From 6e00122c646b4c5b3bc9655941963fb152257cf0 Mon Sep 17 00:00:00 2001 From: leiqing <54695910+leiqing1@users.noreply.github.com> Date: Tue, 22 Nov 2022 22:06:40 +0800 Subject: [PATCH] Add (#5651) * Add Liteseg deployment using FastDeploy * Update fastdeploy_cn.md * Update fastdeploy_en.md * Update fastdeploy_en.md --- modelcenter/PP-LiteSeg/fastdeploy_cn.md | 43 ++++++++++++++++++++++++ modelcenter/PP-LiteSeg/fastdeploy_en.md | 44 +++++++++++++++++++++++++ 2 files changed, 87 insertions(+) create mode 100644 modelcenter/PP-LiteSeg/fastdeploy_cn.md create mode 100644 modelcenter/PP-LiteSeg/fastdeploy_en.md diff --git a/modelcenter/PP-LiteSeg/fastdeploy_cn.md b/modelcenter/PP-LiteSeg/fastdeploy_cn.md new file mode 100644 index 00000000..7753dd72 --- /dev/null +++ b/modelcenter/PP-LiteSeg/fastdeploy_cn.md @@ -0,0 +1,43 @@ +## 0. 全场景高性能AI推理部署工具 FastDeploy +FastDeploy 是一款**全场景、易用灵活、极致高效**的AI推理部署工具。提供开箱即用的**云边端**部署体验, 支持超过 150+ Text, Vision, Speech和跨模态模型,实现了AI模型**端到端的优化加速**。目前支持的硬件包括 **X86 CPU、NVIDIA GPU、ARM CPU、XPU、NPU、IPU**等10类云边端的硬件,通过一行代码切换不同推理后端和硬件。 + +使用 FastDeploy 3步即可搞定AI模型部署:(1)安装FastDeploy预编译包(2)调用FastDeploy的API实现部署代码 (3)推理部署。 + +**注** : 本文档下载 FastDeploy 示例来完成高性能部署体验;仅展示X86 CPU、NVIDIA GPU的推理,且默认已经准备好GPU环境(如 CUDA >= 11.2等),如需要部署其他硬件或者完整了解 FastDeploy 部署能力,请参考 [FastDeploy的GitHub仓库](https://github.com/PaddlePaddle/FastDeploy) + + +## 1. 安装FastDeploy预编译包 +``` +pip install fastdeploy-gpu-python==0.0.0 -f https://www.paddlepaddle.org.cn/whl/fastdeploy_nightly_build.html +``` +## 2. 运行部署示例 +``` +#下载部署示例代码 +git clone https://github.com/PaddlePaddle/FastDeploy.git +cd FastDeploy/examples/vision/segmentation/paddleseg/python + +# 下载LiteSeg模型文件和测试图片 +wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz +tar -xvf PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz +wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png + +# CPU推理 +python infer.py --model PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu +# GPU推理 +python infer.py --model PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu +# GPU上使用TensorRT推理 (注意:TensorRT推理第一次运行,有序列化模型的操作,有一定耗时,需要耐心等待) +python infer.py --model PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True +``` +运行完成可视化结果如下图所示: + +原始图像: + +
+ +
+ +分割后的图: +
+ +
+ diff --git a/modelcenter/PP-LiteSeg/fastdeploy_en.md b/modelcenter/PP-LiteSeg/fastdeploy_en.md new file mode 100644 index 00000000..6f687888 --- /dev/null +++ b/modelcenter/PP-LiteSeg/fastdeploy_en.md @@ -0,0 +1,44 @@ +## 0. FastDeploy + +FastDeploy is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with out-of-the-box and unified experience, end-to-end optimization for over 150+ Text, Vision, Speech and Cross-modal AI models. FastDeploy Supports AI model deployment on +**X86 CPU、NVIDIA GPU、ARM CPU、XPU、NPU、IPU** etc. You can switch different inference backends and hardware with a single line of code. + +Deploying AI model in 3 steps with FastDeploy: (1)Install FastDeploy SDK; (2)Use FastDeploy's API to implement the deployment code; (3) Deploy. + +**Notes** : This document downloads FastDeploy examples to complete the high performance deployment experience; only X86 CPUs, NVIDIA GPUs are shown for reasoning and GPU environments are ready by default (e.g. CUDA >= 11.2, etc.), if you need to deploy AI model on other hardware or learn about FastDeploy's full capabilities, please refer to [FastDeploy GitHub](https://github.com/PaddlePaddle/FastDeploy). + +## 1. Install FastDeploy SDK +``` +pip install fastdeploy-gpu-python==0.0.0 -f https://www.paddlepaddle.org.cn/whl/fastdeploy_nightly_build.html +``` +## 2. Run Deployment Example +``` +# Download Deployment Example +git clone https://github.com/PaddlePaddle/FastDeploy.git +cd FastDeploy/examples/vision/segmentation/paddleseg/python + +# Download LiteSeg Model and Test Image +wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz +tar -xvf PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer.tgz +wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png + +# CPU deployment +python infer.py --model PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer --image cityscapes_demo.png --device cpu +# GPU deployment +python infer.py --model PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu +# TensorRT inference on GPU (note: if you run TensorRT inference the first time, there is a serialization of the model, which is time-consuming and requires patience) +python infer.py --model PP_LiteSeg_T_STDC1_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True +``` +The results of the completed visualisation are shown below: + +Test Image: + +
+ +
+ +The Result after segmentation: +
+ +
+ -- GitLab