Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
772fd131
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
772fd131
编写于
9月 25, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Some improvements in DAM config
上级
d65c9edf
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
56 addition
and
26 deletion
+56
-26
fluid/deep_attention_matching_net/douban/test.sh
fluid/deep_attention_matching_net/douban/test.sh
+5
-4
fluid/deep_attention_matching_net/douban/train.sh
fluid/deep_attention_matching_net/douban/train.sh
+4
-2
fluid/deep_attention_matching_net/model.py
fluid/deep_attention_matching_net/model.py
+11
-5
fluid/deep_attention_matching_net/test_and_evaluate.py
fluid/deep_attention_matching_net/test_and_evaluate.py
+12
-1
fluid/deep_attention_matching_net/train_and_evaluate.py
fluid/deep_attention_matching_net/train_and_evaluate.py
+17
-8
fluid/deep_attention_matching_net/ubuntu/test.sh
fluid/deep_attention_matching_net/ubuntu/test.sh
+4
-4
fluid/deep_attention_matching_net/ubuntu/train.sh
fluid/deep_attention_matching_net/ubuntu/train.sh
+3
-2
未找到文件。
fluid/deep_attention_matching_net/douban/test.sh
浏览文件 @
772fd131
export
CUDA_VISIBLE_DEVICES
=
0
,1,2,3
export
CUDA_VISIBLE_DEVICES
=
0
python
-u
../test_and_evaluate.py
--use_cuda
\
python
-u
../test_and_evaluate.py
--use_cuda
\
--ext_eval
\
--ext_eval
\
--data_path
./data/data.pkl
\
--data_path
./data/data.pkl
\
--save_path
./eval_10000
\
--save_path
./eval_3900
\
--model_path
models/step_10000
\
--model_path
models/step_3900
\
--batch_size
100
\
--channel1_num
16
\
--batch_size
200
\
--vocab_size
172130
\
--vocab_size
172130
\
--emb_size
200
\
--emb_size
200
\
--_EOS_
1
--_EOS_
1
...
...
fluid/deep_attention_matching_net/douban/train.sh
浏览文件 @
772fd131
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
CUDA_VISIBLE_DEVICES
=
0
export
FLAGS_eager_delete_tensor_gb
=
0.0
python
-u
../train_and_evaluate.py
--use_cuda
\
python
-u
../train_and_evaluate.py
--use_cuda
\
--data_path
./data/data.pkl
\
--data_path
./data/data.pkl
\
--ext_eval
\
--ext_eval
\
--word_emb_init
./data/word_embedding.pkl
\
--word_emb_init
./data/word_embedding.pkl
\
--save_path
./models
\
--save_path
./models
\
--batch_size
100
\
--batch_size
256
\
--vocab_size
172130
\
--vocab_size
172130
\
--channel1_num
16
\
--emb_size
200
\
--emb_size
200
\
--_EOS_
1
--_EOS_
1
fluid/deep_attention_matching_net/model.py
浏览文件 @
772fd131
...
@@ -6,18 +6,25 @@ import utils.layers as layers
...
@@ -6,18 +6,25 @@ import utils.layers as layers
class
Net
(
object
):
class
Net
(
object
):
def
__init__
(
self
,
max_turn_num
,
max_turn_len
,
vocab_size
,
emb_size
,
def
__init__
(
self
,
max_turn_num
,
max_turn_len
,
vocab_size
,
emb_size
,
stack_num
):
stack_num
,
channel1_num
,
channel2_num
):
self
.
_max_turn_num
=
max_turn_num
self
.
_max_turn_num
=
max_turn_num
self
.
_max_turn_len
=
max_turn_len
self
.
_max_turn_len
=
max_turn_len
self
.
_vocab_size
=
vocab_size
self
.
_vocab_size
=
vocab_size
self
.
_emb_size
=
emb_size
self
.
_emb_size
=
emb_size
self
.
_stack_num
=
stack_num
self
.
_stack_num
=
stack_num
self
.
_channel1_num
=
channel1_num
self
.
_channel2_num
=
channel2_num
self
.
word_emb_name
=
"shared_word_emb"
self
.
word_emb_name
=
"shared_word_emb"
self
.
use_stack_op
=
True
self
.
use_stack_op
=
True
self
.
use_mask_cache
=
True
self
.
use_mask_cache
=
True
self
.
use_sparse_embedding
=
True
self
.
use_sparse_embedding
=
True
def
set_word_embedding
(
self
,
word_emb
,
place
):
word_emb_param
=
fluid
.
global_scope
().
find_var
(
self
.
word_emb_name
).
get_tensor
()
word_emb_param
.
set
(
word_emb
,
place
)
def
create_network
(
self
):
def
create_network
(
self
):
mask_cache
=
dict
()
if
self
.
use_mask_cache
else
None
mask_cache
=
dict
()
if
self
.
use_mask_cache
else
None
...
@@ -136,7 +143,7 @@ class Net(object):
...
@@ -136,7 +143,7 @@ class Net(object):
t_a_r
=
fluid
.
layers
.
concat
(
input
=
t_a_r_stack
,
axis
=
1
)
t_a_r
=
fluid
.
layers
.
concat
(
input
=
t_a_r_stack
,
axis
=
1
)
r_a_t
=
fluid
.
layers
.
concat
(
input
=
r_a_t_stack
,
axis
=
1
)
r_a_t
=
fluid
.
layers
.
concat
(
input
=
r_a_t_stack
,
axis
=
1
)
# sim shape: [batch_size, 2*(stack_num+
2
), max_turn_len, max_turn_len]
# sim shape: [batch_size, 2*(stack_num+
1
), max_turn_len, max_turn_len]
sim
=
fluid
.
layers
.
matmul
(
sim
=
fluid
.
layers
.
matmul
(
x
=
t_a_r
,
y
=
r_a_t
,
transpose_y
=
True
,
alpha
=
1
/
np
.
sqrt
(
200.0
))
x
=
t_a_r
,
y
=
r_a_t
,
transpose_y
=
True
,
alpha
=
1
/
np
.
sqrt
(
200.0
))
sim_turns
.
append
(
sim
)
sim_turns
.
append
(
sim
)
...
@@ -147,10 +154,9 @@ class Net(object):
...
@@ -147,10 +154,9 @@ class Net(object):
for
index
in
xrange
(
len
(
sim_turns
)):
for
index
in
xrange
(
len
(
sim_turns
)):
sim_turns
[
index
]
=
fluid
.
layers
.
unsqueeze
(
sim_turns
[
index
]
=
fluid
.
layers
.
unsqueeze
(
input
=
sim_turns
[
index
],
axes
=
[
2
])
input
=
sim_turns
[
index
],
axes
=
[
2
])
# sim shape: [batch_size, 2*(stack_num+
2
), max_turn_num, max_turn_len, max_turn_len]
# sim shape: [batch_size, 2*(stack_num+
1
), max_turn_num, max_turn_len, max_turn_len]
sim
=
fluid
.
layers
.
concat
(
input
=
sim_turns
,
axis
=
2
)
sim
=
fluid
.
layers
.
concat
(
input
=
sim_turns
,
axis
=
2
)
# for douban
final_info
=
layers
.
cnn_3d
(
sim
,
self
.
_channel1_num
,
self
.
_channel2_num
)
final_info
=
layers
.
cnn_3d
(
sim
,
32
,
16
)
loss
,
logits
=
layers
.
loss
(
final_info
,
label
)
loss
,
logits
=
layers
.
loss
(
final_info
,
label
)
return
loss
,
logits
return
loss
,
logits
fluid/deep_attention_matching_net/test_and_evaluate.py
浏览文件 @
772fd131
...
@@ -88,6 +88,16 @@ def parse_args():
...
@@ -88,6 +88,16 @@ def parse_args():
type
=
int
,
type
=
int
,
default
=
5
,
default
=
5
,
help
=
'The number of stacked attentive modules in network.'
)
help
=
'The number of stacked attentive modules in network.'
)
parser
.
add_argument
(
'--channel1_num'
,
type
=
int
,
default
=
32
,
help
=
"The channels' number of the 1st conv3d layer's output."
)
parser
.
add_argument
(
'--channel2_num'
,
type
=
int
,
default
=
16
,
help
=
"The channels' number of the 2nd conv3d layer's output."
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
return
args
return
args
...
@@ -109,7 +119,8 @@ def test(args):
...
@@ -109,7 +119,8 @@ def test(args):
}
}
dam
=
Net
(
args
.
max_turn_num
,
args
.
max_turn_len
,
args
.
vocab_size
,
dam
=
Net
(
args
.
max_turn_num
,
args
.
max_turn_len
,
args
.
vocab_size
,
args
.
emb_size
,
args
.
stack_num
)
args
.
emb_size
,
args
.
stack_num
,
args
.
channel1_num
,
args
.
channel2_num
)
loss
,
logits
=
dam
.
create_network
()
loss
,
logits
=
dam
.
create_network
()
loss
.
persistable
=
True
loss
.
persistable
=
True
...
...
fluid/deep_attention_matching_net/train_and_evaluate.py
浏览文件 @
772fd131
...
@@ -83,6 +83,16 @@ def parse_args():
...
@@ -83,6 +83,16 @@ def parse_args():
type
=
int
,
type
=
int
,
default
=
5
,
default
=
5
,
help
=
'The number of stacked attentive modules in network.'
)
help
=
'The number of stacked attentive modules in network.'
)
parser
.
add_argument
(
'--channel1_num'
,
type
=
int
,
default
=
32
,
help
=
"The channels' number of the 1st conv3d layer's output."
)
parser
.
add_argument
(
'--channel2_num'
,
type
=
int
,
default
=
16
,
help
=
"The channels' number of the 2nd conv3d layer's output."
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
return
args
return
args
...
@@ -100,7 +110,8 @@ def train(args):
...
@@ -100,7 +110,8 @@ def train(args):
}
}
dam
=
Net
(
args
.
max_turn_num
,
args
.
max_turn_len
,
args
.
vocab_size
,
dam
=
Net
(
args
.
max_turn_num
,
args
.
max_turn_len
,
args
.
vocab_size
,
args
.
emb_size
,
args
.
stack_num
)
args
.
emb_size
,
args
.
stack_num
,
args
.
channel1_num
,
args
.
channel2_num
)
loss
,
logits
=
dam
.
create_network
()
loss
,
logits
=
dam
.
create_network
()
loss
.
persistable
=
True
loss
.
persistable
=
True
...
@@ -131,6 +142,9 @@ def train(args):
...
@@ -131,6 +142,9 @@ def train(args):
dev_count
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
dev_count
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
print
(
"device count %d"
%
dev_count
)
print
(
"device count %d"
%
dev_count
)
print
(
"theoretical memory usage: "
)
print
(
fluid
.
contrib
.
memory_usage
(
program
=
train_program
,
batch_size
=
args
.
batch_size
))
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
exe
.
run
(
fluid
.
default_startup_program
())
...
@@ -152,7 +166,8 @@ def train(args):
...
@@ -152,7 +166,8 @@ def train(args):
print
(
"start loading word embedding init ..."
)
print
(
"start loading word embedding init ..."
)
word_emb
=
np
.
array
(
pickle
.
load
(
open
(
args
.
word_emb_init
,
'rb'
))).
astype
(
word_emb
=
np
.
array
(
pickle
.
load
(
open
(
args
.
word_emb_init
,
'rb'
))).
astype
(
'float32'
)
'float32'
)
print
(
"finish loading word embedding init ..."
)
dam
.
set_word_embedding
(
word_emb
,
place
)
print
(
"finish init word embedding ..."
)
print
(
"start loading data ..."
)
print
(
"start loading data ..."
)
train_data
,
val_data
,
test_data
=
pickle
.
load
(
open
(
args
.
data_path
,
'rb'
))
train_data
,
val_data
,
test_data
=
pickle
.
load
(
open
(
args
.
data_path
,
'rb'
))
...
@@ -166,8 +181,6 @@ def train(args):
...
@@ -166,8 +181,6 @@ def train(args):
print_step
=
max
(
1
,
batch_num
/
(
dev_count
*
100
))
print_step
=
max
(
1
,
batch_num
/
(
dev_count
*
100
))
save_step
=
max
(
1
,
batch_num
/
(
dev_count
*
10
))
save_step
=
max
(
1
,
batch_num
/
(
dev_count
*
10
))
word_emb_inited
=
False
print
(
"begin model training ..."
)
print
(
"begin model training ..."
)
print
(
time
.
strftime
(
'%Y-%m-%d %H:%M:%S'
,
time
.
localtime
(
time
.
time
())))
print
(
time
.
strftime
(
'%Y-%m-%d %H:%M:%S'
,
time
.
localtime
(
time
.
time
())))
...
@@ -182,12 +195,8 @@ def train(args):
...
@@ -182,12 +195,8 @@ def train(args):
for
dev
in
xrange
(
dev_count
):
for
dev
in
xrange
(
dev_count
):
index
=
it
*
dev_count
+
dev
index
=
it
*
dev_count
+
dev
feed_dict
=
reader
.
make_one_batch_input
(
train_batches
,
index
)
feed_dict
=
reader
.
make_one_batch_input
(
train_batches
,
index
)
if
word_emb_inited
is
False
and
args
.
word_emb_init
is
not
None
:
feed_dict
[
dam
.
word_emb_name
]
=
word_emb
feed_list
.
append
(
feed_dict
)
feed_list
.
append
(
feed_dict
)
word_emb_inited
=
True
cost
=
train_exe
.
run
(
feed
=
feed_list
,
fetch_list
=
[
loss
.
name
])
cost
=
train_exe
.
run
(
feed
=
feed_list
,
fetch_list
=
[
loss
.
name
])
ave_cost
+=
np
.
array
(
cost
[
0
]).
mean
()
ave_cost
+=
np
.
array
(
cost
[
0
]).
mean
()
...
...
fluid/deep_attention_matching_net/ubuntu/test.sh
浏览文件 @
772fd131
export
CUDA_VISIBLE_DEVICES
=
0
,1,2,3
export
CUDA_VISIBLE_DEVICES
=
0
python
-u
../test_and_evaluate.py
--use_cuda
\
python
-u
../test_and_evaluate.py
--use_cuda
\
--data_path
./data/data.pkl
\
--data_path
./data/data.pkl
\
--save_path
./
\
--save_path
./
step_3900
\
--model_path
models/step_100
00
\
--model_path
./models/step_39
00
\
--batch_size
1
00
\
--batch_size
2
00
\
--vocab_size
434512
\
--vocab_size
434512
\
--emb_size
200
\
--emb_size
200
\
--_EOS_
28270
--_EOS_
28270
...
...
fluid/deep_attention_matching_net/ubuntu/train.sh
浏览文件 @
772fd131
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
CUDA_VISIBLE_DEVICES
=
0
export
FLAGS_eager_delete_tensor_gb
=
0.0
python
-u
../train_and_evaluate.py
--use_cuda
\
python
-u
../train_and_evaluate.py
--use_cuda
\
--data_path
./data/data.pkl
\
--data_path
./data/data.pkl
\
--word_emb_init
./data/word_embedding.pkl
\
--word_emb_init
./data/word_embedding.pkl
\
--save_path
./models
\
--save_path
./models
\
--batch_size
100
\
--batch_size
256
\
--vocab_size
434512
\
--vocab_size
434512
\
--emb_size
200
\
--emb_size
200
\
--_EOS_
28270
--_EOS_
28270
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录