From 6d290cecf1ddced128eedc7842161d229286a953 Mon Sep 17 00:00:00 2001 From: Yibing Liu Date: Wed, 7 Feb 2018 09:30:28 +0000 Subject: [PATCH] Add the demo script for inference --- fluid/DeepASR/infer.py | 111 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 111 insertions(+) create mode 100644 fluid/DeepASR/infer.py diff --git a/fluid/DeepASR/infer.py b/fluid/DeepASR/infer.py new file mode 100644 index 00000000..74ac6311 --- /dev/null +++ b/fluid/DeepASR/infer.py @@ -0,0 +1,111 @@ +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import argparse +import paddle.v2.fluid as fluid +import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm +import data_utils.augmentor.trans_add_delta as trans_add_delta +import data_utils.augmentor.trans_splice as trans_splice +import data_utils.data_reader as reader +from data_utils.util import lodtensor_to_ndarray + + +def parse_args(): + parser = argparse.ArgumentParser("Inference for stacked LSTMP model.") + parser.add_argument( + '--batch_size', + type=int, + default=32, + help='The sequence number of a batch data. (default: %(default)d)') + parser.add_argument( + '--device', + type=str, + default='GPU', + choices=['CPU', 'GPU'], + help='The device type. (default: %(default)s)') + parser.add_argument( + '--mean_var', + type=str, + default='data/global_mean_var_search26kHr', + help='mean var path') + parser.add_argument( + '--infer_feature_lst', + type=str, + default='data/infer_feature.lst', + help='feature list path for inference.') + parser.add_argument( + '--infer_label_lst', + type=str, + default='data/infer_label.lst', + help='label list path for inference.') + parser.add_argument( + '--model_save_path', + type=str, + default='./checkpoints/deep_asr.pass_0.model/', + help='directory to save model.') + args = parser.parse_args() + return args + + +def print_arguments(args): + print('----------- Configuration Arguments -----------') + for arg, value in sorted(vars(args).iteritems()): + print('%s: %s' % (arg, value)) + print('------------------------------------------------') + + +def split_infer_result(infer_seq, lod): + infer_batch = [] + for i in xrange(0, len(lod[0]) - 1): + infer_batch.append(infer_seq[lod[0][i]:lod[0][i + 1]]) + return infer_batch + + +def infer(args): + """ Get one batch of feature data and predicts labels for each sample. + """ + + if args.model_save_path is None or \ + not os.path.exists(args.model_save_path): + raise IOError("Invalid model path!") + + place = fluid.CUDAPlace(0) if args.device == 'GPU' else fluid.CPUPlace() + exe = fluid.Executor(place) + + [infer_program, feed_dicts, + fetch_targets] = fluid.io.load_inference_model(args.model_save_path, exe) + + ltrans = [ + trans_add_delta.TransAddDelta(2, 2), + trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var), + trans_splice.TransSplice() + ] + + infer_data_reader = reader.DataReader(args.infer_feature_lst, + args.infer_label_lst) + infer_data_reader.set_transformers(ltrans) + + feature_t = fluid.LoDTensor() + one_batch = infer_data_reader.batch_iterator(args.batch_size, 1).next() + (features, labels, lod) = one_batch + feature_t.set(features, place) + feature_t.set_lod([lod]) + + results = exe.run(infer_program, + feed={feed_dicts[0]: feature_t}, + fetch_list=fetch_targets, + return_numpy=False) + + probs, lod = lodtensor_to_ndarray(results[0]) + preds = probs.argmax(axis=1) + infer_batch = split_infer_result(preds, lod) + for index, sample in enumerate(infer_batch): + print("result %d: " % index, sample, '\n') + + +if __name__ == '__main__': + args = parse_args() + print_arguments(args) + infer(args) -- GitLab