=
ArgumentGroup
(
parser
,
"logging"
,
"logging related"
)
log_g
.
add_arg
(
"skip_steps"
,
int
,
10
,
"The steps interval to print loss."
)
log_g
.
add_arg
(
"verbose_result"
,
bool
,
True
,
"Whether to output verbose result."
)
log_g
.
add_arg
(
"test_result_path"
,
str
,
"test_result"
,
"Directory path to test result."
)
log_g
.
add_arg
(
"infer_result_path"
,
str
,
"infer_result"
,
"Directory path to infer result."
)
data_g
=
ArgumentGroup
(
parser
,
"data"
,
"Data paths, vocab paths and data processing options"
)
data_g
.
add_arg
(
"train_data_dir"
,
str
,
None
,
"Directory path to training data."
)
data_g
.
add_arg
(
"valid_data_dir"
,
str
,
None
,
"Directory path to valid data."
)
data_g
.
add_arg
(
"test_data_dir"
,
str
,
None
,
"Directory path to testing data."
)
data_g
.
add_arg
(
"infer_data_dir"
,
str
,
None
,
"Directory path to infer data."
)
log_g
.
add_arg
(
"skip_steps"
,
int
,
10
,
"The steps interval to print loss."
)
log_g
.
add_arg
(
"verbose_result"
,
bool
,
True
,
"Whether to output verbose result."
)
log_g
.
add_arg
(
"test_result_path"
,
str
,
"test_result"
,
"Directory path to test result."
)
log_g
.
add_arg
(
"infer_result_path"
,
str
,
"infer_result"
,
"Directory path to infer result."
)
data_g
=
ArgumentGroup
(
parser
,
"data"
,
"Data paths, vocab paths and data processing options"
)
data_g
.
add_arg
(
"train_data_dir"
,
str
,
None
,
"Directory path to training data."
)
data_g
.
add_arg
(
"valid_data_dir"
,
str
,
None
,
"Directory path to valid data."
)
data_g
.
add_arg
(
"test_data_dir"
,
str
,
None
,
"Directory path to testing data."
)
data_g
.
add_arg
(
"infer_data_dir"
,
str
,
None
,
"Directory path to infer data."
)
data_g
.
add_arg
(
"vocab_path"
,
str
,
None
,
"Vocabulary path."
)
data_g
.
add_arg
(
"batch_size"
,
int
,
32
,
"Total examples' number in batch for training."
)
data_g
.
add_arg
(
"batch_size"
,
int
,
32
,
"Total examples' number in batch for training."
)
data_g
.
add_arg
(
"seq_len"
,
int
,
32
,
"The length of each sentence."
)
run_type_g
=
ArgumentGroup
(
parser
,
"run_type"
,
"running type options."
)
run_type_g
.
add_arg
(
"use_cuda"
,
bool
,
False
,
"If set, use GPU for training."
)
run_type_g
.
add_arg
(
"task_name"
,
str
,
None
,
"The name of task to perform sentiment classification."
)
run_type_g
.
add_arg
(
"do_train"
,
bool
,
False
,
"Whether to perform training."
)
run_type_g
.
add_arg
(
"use_cuda"
,
bool
,
False
,
"If set, use GPU for training."
)
run_type_g
.
add_arg
(
"task_name"
,
str
,
None
,
"The name of task to perform sentiment classification."
)
run_type_g
.
add_arg
(
"do_train"
,
bool
,
False
,
"Whether to perform training."
)
run_type_g
.
add_arg
(
"do_valid"
,
bool
,
False
,
"Whether to perform dev."
)
run_type_g
.
add_arg
(
"do_test"
,
bool
,
False
,
"Whether to perform testing."
)
run_type_g
.
add_arg
(
"do_infer"
,
bool
,
False
,
"Whether to perform inference."
)
run_type_g
.
add_arg
(
"compute_accuracy"
,
bool
,
False
,
"Whether to compute accuracy."
)
run_type_g
.
add_arg
(
"lamda"
,
float
,
0.91
,
"When task_mode is pairwise, lamda is the threshold for calculating the accuracy."
)
run_type_g
.
add_arg
(
"do_test"
,
bool
,
False
,
"Whether to perform testing."
)
run_type_g
.
add_arg
(
"do_infer"
,
bool
,
False
,
"Whether to perform inference."
)
run_type_g
.
add_arg
(
"compute_accuracy"
,
bool
,
False
,
"Whether to compute accuracy."
)
run_type_g
.
add_arg
(
"lamda"
,
float
,
0.91
,
"When task_mode is pairwise, lamda is the threshold for calculating the accuracy."
)
custom_g
=
ArgumentGroup
(
parser
,
"customize"
,
"customized options."
)
self
.
custom_g
=
custom_g
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run the task with continuous evaluation logs.'
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run the task with continuous evaluation logs.'
)
self
.
parser
=
parser
...
...
@@ -384,6 +418,26 @@ def load_dygraph(model_path, keep_name_table=False):
if
six
.
PY3
:
load_bak
=
pickle
.
load
pickle
.
load
=
partial
(
load_bak
,
encoding
=
"latin1"
)
para_dict
,
opti_dict
=
fluid
.
load_dygraph
(
model_path
,
keep_name_table
)
para_dict
,
opti_dict
=
fluid
.
load_dygraph
(
model_path
,
keep_name_table
)
pickle
.
load
=
load_bak
return
para_dict
,
opti_dict
def
seq_length
(
sequence
):
"""
get sequence length
for id-sequence, (N, S)
or vector-sequence (N, S, D)
"""
if
len
(
sequence
.
shape
)
==
2
:
used
=
fluid
.
layers
.
sign
(
fluid
.
layers
.
cast
(
fluid
.
layers
.
abs
(
sequence
),
np
.
float32
))
else
:
used
=
fluid
.
layers
.
sign
(
fluid
.
layers
.
cast
(
fluid
.
layers
.
reduce_max
(
fluid
.
layers
.
abs
(
sequence
),
2
),
np
.
float32
))
length
=
fluid
.
layers
.
reduce_sum
(
used
,
1
)
length
=
fluid
.
layers
.
cast
(
length
,
np
.
int32
)
return
length
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录