diff --git a/fluid/text_matching_on_quora/README.md b/fluid/text_matching_on_quora/README.md index 035d9ba22968bd4cb30087212ccaac7024ec8c12..768de3b3955e7d53ac4bd7ab1e305acab947f757 100644 --- a/fluid/text_matching_on_quora/README.md +++ b/fluid/text_matching_on_quora/README.md @@ -114,12 +114,12 @@ All configurations used in our experiments are as follows: |cdssmNet|cdssm_base|python train_and_evaluate.py --model_name=cdssmNet --config=cdssm_base |DecAttNet|decatt_glove|python train_and_evaluate.py --model_name=DecAttNet --config=decatt_glove |InferSentNet|infer_sent_v1|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1 -|InferSentNet|infer_sent_v2|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v1 +|InferSentNet|infer_sent_v2|python train_and_evaluate.py --model_name=InferSentNet --config=infer_sent_v2 |SSENet|sse_base|python train_and_evaluate.py --model_name=SSENet --config=sse_base ## Models -We implemeted 4 models for now: the convolutional deep-structured semantic model (CDSSM, CNN-based), the ___Infer Sent Model___ (RNN-based), the shortcut-stacked encoder (SSE, RNN-based), and the decomposed attention model (DecAtt, attention-based). +We implemeted 4 models for now: the convolutional deep-structured semantic model (CDSSM, CNN-based), the InferSent model (RNN-based), the shortcut-stacked encoder (SSE, RNN-based), and the decomposed attention model (DecAtt, attention-based). |Model|features|Context Encoder|Match Layer|Classification Layer |:----:|:----:|:----:|:----:|:----:| @@ -176,8 +176,6 @@ We implemeted 4 models for now: the convolutional deep-structured semantic model ## Results -In our experiment, we found that LSTM-based models outperformed convolution-based models. The DecAtt model has fewer parameters than LSTM-based models, but is sensitive to hyper-parameters. - |Model|Config|dev accuracy| test accuracy |:----:|:----:|:----:|:----:| |cdssmNet|cdssm_base|83.56%|82.83%| @@ -185,8 +183,9 @@ In our experiment, we found that LSTM-based models outperformed convolution-base |InferSentNet|infer_sent_v1|87.15%|86.62%| |InferSentNet|infer_sent_v2|88.55%|88.43%| |SSENet|sse_base|88.35%|88.25%| - - + +In our experiment, we found that LSTM-based models outperformed convolution-based models. The DecAtt model has fewer parameters than LSTM-based models, but is sensitive to hyper-parameters. +

test_acc