提交 6b77aa91 编写于 作者: T tink2123 提交者: dengkaipeng

update readme

上级 59f2bddb
...@@ -19,14 +19,14 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.1.0 and la ...@@ -19,14 +19,14 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.1.0 and la
[YOLOv3](https://arxiv.org/abs/1804.02767) is a one stage end to end detector。the detection principle of YOLOv3 is as follow: [YOLOv3](https://arxiv.org/abs/1804.02767) is a one stage end to end detector。the detection principle of YOLOv3 is as follow:
<p align="center"> <p align="center">
<img src"image/YOLOv3.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3.jpg" height=400 width=400 hspace='10'/> <br />
YOLOv3 detection principle YOLOv3 detection principle
</p> </p>
YOLOv3 divides the input image in to S\*S grids and predict B bounding boxes in each grid, predictions of boxes include Location(x, y, w, h), Confidence Score and probabilities of C classes, therefore YOLOv3 output layer has S\*S\*B\*(5 + C) channels. YOLOv3 loss consist of three parts: location loss, IoU loss and classification loss. YOLOv3 divides the input image in to S\*S grids and predict B bounding boxes in each grid, predictions of boxes include Location(x, y, w, h), Confidence Score and probabilities of C classes, therefore YOLOv3 output layer has S\*S\*B\*(5 + C) channels. YOLOv3 loss consist of three parts: location loss, IoU loss and classification loss.
The bone network of YOLOv3 is darknet53, the structure of YOLOv3 is as follow: The bone network of YOLOv3 is darknet53, the structure of YOLOv3 is as follow:
<p align="center"> <p align="center">
<img src"image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br />
YOLOv3 structure YOLOv3 structure
</p> </p>
...@@ -134,10 +134,10 @@ Inference is used to get prediction score or image features based on trained mod ...@@ -134,10 +134,10 @@ Inference is used to get prediction score or image features based on trained mod
Visualization of infer result is shown as below: Visualization of infer result is shown as below:
<p align="center"> <p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/> <img src="image/000000000139.png" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <img src="image/000000127517.png" height=300 width=400 hspace='10'/>
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/> <img src="image/000000203864.png" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br /> <img src="image/000000515077.png" height=300 width=400 hspace='10'/> <br />
YOLOv3 Visualization Examples YOLOv3 Visualization Examples
</p> </p>
...@@ -19,7 +19,7 @@ ...@@ -19,7 +19,7 @@
[YOLOv3](https://arxiv.org/abs/1804.02767) 是一阶段End2End的目标检测器。其目标检测原理如下图所示: [YOLOv3](https://arxiv.org/abs/1804.02767) 是一阶段End2End的目标检测器。其目标检测原理如下图所示:
<p align="center"> <p align="center">
<img src"image/YOLOv3.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3.jpg" height=400 width=400 hspace='10'/> <br />
YOLOv3检测原理 YOLOv3检测原理
</p> </p>
...@@ -27,7 +27,7 @@ YOLOv3将输入图像分成S\*S个格子,每个格子预测B个bounding box, ...@@ -27,7 +27,7 @@ YOLOv3将输入图像分成S\*S个格子,每个格子预测B个bounding box,
YOLOv3的网络结构如下图所示: YOLOv3的网络结构如下图所示:
<p align="center"> <p align="center">
<img src"image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br /> <img src="image/YOLOv3_structure.jpg" height=400 width=400 hspace='10'/> <br />
YOLOv3网络结构 YOLOv3网络结构
</p> </p>
...@@ -131,10 +131,10 @@ YOLOv3 ...@@ -131,10 +131,10 @@ YOLOv3
下图为模型可视化预测结果: 下图为模型可视化预测结果:
<p align="center"> <p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/> <img src="image/000000000139.png" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <img src="image/000000127517.png" height=300 width=400 hspace='10'/>
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/> <img src="image/000000203864.png" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br /> <img src="image/000000515077.png" height=300 width=400 hspace='10'/> <br />
YOLOv3 预测可视化 YOLOv3 预测可视化
</p> </p>
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册