未验证 提交 6a69dd8b 编写于 作者: Z zhengya01 提交者: GitHub

Merge pull request #13 from PaddlePaddle/develop

update
paddle/operators/check_t.save
paddle/operators/check_tensor.ls
paddle/operators/tensor.save
python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
*.DS_Store
*.vs
build/
build_doc/
*.user
.vscode
.idea
.project
.cproject
.pydevproject
.settings/
*.pyc
CMakeSettings.json
Makefile
.test_env/
third_party/
*~
bazel-*
third_party/
build_*
# clion workspace.
cmake-build-*
model_test
\ No newline at end of file
......@@ -26,7 +26,8 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化
[SE-ResNeXt](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/image_classification/models)|图像分类模型|ResNeXt中加入了SE block,提高了模型准确率|[Squeeze-and-excitation networks](https://arxiv.org/abs/1709.01507)
[SSD](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/object_detection/README_cn.md)|单阶段目标检测器|在不同尺度的特征图上检测对应尺度的目标,可以方便地插入到任何一种标准卷积网络中|[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325)
[Face Detector: PyramidBox](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/face_detection/README_cn.md)|基于SSD的单阶段人脸检测器|利用上下文信息解决困难人脸的检测问题,网络表达能力高,鲁棒性强|[PyramidBox: A Context-assisted Single Shot Face Detector](https://arxiv.org/pdf/1803.07737.pdf)
[Faster RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/faster_rcnn/README_cn.md)|典型的两阶段目标检测器|创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高|[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497)
[Faster RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn/README_cn.md)|典型的两阶段目标检测器|创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高|[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497)
[Mask RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn/README_cn.md)|基于Faster RCNN模型的经典实例分割模型|在原有Faster RCNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕。|[Mask R-CNN](https://arxiv.org/abs/1703.06870)
[ICNet](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/icnet)|图像实时语义分割模型|即考虑了速度,也考虑了准确性,在高分辨率图像的准确性和低复杂度网络的效率之间获得平衡|[ICNet for Real-Time Semantic Segmentation on High-Resolution Images](https://arxiv.org/abs/1704.08545)
[DCGAN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/gan/c_gan)|图像生成模型|深度卷积生成对抗网络,将GAN和卷积网络结合起来,以解决GAN训练不稳定的问题|[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/pdf/1511.06434.pdf)
[ConditionalGAN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/gan/c_gan)|图像生成模型|条件生成对抗网络,一种带条件约束的GAN,使用额外信息对模型增加条件,可以指导数据生成过程|[Conditional Generative Adversarial Nets](https://arxiv.org/abs/1411.1784)
......
# LRC Local Rademachar Complexity Regularization
Regularization of Deep Neural Networks(DNNs) for the sake of improving their generalization capability is important and chllenging. This directory contains image classification model based on a novel regularizer rooted in Local Rademacher Complexity (LRC). We appreciate the contribution by [DARTS](https://arxiv.org/abs/1806.09055) for our research. The regularization by LRC and DARTS are combined in this model on CIFAR-10 dataset. Code accompanying the paper
> [An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity](https://arxiv.org/abs/1902.00873)\
> Yingzhen Yang, Xingjian Li, Jun Huan.\
> _arXiv:1902.00873_.
---
# Table of Contents
- [Installation](#installation)
- [Data preparation](#data-preparation)
- [Training](#training)
## Installation
Running sample code in this directory requires PaddelPaddle Fluid v.1.2.0 and later. If the PaddlePaddle on your device is lower than this version, please follow the instructions in [installation document](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html#paddlepaddle) and make an update.
## Data preparation
When you want to use the cifar-10 dataset for the first time, you can download the dataset as:
sh ./dataset/download.sh
Please make sure your environment has an internet connection.
The dataset will be downloaded to `dataset/cifar/cifar-10-batches-py` in the same directory as the `train.py`. If automatic download fails, you can download cifar-10-python.tar.gz from https://www.cs.toronto.edu/~kriz/cifar.html and decompress it to the location mentioned above.
## Training
After data preparation, one can start the training step by:
python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
- Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to train.
- For more help on arguments:
python train_mixup.py --help
**data reader introduction:**
* Data reader is defined in `reader.py`.
* Reshape the images to 32 * 32.
* In training stage, images are padding to 40 * 40 and cropped randomly to the original size.
* In training stage, images are horizontally random flipped.
* Images are standardized to (0, 1).
* In training stage, cutout images randomly.
* Shuffle the order of the input images during training.
**model configuration:**
* Use auxiliary loss and auxiliary\_weight=0.4.
* Use dropout and drop\_path\_prob=0.2.
* Set lrc\_loss\_lambda=0.7.
**training strategy:**
* Use momentum optimizer with momentum=0.9.
* Weight decay is 0.0003.
* Use cosine decay with init\_lr=0.025.
* Total epoch is 600.
* Use Xaiver initalizer to weight in conv2d, Constant initalizer to weight in batch norm and Normal initalizer to weight in fc.
* Initalize bias in batch norm and fc to zero constant and do not add bias to conv2d.
## Reference
- DARTS: Differentiable Architecture Search [`paper`](https://arxiv.org/abs/1806.09055)
- Differentiable architecture search in PyTorch [`code`](https://github.com/quark0/darts)
# LRC 局部Rademachar复杂度正则化
为了在深度神经网络中提升泛化能力,正则化的选择十分重要也具有挑战性。本目录包括了一种基于局部rademacher复杂度的新型正则(LRC)的图像分类模型。十分感谢[DARTS](https://arxiv.org/abs/1806.09055)模型对本研究提供的帮助。该模型将LRC正则和DARTS网络相结合,在CIFAR-10数据集中得到了很出色的效果。代码和文章一同发布
> [An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity](https://arxiv.org/abs/1902.00873)\
> Yingzhen Yang, Xingjian Li, Jun Huan.\
> _arXiv:1902.00873_.
---
# 内容
- [安装](#安装)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.2.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html#paddlepaddle)中的说明来更新PaddlePaddle。
## 数据准备
第一次使用CIFAR-10数据集时,您可以通过如果命令下载:
sh ./dataset/download.sh
请确保您的环境有互联网连接。数据会下载到`train.py`同目录下的`dataset/cifar/cifar-10-batches-py`。如果下载失败,您可以自行从https://www.cs.toronto.edu/~kriz/cifar.html上下载cifar-10-python.tar.gz并解压到上述位置。
## 模型训练
数据准备好后,可以通过如下命令开始训练:
python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
- 通过设置 ```export CUDA_VISIBLE_DEVICES=0```指定单张GPU训练。
- 可选参数见:
python train_mixup.py --help
**数据读取器说明:**
* 数据读取器定义在`reader.py`
* 输入图像尺寸统一变换为32 * 32
* 训练时将图像填充为40 * 40然后随机剪裁为原输入图像大小
* 训练时图像随机水平翻转
* 对图像每个像素做归一化处理
* 训练时对图像做随机遮挡
* 训练时对输入图像做随机洗牌
**模型配置:**
* 使用辅助损失,辅助损失权重为0.4
* 使用dropout,随机丢弃率为0.2
* 设置lrc\_loss\_lambda为0.7
**训练策略:**
* 采用momentum优化算法训练,momentum=0.9
* 权重衰减系数为0.0001
* 采用正弦学习率衰减,初始学习率为0.025
* 总共训练600轮
* 对卷积权重采用Xaiver初始化,对batch norm权重采用固定初始化,对全连接层权重采用高斯初始化
* 对batch norm和全连接层偏差采用固定初始化,不对卷积设置偏差
## 引用
- DARTS: Differentiable Architecture Search [`论文`](https://arxiv.org/abs/1806.09055)
- Differentiable Architecture Search in PyTorch [`代码`](https://github.com/quark0/darts)
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
cd "$DIR"
mkdir cifar
cd cifar
# Download the data.
echo "Downloading..."
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
# Extract the data.
echo "Extracting..."
tar zvxf cifar-10-python.tar.gz
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
PRIMITIVES = [
'none', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3',
'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5'
]
NASNet = Genotype(
normal=[
('sep_conv_5x5', 1),
('sep_conv_3x3', 0),
('sep_conv_5x5', 0),
('sep_conv_3x3', 0),
('avg_pool_3x3', 1),
('skip_connect', 0),
('avg_pool_3x3', 0),
('avg_pool_3x3', 0),
('sep_conv_3x3', 1),
('skip_connect', 1),
],
normal_concat=[2, 3, 4, 5, 6],
reduce=[
('sep_conv_5x5', 1),
('sep_conv_7x7', 0),
('max_pool_3x3', 1),
('sep_conv_7x7', 0),
('avg_pool_3x3', 1),
('sep_conv_5x5', 0),
('skip_connect', 3),
('avg_pool_3x3', 2),
('sep_conv_3x3', 2),
('max_pool_3x3', 1),
],
reduce_concat=[4, 5, 6], )
AmoebaNet = Genotype(
normal=[
('avg_pool_3x3', 0),
('max_pool_3x3', 1),
('sep_conv_3x3', 0),
('sep_conv_5x5', 2),
('sep_conv_3x3', 0),
('avg_pool_3x3', 3),
('sep_conv_3x3', 1),
('skip_connect', 1),
('skip_connect', 0),
('avg_pool_3x3', 1),
],
normal_concat=[4, 5, 6],
reduce=[
('avg_pool_3x3', 0),
('sep_conv_3x3', 1),
('max_pool_3x3', 0),
('sep_conv_7x7', 2),
('sep_conv_7x7', 0),
('avg_pool_3x3', 1),
('max_pool_3x3', 0),
('max_pool_3x3', 1),
('conv_7x1_1x7', 0),
('sep_conv_3x3', 5),
],
reduce_concat=[3, 4, 6])
DARTS_V1 = Genotype(
normal=[('sep_conv_3x3', 1), ('sep_conv_3x3', 0), ('skip_connect', 0),
('sep_conv_3x3', 1), ('skip_connect', 0), ('sep_conv_3x3', 1),
('sep_conv_3x3', 0), ('skip_connect', 2)],
normal_concat=[2, 3, 4, 5],
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2),
('max_pool_3x3', 0), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('avg_pool_3x3', 0)],
reduce_concat=[2, 3, 4, 5])
DARTS_V2 = Genotype(
normal=[('sep_conv_3x3', 0), ('sep_conv_3x3', 1), ('sep_conv_3x3', 0),
('sep_conv_3x3', 1), ('sep_conv_3x3', 1), ('skip_connect', 0),
('skip_connect', 0), ('dil_conv_3x3', 2)],
normal_concat=[2, 3, 4, 5],
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('skip_connect', 2),
('max_pool_3x3', 1), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('max_pool_3x3', 1)],
reduce_concat=[2, 3, 4, 5])
MY_DARTS = Genotype(
normal=[('sep_conv_3x3', 0), ('skip_connect', 1), ('skip_connect', 0),
('dil_conv_5x5', 1), ('skip_connect', 0), ('sep_conv_3x3', 1),
('skip_connect', 0), ('sep_conv_3x3', 1)],
normal_concat=range(2, 6),
reduce=[('max_pool_3x3', 0), ('max_pool_3x3', 1), ('max_pool_3x3', 0),
('skip_connect', 2), ('max_pool_3x3', 0), ('skip_connect', 2),
('skip_connect', 2), ('skip_connect', 3)],
reduce_concat=range(2, 6))
DARTS = MY_DARTS
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers.ops as ops
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import math
from paddle.fluid.initializer import init_on_cpu
def cosine_decay(learning_rate, num_epoch, steps_one_epoch):
"""Applies cosine decay to the learning rate.
lr = 0.5 * (math.cos(epoch * (math.pi / 120)) + 1)
"""
global_step = _decay_step_counter()
with init_on_cpu():
decayed_lr = learning_rate * \
(ops.cos((global_step / steps_one_epoch) \
* math.pi / num_epoch) + 1)/2
return decayed_lr
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import time
import functools
import paddle
import paddle.fluid as fluid
from operations import *
class Cell():
def __init__(self, genotype, C_prev_prev, C_prev, C, reduction,
reduction_prev):
print(C_prev_prev, C_prev, C)
if reduction_prev:
self.preprocess0 = functools.partial(FactorizedReduce, C_out=C)
else:
self.preprocess0 = functools.partial(
ReLUConvBN, C_out=C, kernel_size=1, stride=1, padding=0)
self.preprocess1 = functools.partial(
ReLUConvBN, C_out=C, kernel_size=1, stride=1, padding=0)
if reduction:
op_names, indices = zip(*genotype.reduce)
concat = genotype.reduce_concat
else:
op_names, indices = zip(*genotype.normal)
concat = genotype.normal_concat
print(op_names, indices, concat, reduction)
self._compile(C, op_names, indices, concat, reduction)
def _compile(self, C, op_names, indices, concat, reduction):
assert len(op_names) == len(indices)
self._steps = len(op_names) // 2
self._concat = concat
self.multiplier = len(concat)
self._ops = []
for name, index in zip(op_names, indices):
stride = 2 if reduction and index < 2 else 1
op = functools.partial(OPS[name], C=C, stride=stride, affine=True)
self._ops += [op]
self._indices = indices
def forward(self, s0, s1, drop_prob, is_train, name):
self.training = is_train
preprocess0_name = name + 'preprocess0.'
preprocess1_name = name + 'preprocess1.'
s0 = self.preprocess0(s0, name=preprocess0_name)
s1 = self.preprocess1(s1, name=preprocess1_name)
out = [s0, s1]
for i in range(self._steps):
h1 = out[self._indices[2 * i]]
h2 = out[self._indices[2 * i + 1]]
op1 = self._ops[2 * i]
op2 = self._ops[2 * i + 1]
h3 = op1(h1, name=name + '_ops.' + str(2 * i) + '.')
h4 = op2(h2, name=name + '_ops.' + str(2 * i + 1) + '.')
if self.training and drop_prob > 0.:
if h3 != h1:
h3 = fluid.layers.dropout(
h3,
drop_prob,
dropout_implementation='upscale_in_train')
if h4 != h2:
h4 = fluid.layers.dropout(
h4,
drop_prob,
dropout_implementation='upscale_in_train')
s = h3 + h4
out += [s]
return fluid.layers.concat([out[i] for i in self._concat], axis=1)
def AuxiliaryHeadCIFAR(input, num_classes, aux_name='auxiliary_head'):
relu_a = fluid.layers.relu(input)
pool_a = fluid.layers.pool2d(relu_a, 5, 'avg', 3)
conv2d_a = fluid.layers.conv2d(
pool_a,
128,
1,
name=aux_name + '.features.2',
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=aux_name + '.features.2.weight'),
bias_attr=False)
bn_a_name = aux_name + '.features.3'
bn_a = fluid.layers.batch_norm(
conv2d_a,
act='relu',
name=bn_a_name,
param_attr=ParamAttr(
initializer=Constant(1.), name=bn_a_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=bn_a_name + '.bias'),
moving_mean_name=bn_a_name + '.running_mean',
moving_variance_name=bn_a_name + '.running_var')
conv2d_b = fluid.layers.conv2d(
bn_a,
768,
2,
name=aux_name + '.features.5',
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=aux_name + '.features.5.weight'),
bias_attr=False)
bn_b_name = aux_name + '.features.6'
bn_b = fluid.layers.batch_norm(
conv2d_b,
act='relu',
name=bn_b_name,
param_attr=ParamAttr(
initializer=Constant(1.), name=bn_b_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=bn_b_name + '.bias'),
moving_mean_name=bn_b_name + '.running_mean',
moving_variance_name=bn_b_name + '.running_var')
fc_name = aux_name + '.classifier'
fc = fluid.layers.fc(bn_b,
num_classes,
name=fc_name,
param_attr=ParamAttr(
initializer=Normal(scale=1e-3),
name=fc_name + '.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=fc_name + '.bias'))
return fc
def StemConv(input, C_out, kernel_size, padding):
conv_a = fluid.layers.conv2d(
input,
C_out,
kernel_size,
padding=padding,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0), name='stem.0.weight'),
bias_attr=False)
bn_a = fluid.layers.batch_norm(
conv_a,
param_attr=ParamAttr(
initializer=Constant(1.), name='stem.1.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name='stem.1.bias'),
moving_mean_name='stem.1.running_mean',
moving_variance_name='stem.1.running_var')
return bn_a
class NetworkCIFAR(object):
def __init__(self, C, class_num, layers, auxiliary, genotype):
self.class_num = class_num
self._layers = layers
self._auxiliary = auxiliary
stem_multiplier = 3
self.drop_path_prob = 0
C_curr = stem_multiplier * C
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = []
reduction_prev = False
for i in range(layers):
if i in [layers // 3, 2 * layers // 3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction,
reduction_prev)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr
if i == 2 * layers // 3:
C_to_auxiliary = C_prev
def forward(self, init_channel, is_train):
self.training = is_train
self.logits_aux = None
num_channel = init_channel * 3
s0 = StemConv(self.image, num_channel, kernel_size=3, padding=1)
s1 = s0
for i, cell in enumerate(self.cells):
name = 'cells.' + str(i) + '.'
s0, s1 = s1, cell.forward(s0, s1, self.drop_path_prob, is_train,
name)
if i == int(2 * self._layers // 3):
if self._auxiliary and self.training:
self.logits_aux = AuxiliaryHeadCIFAR(s1, self.class_num)
out = fluid.layers.adaptive_pool2d(s1, (1, 1), "avg")
self.logits = fluid.layers.fc(out,
size=self.class_num,
param_attr=ParamAttr(
initializer=Normal(scale=1e-3),
name='classifier.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
name='classifier.bias'))
return self.logits, self.logits_aux
def build_input(self, image_shape, batch_size, is_train):
if is_train:
py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 1], [-1, 1], [-1, 1], [-1, 1],
[-1, 1], [-1, batch_size, self.class_num - 1]],
lod_levels=[0, 0, 0, 0, 0, 0, 0],
dtypes=[
"float32", "int64", "int64", "float32", "int32", "int32",
"float32"
],
use_double_buffer=True,
name='train_reader')
else:
py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 1]],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
use_double_buffer=True,
name='test_reader')
return py_reader
def train_model(self, py_reader, init_channels, aux, aux_w, batch_size,
loss_lambda):
self.image, self.ya, self.yb, self.lam, self.label_reshape,\
self.non_label_reshape, self.rad_var = fluid.layers.read_file(py_reader)
self.logits, self.logits_aux = self.forward(init_channels, True)
self.mixup_loss = self.mixup_loss(aux, aux_w)
self.lrc_loss = self.lrc_loss(batch_size)
return self.mixup_loss + loss_lambda * self.lrc_loss
def test_model(self, py_reader, init_channels):
self.image, self.ya = fluid.layers.read_file(py_reader)
self.logits, _ = self.forward(init_channels, False)
prob = fluid.layers.softmax(self.logits, use_cudnn=False)
loss = fluid.layers.cross_entropy(prob, self.ya)
acc_1 = fluid.layers.accuracy(self.logits, self.ya, k=1)
acc_5 = fluid.layers.accuracy(self.logits, self.ya, k=5)
return loss, acc_1, acc_5
def mixup_loss(self, auxiliary, auxiliary_weight):
prob = fluid.layers.softmax(self.logits, use_cudnn=False)
loss_a = fluid.layers.cross_entropy(prob, self.ya)
loss_b = fluid.layers.cross_entropy(prob, self.yb)
loss_a_mean = fluid.layers.reduce_mean(loss_a)
loss_b_mean = fluid.layers.reduce_mean(loss_b)
loss = self.lam * loss_a_mean + (1 - self.lam) * loss_b_mean
if auxiliary:
prob_aux = fluid.layers.softmax(self.logits_aux, use_cudnn=False)
loss_a_aux = fluid.layers.cross_entropy(prob_aux, self.ya)
loss_b_aux = fluid.layers.cross_entropy(prob_aux, self.yb)
loss_a_aux_mean = fluid.layers.reduce_mean(loss_a_aux)
loss_b_aux_mean = fluid.layers.reduce_mean(loss_b_aux)
loss_aux = self.lam * loss_a_aux_mean + (1 - self.lam
) * loss_b_aux_mean
return loss + auxiliary_weight * loss_aux
def lrc_loss(self, batch_size):
y_diff_reshape = fluid.layers.reshape(self.logits, shape=(-1, 1))
label_reshape = fluid.layers.squeeze(self.label_reshape, axes=[1])
non_label_reshape = fluid.layers.squeeze(
self.non_label_reshape, axes=[1])
label_reshape.stop_gradient = True
non_label_reshape.stop_graident = True
y_diff_label_reshape = fluid.layers.gather(y_diff_reshape,
label_reshape)
y_diff_non_label_reshape = fluid.layers.gather(y_diff_reshape,
non_label_reshape)
y_diff_label = fluid.layers.reshape(
y_diff_label_reshape, shape=(-1, batch_size, 1))
y_diff_non_label = fluid.layers.reshape(
y_diff_non_label_reshape,
shape=(-1, batch_size, self.class_num - 1))
y_diff_ = y_diff_non_label - y_diff_label
y_diff_ = fluid.layers.transpose(y_diff_, perm=[1, 2, 0])
rad_var_trans = fluid.layers.transpose(self.rad_var, perm=[1, 2, 0])
rad_y_diff_trans = rad_var_trans * y_diff_
lrc_loss_sum = fluid.layers.reduce_sum(rad_y_diff_trans, dim=[0, 1])
lrc_loss_ = fluid.layers.abs(lrc_loss_sum) / (batch_size *
(self.class_num - 1))
lrc_loss_mean = fluid.layers.reduce_mean(lrc_loss_)
return lrc_loss_mean
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
import time
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Xavier
from paddle.fluid.initializer import Normal
from paddle.fluid.initializer import Constant
OPS = {
'none' : lambda input, C, stride, name, affine: Zero(input, stride, name),
'avg_pool_3x3' : lambda input, C, stride, name, affine: fluid.layers.pool2d(input, 3, 'avg', pool_stride=stride, pool_padding=1, name=name),
'max_pool_3x3' : lambda input, C, stride, name, affine: fluid.layers.pool2d(input, 3, 'max', pool_stride=stride, pool_padding=1, name=name),
'skip_connect' : lambda input,C, stride, name, affine: Identity(input, name) if stride == 1 else FactorizedReduce(input, C, name=name, affine=affine),
'sep_conv_3x3' : lambda input,C, stride, name, affine: SepConv(input, C, C, 3, stride, 1, name=name, affine=affine),
'sep_conv_5x5' : lambda input,C, stride, name, affine: SepConv(input, C, C, 5, stride, 2, name=name, affine=affine),
'sep_conv_7x7' : lambda input,C, stride, name, affine: SepConv(input, C, C, 7, stride, 3, name=name, affine=affine),
'dil_conv_3x3' : lambda input,C, stride, name, affine: DilConv(input, C, C, 3, stride, 2, 2, name=name, affine=affine),
'dil_conv_5x5' : lambda input,C, stride, name, affine: DilConv(input, C, C, 5, stride, 4, 2, name=name, affine=affine),
'conv_7x1_1x7' : lambda input,C, stride, name, affine: SevenConv(input, C, name=name, affine=affine)
}
def ReLUConvBN(input, C_out, kernel_size, stride, padding, name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out,
kernel_size,
stride,
padding,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False)
if affine:
reluconvbn_out = fluid.layers.batch_norm(
conv2d_a,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.2.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.2.bias'),
moving_mean_name=name + 'op.2.running_mean',
moving_variance_name=name + 'op.2.running_var')
else:
reluconvbn_out = fluid.layers.batch_norm(
conv2d_a,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.2.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.2.bias'),
moving_mean_name=name + 'op.2.running_mean',
moving_variance_name=name + 'op.2.running_var')
return reluconvbn_out
def DilConv(input,
C_in,
C_out,
kernel_size,
stride,
padding,
dilation,
name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_in,
kernel_size,
stride,
padding,
dilation,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_out,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
dilconv_out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
dilconv_out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
return dilconv_out
def SepConv(input,
C_in,
C_out,
kernel_size,
stride,
padding,
name='',
affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_in,
kernel_size,
stride,
padding,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_in,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
bn_a = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
bn_a = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
relu_b = fluid.layers.relu(bn_a)
conv2d_d = fluid.layers.conv2d(
relu_b,
C_in,
kernel_size,
1,
padding,
groups=C_in,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.5.weight'),
bias_attr=False,
use_cudnn=False)
conv2d_e = fluid.layers.conv2d(
conv2d_d,
C_out,
1,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.6.weight'),
bias_attr=False)
if affine:
sepconv_out = fluid.layers.batch_norm(
conv2d_e,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.7.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.7.bias'),
moving_mean_name=name + 'op.7.running_mean',
moving_variance_name=name + 'op.7.running_var')
else:
sepconv_out = fluid.layers.batch_norm(
conv2d_e,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.7.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.7.bias'),
moving_mean_name=name + 'op.7.running_mean',
moving_variance_name=name + 'op.7.running_var')
return sepconv_out
def SevenConv(input, C_out, stride, name='', affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out, (1, 7), (1, stride), (0, 3),
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.1.weight'),
bias_attr=False)
conv2d_b = fluid.layers.conv2d(
conv2d_a,
C_out, (7, 1), (stride, 1), (3, 0),
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'op.2.weight'),
bias_attr=False)
if affine:
out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
else:
out = fluid.layers.batch_norm(
conv2d_b,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'op.3.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'op.3.bias'),
moving_mean_name=name + 'op.3.running_mean',
moving_variance_name=name + 'op.3.running_var')
def Identity(input, name=''):
return input
def Zero(input, stride, name=''):
ones = np.ones(input.shape[-2:])
ones[::stride, ::stride] = 0
ones = fluid.layers.assign(ones)
return input * ones
def FactorizedReduce(input, C_out, name='', affine=True):
relu_a = fluid.layers.relu(input)
conv2d_a = fluid.layers.conv2d(
relu_a,
C_out // 2,
1,
2,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'conv_1.weight'),
bias_attr=False)
h_end = relu_a.shape[2]
w_end = relu_a.shape[3]
slice_a = fluid.layers.slice(relu_a, [2, 3], [1, 1], [h_end, w_end])
conv2d_b = fluid.layers.conv2d(
slice_a,
C_out // 2,
1,
2,
param_attr=ParamAttr(
initializer=Xavier(
uniform=False, fan_in=0),
name=name + 'conv_2.weight'),
bias_attr=False)
out = fluid.layers.concat([conv2d_a, conv2d_b], axis=1)
if affine:
out = fluid.layers.batch_norm(
out,
param_attr=ParamAttr(
initializer=Constant(1.), name=name + 'bn.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.), name=name + 'bn.bias'),
moving_mean_name=name + 'bn.running_mean',
moving_variance_name=name + 'bn.running_var')
else:
out = fluid.layers.batch_norm(
out,
param_attr=ParamAttr(
initializer=Constant(1.),
learning_rate=0.,
name=name + 'bn.weight'),
bias_attr=ParamAttr(
initializer=Constant(0.),
learning_rate=0.,
name=name + 'bn.bias'),
moving_mean_name=name + 'bn.running_mean',
moving_variance_name=name + 'bn.running_var')
return out
# Copyright (c) 2019 PaddlePaddle Authors. All Rig hts Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
"""
CIFAR-10 dataset.
This module will download dataset from
https://www.cs.toronto.edu/~kriz/cifar.html and parse train/test set into
paddle reader creators.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000 test images.
"""
from PIL import Image
from PIL import ImageOps
import numpy as np
import cPickle
import random
import utils
import paddle.fluid as fluid
import time
import os
import functools
import paddle.reader
__all__ = ['train10', 'test10']
image_size = 32
image_depth = 3
half_length = 8
CIFAR_MEAN = [0.4914, 0.4822, 0.4465]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
def generate_reshape_label(label, batch_size, CIFAR_CLASSES=10):
reshape_label = np.zeros((batch_size, 1), dtype='int32')
reshape_non_label = np.zeros(
(batch_size * (CIFAR_CLASSES - 1), 1), dtype='int32')
num = 0
for i in range(batch_size):
label_i = label[i]
reshape_label[i] = label_i + i * CIFAR_CLASSES
for j in range(CIFAR_CLASSES):
if label_i != j:
reshape_non_label[num] = \
j + i * CIFAR_CLASSES
num += 1
return reshape_label, reshape_non_label
def generate_bernoulli_number(batch_size, CIFAR_CLASSES=10):
rcc_iters = 50
rad_var = np.zeros((rcc_iters, batch_size, CIFAR_CLASSES - 1))
for i in range(rcc_iters):
bernoulli_num = np.random.binomial(size=batch_size, n=1, p=0.5)
bernoulli_map = np.array([])
ones = np.ones((CIFAR_CLASSES - 1, 1))
for batch_id in range(batch_size):
num = bernoulli_num[batch_id]
var_id = 2 * ones * num - 1
bernoulli_map = np.append(bernoulli_map, var_id)
rad_var[i] = bernoulli_map.reshape((batch_size, CIFAR_CLASSES - 1))
return rad_var.astype('float32')
def preprocess(sample, is_training, args):
image_array = sample.reshape(3, image_size, image_size)
rgb_array = np.transpose(image_array, (1, 2, 0))
img = Image.fromarray(rgb_array, 'RGB')
if is_training:
# pad and ramdom crop
img = ImageOps.expand(img, (4, 4, 4, 4), fill=0) # pad to 40 * 40 * 3
left_top = np.random.randint(9, size=2) # rand 0 - 8
img = img.crop((left_top[0], left_top[1], left_top[0] + image_size,
left_top[1] + image_size))
if np.random.randint(2):
img = img.transpose(Image.FLIP_LEFT_RIGHT)
img = np.array(img).astype(np.float32)
# per_image_standardization
img_float = img / 255.0
img = (img_float - CIFAR_MEAN) / CIFAR_STD
if is_training and args.cutout:
center = np.random.randint(image_size, size=2)
offset_width = max(0, center[0] - half_length)
offset_height = max(0, center[1] - half_length)
target_width = min(center[0] + half_length, image_size)
target_height = min(center[1] + half_length, image_size)
for i in range(offset_height, target_height):
for j in range(offset_width, target_width):
img[i][j][:] = 0.0
img = np.transpose(img, (2, 0, 1))
return img
def reader_creator_filepath(filename, sub_name, is_training, args):
files = os.listdir(filename)
names = [each_item for each_item in files if sub_name in each_item]
names.sort()
datasets = []
for name in names:
print("Reading file " + name)
batch = cPickle.load(open(filename + name, 'rb'))
data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None
dataset = zip(data, labels)
datasets.extend(dataset)
random.shuffle(datasets)
def read_batch(datasets, args):
for sample, label in datasets:
im = preprocess(sample, is_training, args)
yield im, [int(label)]
def reader():
batch_data = []
batch_label = []
for data, label in read_batch(datasets, args):
batch_data.append(data)
batch_label.append(label)
if len(batch_data) == args.batch_size:
batch_data = np.array(batch_data, dtype='float32')
batch_label = np.array(batch_label, dtype='int64')
if is_training:
flatten_label, flatten_non_label = \
generate_reshape_label(batch_label, args.batch_size)
rad_var = generate_bernoulli_number(args.batch_size)
mixed_x, y_a, y_b, lam = utils.mixup_data(
batch_data, batch_label, args.batch_size,
args.mix_alpha)
batch_out = [[mixed_x, y_a, y_b, lam, flatten_label, \
flatten_non_label, rad_var]]
yield batch_out
else:
batch_out = [[batch_data, batch_label]]
yield batch_out
batch_data = []
batch_label = []
return reader
def train10(args):
"""
CIFAR-10 training set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Training reader creator
:rtype: callable
"""
return reader_creator_filepath(args.data, 'data_batch', True, args)
def test10(args):
"""
CIFAR-10 test set creator.
It returns a reader creator, each sample in the reader is image pixels in
[0, 1] and label in [0, 9].
:return: Test reader creator.
:rtype: callable
"""
return reader_creator_filepath(args.data, 'test_batch', False, args)
CUDA_VISIBLE_DEVICES=0 python -u train_mixup.py \
--batch_size=80 \
--auxiliary \
--weight_decay=0.0003 \
--learning_rate=0.025 \
--lrc_loss_lambda=0.7 \
--cutout
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from learning_rate import cosine_decay
import numpy as np
import argparse
from model import NetworkCIFAR as Network
import reader
import sys
import os
import time
import logging
import genotypes
import paddle.fluid as fluid
import shutil
import utils
import cPickle as cp
parser = argparse.ArgumentParser("cifar")
parser.add_argument(
'--data',
type=str,
default='./dataset/cifar/cifar-10-batches-py/',
help='location of the data corpus')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument(
'--learning_rate', type=float, default=0.025, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument(
'--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument(
'--report_freq', type=float, default=50, help='report frequency')
parser.add_argument(
'--epochs', type=int, default=600, help='num of training epochs')
parser.add_argument(
'--init_channels', type=int, default=36, help='num of init channels')
parser.add_argument(
'--layers', type=int, default=20, help='total number of layers')
parser.add_argument(
'--model_path',
type=str,
default='saved_models',
help='path to save the model')
parser.add_argument(
'--auxiliary',
action='store_true',
default=False,
help='use auxiliary tower')
parser.add_argument(
'--auxiliary_weight',
type=float,
default=0.4,
help='weight for auxiliary loss')
parser.add_argument(
'--cutout', action='store_true', default=False, help='use cutout')
parser.add_argument(
'--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument(
'--drop_path_prob', type=float, default=0.2, help='drop path probability')
parser.add_argument('--save', type=str, default='EXP', help='experiment name')
parser.add_argument(
'--arch', type=str, default='DARTS', help='which architecture to use')
parser.add_argument(
'--grad_clip', type=float, default=5, help='gradient clipping')
parser.add_argument(
'--lr_exp_decay',
action='store_true',
default=False,
help='use exponential_decay learning_rate')
parser.add_argument('--mix_alpha', type=float, default=0.5, help='mixup alpha')
parser.add_argument(
'--lrc_loss_lambda', default=0, type=float, help='lrc_loss_lambda')
parser.add_argument(
'--loss_type',
default=1,
type=float,
help='loss_type 0: cross entropy 1: multi margin loss 2: max margin loss')
args = parser.parse_args()
CIFAR_CLASSES = 10
dataset_train_size = 50000
image_size = 32
def main():
image_shape = [3, image_size, image_size]
devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(","))
logging.info("args = %s", args)
genotype = eval("genotypes.%s" % args.arch)
model = Network(args.init_channels, CIFAR_CLASSES, args.layers,
args.auxiliary, genotype)
steps_one_epoch = dataset_train_size / (devices_num * args.batch_size)
train(model, args, image_shape, steps_one_epoch)
def build_program(main_prog, startup_prog, args, is_train, model, im_shape,
steps_one_epoch):
out = []
with fluid.program_guard(main_prog, startup_prog):
py_reader = model.build_input(im_shape, args.batch_size, is_train)
if is_train:
with fluid.unique_name.guard():
loss = model.train_model(py_reader, args.init_channels,
args.auxiliary, args.auxiliary_weight,
args.batch_size, args.lrc_loss_lambda)
optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay(args.learning_rate, \
args.epochs, steps_one_epoch),
regularization=fluid.regularizer.L2Decay(\
args.weight_decay),
momentum=args.momentum)
optimizer.minimize(loss)
out = [py_reader, loss]
else:
with fluid.unique_name.guard():
loss, acc_1, acc_5 = model.test_model(py_reader,
args.init_channels)
out = [py_reader, loss, acc_1, acc_5]
return out
def train(model, args, im_shape, steps_one_epoch):
train_startup_prog = fluid.Program()
test_startup_prog = fluid.Program()
train_prog = fluid.Program()
test_prog = fluid.Program()
train_py_reader, loss_train = build_program(train_prog, train_startup_prog,
args, True, model, im_shape,
steps_one_epoch)
test_py_reader, loss_test, acc_1, acc_5 = build_program(
test_prog, test_startup_prog, args, False, model, im_shape,
steps_one_epoch)
test_prog = test_prog.clone(for_test=True)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(train_startup_prog)
exe.run(test_startup_prog)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.num_threads = 1
train_exe = fluid.ParallelExecutor(
main_program=train_prog,
use_cuda=True,
loss_name=loss_train.name,
exec_strategy=exec_strategy)
train_reader = reader.train10(args)
test_reader = reader.test10(args)
train_py_reader.decorate_paddle_reader(train_reader)
test_py_reader.decorate_paddle_reader(test_reader)
fluid.clip.set_gradient_clip(fluid.clip.GradientClipByNorm(args.grad_clip))
fluid.memory_optimize(fluid.default_main_program())
def save_model(postfix, main_prog):
model_path = os.path.join(args.model_path, postfix)
if os.path.isdir(model_path):
shutil.rmtree(model_path)
fluid.io.save_persistables(exe, model_path, main_program=main_prog)
def test(epoch_id):
test_fetch_list = [loss_test, acc_1, acc_5]
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
test_py_reader.start()
test_start_time = time.time()
step_id = 0
try:
while True:
prev_test_start_time = test_start_time
test_start_time = time.time()
loss_test_v, acc_1_v, acc_5_v = exe.run(
test_prog, fetch_list=test_fetch_list)
objs.update(np.array(loss_test_v), args.batch_size)
top1.update(np.array(acc_1_v), args.batch_size)
top5.update(np.array(acc_5_v), args.batch_size)
if step_id % args.report_freq == 0:
print("Epoch {}, Step {}, acc_1 {}, acc_5 {}, time {}".
format(epoch_id, step_id,
np.array(acc_1_v),
np.array(acc_5_v), test_start_time -
prev_test_start_time))
step_id += 1
except fluid.core.EOFException:
test_py_reader.reset()
print("Epoch {0}, top1 {1}, top5 {2}".format(epoch_id, top1.avg,
top5.avg))
train_fetch_list = [loss_train]
epoch_start_time = time.time()
for epoch_id in range(args.epochs):
model.drop_path_prob = args.drop_path_prob * epoch_id / args.epochs
train_py_reader.start()
epoch_end_time = time.time()
if epoch_id > 0:
print("Epoch {}, total time {}".format(epoch_id - 1, epoch_end_time
- epoch_start_time))
epoch_start_time = epoch_end_time
epoch_end_time
start_time = time.time()
step_id = 0
try:
while True:
prev_start_time = start_time
start_time = time.time()
loss_v, = train_exe.run(
fetch_list=[v.name for v in train_fetch_list])
print("Epoch {}, Step {}, loss {}, time {}".format(epoch_id, step_id, \
np.array(loss_v).mean(), start_time-prev_start_time))
step_id += 1
sys.stdout.flush()
except fluid.core.EOFException:
train_py_reader.reset()
if epoch_id % 50 == 0 or epoch_id == args.epochs - 1:
save_model(str(epoch_id), train_prog)
test(epoch_id)
if __name__ == '__main__':
main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# DARTS
# Copyright (c) 2018, Hanxiao Liu.
# Licensed under the Apache License, Version 2.0;
# --------------------------------------------------------
import os
import sys
import time
import math
import numpy as np
def mixup_data(x, y, batch_size, alpha=1.0):
'''Compute the mixup data. Return mixed inputs, pairs of targets, and lambda'''
if alpha > 0.:
lam = np.random.beta(alpha, alpha)
else:
lam = 1.
index = np.random.permutation(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x.astype('float32'), y_a.astype('int64'),\
y_b.astype('int64'), np.array(lam, dtype='float32')
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
#-*- coding: utf-8 -*-
import math
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import numpy as np
import math
from tqdm import tqdm
from utils import fluid_flatten
class DQNModel(object):
......@@ -39,34 +38,51 @@ class DQNModel(object):
name='isOver', shape=[], dtype='bool')
def _build_net(self):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
self.predict_program = fluid.default_main_program().clone()
self.predict_program = fluid.Program()
self.train_program = fluid.Program()
self._sync_program = fluid.Program()
reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
with fluid.program_guard(self.predict_program):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
with fluid.program_guard(self.train_program):
state, action, reward, next_s, isOver = self._get_inputs()
pred_value = self.get_DQN_prediction(state)
pred_action_value = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
target = reward + (1.0 - fluid.layers.cast(
isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
pred_action_value = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
self._sync_program = self._build_sync_target_network()
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
optimizer.minimize(cost)
target = reward + (1.0 - fluid.layers.cast(
isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
# define program
self.train_program = fluid.default_main_program()
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
optimizer.minimize(cost)
vars = list(self.train_program.list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
with fluid.program_guard(self._sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# fluid exe
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
......@@ -81,50 +97,50 @@ class DQNModel(object):
conv1 = fluid.layers.conv2d(
input=image,
num_filters=32,
filter_size=[5, 5],
stride=[1, 1],
padding=[2, 2],
filter_size=5,
stride=1,
padding=2,
act='relu',
param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
max_pool1 = fluid.layers.pool2d(
input=conv1, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv1, pool_size=2, pool_stride=2, pool_type='max')
conv2 = fluid.layers.conv2d(
input=max_pool1,
num_filters=32,
filter_size=[5, 5],
stride=[1, 1],
padding=[2, 2],
filter_size=5,
stride=1,
padding=2,
act='relu',
param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
max_pool2 = fluid.layers.pool2d(
input=conv2, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv2, pool_size=2, pool_stride=2, pool_type='max')
conv3 = fluid.layers.conv2d(
input=max_pool2,
num_filters=64,
filter_size=[4, 4],
stride=[1, 1],
padding=[1, 1],
filter_size=4,
stride=1,
padding=1,
act='relu',
param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
max_pool3 = fluid.layers.pool2d(
input=conv3, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv3, pool_size=2, pool_stride=2, pool_type='max')
conv4 = fluid.layers.conv2d(
input=max_pool3,
num_filters=64,
filter_size=[3, 3],
stride=[1, 1],
padding=[1, 1],
filter_size=3,
stride=1,
padding=1,
act='relu',
param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))
flatten = fluid_flatten(conv4)
flatten = fluid.layers.flatten(conv4, axis=1)
out = fluid.layers.fc(
input=flatten,
......@@ -133,23 +149,6 @@ class DQNModel(object):
bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field)))
return out
def _build_sync_target_network(self):
vars = list(fluid.default_main_program().list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
sync_program = sync_program.prune(sync_ops)
return sync_program
def act(self, state, train_or_test):
sample = np.random.random()
......
#-*- coding: utf-8 -*-
import math
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import numpy as np
from tqdm import tqdm
import math
from utils import fluid_argmax, fluid_flatten
class DoubleDQNModel(object):
......@@ -39,41 +38,59 @@ class DoubleDQNModel(object):
name='isOver', shape=[], dtype='bool')
def _build_net(self):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
self.predict_program = fluid.default_main_program().clone()
self.predict_program = fluid.Program()
self.train_program = fluid.Program()
self._sync_program = fluid.Program()
reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
with fluid.program_guard(self.predict_program):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
with fluid.program_guard(self.train_program):
state, action, reward, next_s, isOver = self._get_inputs()
pred_value = self.get_DQN_prediction(state)
pred_action_value = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
next_s_predcit_value = self.get_DQN_prediction(next_s)
greedy_action = fluid_argmax(next_s_predcit_value)
pred_action_value = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
predict_onehot = fluid.layers.one_hot(greedy_action, self.action_dim)
best_v = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(predict_onehot, targetQ_predict_value),
dim=1)
best_v.stop_gradient = True
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
target = reward + (1.0 - fluid.layers.cast(
isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
next_s_predcit_value = self.get_DQN_prediction(next_s)
greedy_action = fluid.layers.argmax(next_s_predcit_value, axis=1)
greedy_action = fluid.layers.unsqueeze(greedy_action, axes=[1])
self._sync_program = self._build_sync_target_network()
predict_onehot = fluid.layers.one_hot(greedy_action, self.action_dim)
best_v = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(predict_onehot, targetQ_predict_value),
dim=1)
best_v.stop_gradient = True
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
optimizer.minimize(cost)
target = reward + (1.0 - fluid.layers.cast(
isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
# define program
self.train_program = fluid.default_main_program()
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
optimizer.minimize(cost)
vars = list(self.train_program.list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
with fluid.program_guard(self._sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# fluid exe
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
......@@ -88,50 +105,50 @@ class DoubleDQNModel(object):
conv1 = fluid.layers.conv2d(
input=image,
num_filters=32,
filter_size=[5, 5],
stride=[1, 1],
padding=[2, 2],
filter_size=5,
stride=1,
padding=2,
act='relu',
param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
max_pool1 = fluid.layers.pool2d(
input=conv1, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv1, pool_size=2, pool_stride=2, pool_type='max')
conv2 = fluid.layers.conv2d(
input=max_pool1,
num_filters=32,
filter_size=[5, 5],
stride=[1, 1],
padding=[2, 2],
filter_size=5,
stride=1,
padding=2,
act='relu',
param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
max_pool2 = fluid.layers.pool2d(
input=conv2, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv2, pool_size=2, pool_stride=2, pool_type='max')
conv3 = fluid.layers.conv2d(
input=max_pool2,
num_filters=64,
filter_size=[4, 4],
stride=[1, 1],
padding=[1, 1],
filter_size=4,
stride=1,
padding=1,
act='relu',
param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
max_pool3 = fluid.layers.pool2d(
input=conv3, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv3, pool_size=2, pool_stride=2, pool_type='max')
conv4 = fluid.layers.conv2d(
input=max_pool3,
num_filters=64,
filter_size=[3, 3],
stride=[1, 1],
padding=[1, 1],
filter_size=3,
stride=1,
padding=1,
act='relu',
param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))
flatten = fluid_flatten(conv4)
flatten = fluid.layers.flatten(conv4, axis=1)
out = fluid.layers.fc(
input=flatten,
......@@ -140,23 +157,6 @@ class DoubleDQNModel(object):
bias_attr=ParamAttr(name='{}_fc1_b'.format(variable_field)))
return out
def _build_sync_target_network(self):
vars = list(fluid.default_main_program().list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
sync_program = sync_program.prune(sync_ops)
return sync_program
def act(self, state, train_or_test):
sample = np.random.random()
......
#-*- coding: utf-8 -*-
import math
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import numpy as np
from tqdm import tqdm
import math
from utils import fluid_flatten
class DuelingDQNModel(object):
......@@ -39,34 +38,51 @@ class DuelingDQNModel(object):
name='isOver', shape=[], dtype='bool')
def _build_net(self):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
self.predict_program = fluid.default_main_program().clone()
self.predict_program = fluid.Program()
self.train_program = fluid.Program()
self._sync_program = fluid.Program()
reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
with fluid.program_guard(self.predict_program):
state, action, reward, next_s, isOver = self._get_inputs()
self.pred_value = self.get_DQN_prediction(state)
action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
with fluid.program_guard(self.train_program):
state, action, reward, next_s, isOver = self._get_inputs()
pred_value = self.get_DQN_prediction(state)
pred_action_value = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
reward = fluid.layers.clip(reward, min=-1.0, max=1.0)
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
action_onehot = fluid.layers.one_hot(action, self.action_dim)
action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
target = reward + (1.0 - fluid.layers.cast(
isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
pred_action_value = fluid.layers.reduce_sum(
fluid.layers.elementwise_mul(action_onehot, pred_value), dim=1)
self._sync_program = self._build_sync_target_network()
targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
optimizer.minimize(cost)
target = reward + (1.0 - fluid.layers.cast(
isOver, dtype='float32')) * self.gamma * best_v
cost = fluid.layers.square_error_cost(pred_action_value, target)
cost = fluid.layers.reduce_mean(cost)
# define program
self.train_program = fluid.default_main_program()
optimizer = fluid.optimizer.Adam(1e-3 * 0.5, epsilon=1e-3)
optimizer.minimize(cost)
vars = list(self.train_program.list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
with fluid.program_guard(self._sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# fluid exe
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
......@@ -81,50 +97,50 @@ class DuelingDQNModel(object):
conv1 = fluid.layers.conv2d(
input=image,
num_filters=32,
filter_size=[5, 5],
stride=[1, 1],
padding=[2, 2],
filter_size=5,
stride=1,
padding=2,
act='relu',
param_attr=ParamAttr(name='{}_conv1'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv1_b'.format(variable_field)))
max_pool1 = fluid.layers.pool2d(
input=conv1, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv1, pool_size=2, pool_stride=2, pool_type='max')
conv2 = fluid.layers.conv2d(
input=max_pool1,
num_filters=32,
filter_size=[5, 5],
stride=[1, 1],
padding=[2, 2],
filter_size=5,
stride=1,
padding=2,
act='relu',
param_attr=ParamAttr(name='{}_conv2'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv2_b'.format(variable_field)))
max_pool2 = fluid.layers.pool2d(
input=conv2, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv2, pool_size=2, pool_stride=2, pool_type='max')
conv3 = fluid.layers.conv2d(
input=max_pool2,
num_filters=64,
filter_size=[4, 4],
stride=[1, 1],
padding=[1, 1],
filter_size=4,
stride=1,
padding=1,
act='relu',
param_attr=ParamAttr(name='{}_conv3'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv3_b'.format(variable_field)))
max_pool3 = fluid.layers.pool2d(
input=conv3, pool_size=[2, 2], pool_stride=[2, 2], pool_type='max')
input=conv3, pool_size=2, pool_stride=2, pool_type='max')
conv4 = fluid.layers.conv2d(
input=max_pool3,
num_filters=64,
filter_size=[3, 3],
stride=[1, 1],
padding=[1, 1],
filter_size=3,
stride=1,
padding=1,
act='relu',
param_attr=ParamAttr(name='{}_conv4'.format(variable_field)),
bias_attr=ParamAttr(name='{}_conv4_b'.format(variable_field)))
flatten = fluid_flatten(conv4)
flatten = fluid.layers.flatten(conv4, axis=1)
value = fluid.layers.fc(
input=flatten,
......@@ -143,24 +159,6 @@ class DuelingDQNModel(object):
advantage, dim=1, keep_dim=True))
return Q
def _build_sync_target_network(self):
vars = list(fluid.default_main_program().list_vars())
policy_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(
lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# The prune API is deprecated, please don't use it any more.
sync_program = sync_program._prune(sync_ops)
return sync_program
def act(self, state, train_or_test):
sample = np.random.random()
......@@ -186,12 +184,14 @@ class DuelingDQNModel(object):
self.global_step += 1
action = np.expand_dims(action, -1)
self.exe.run(self.train_program, \
feed={'state': state.astype('float32'), \
'action': action.astype('int32'), \
'reward': reward, \
'next_s': next_state.astype('float32'), \
'isOver': isOver})
self.exe.run(self.train_program,
feed={
'state': state.astype('float32'),
'action': action.astype('int32'),
'reward': reward,
'next_s': next_state.astype('float32'),
'isOver': isOver
})
def sync_target_network(self):
self.exe.run(self._sync_program)
......@@ -29,7 +29,7 @@ The average game rewards that can be obtained for the three models as the number
+ gym
+ tqdm
+ opencv-python
+ paddlepaddle-gpu>=0.12.0
+ paddlepaddle-gpu>=1.0.0
+ ale_python_interface
### Install Dependencies:
......
......@@ -28,7 +28,7 @@
+ gym
+ tqdm
+ opencv-python
+ paddlepaddle-gpu>=0.12.0
+ paddlepaddle-gpu>=1.0.0
+ ale_python_interface
### 下载依赖:
......
#-*- coding: utf-8 -*-
#File: utils.py
import paddle.fluid as fluid
import numpy as np
def fluid_argmax(x):
"""
Get index of max value for the last dimension
"""
_, max_index = fluid.layers.topk(x, k=1)
return max_index
def fluid_flatten(x):
"""
Flatten fluid variable along the first dimension
"""
return fluid.layers.reshape(x, shape=[-1, np.prod(x.shape[1:])])
......@@ -121,7 +121,7 @@ def detect_face(image, shrink):
return_numpy=False)
detection = np.array(detection)
# layout: xmin, ymin, xmax. ymax, score
if detection.shape == (1, ):
if np.prod(detection.shape) == 1:
print("No face detected")
return np.array([[0, 0, 0, 0, 0]])
det_conf = detection[:, 1]
......
......@@ -103,7 +103,7 @@ python infer.py \
## 其他信息
|数据集 | pretrained model |
|---|---|
|CityScape | [Model]()[md: ] |
|CityScape | [pretrained_model](https://paddle-icnet-models.bj.bcebos.com/model_1000.tar.gz) |
## 参考
......
......@@ -209,6 +209,7 @@ Models are trained by starting with learning rate ```0.1``` and decaying it by `
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip) | 72.08%/90.63% | 71.65%/90.57% |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip) | 72.56%/90.83% | 72.32%/90.98% |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip) | 70.91%/89.54% | 70.51%/89.35% |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.zip) | 71.90%/90.55% | 71.53%/90.41% |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) | 76.35%/92.80% | 76.22%/92.92% |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip) | 77.49%/93.57% | 77.56%/93.64% |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip) | 78.12%/93.93% | 77.92%/93.87% |
......
......@@ -204,6 +204,7 @@ Models包括两种模型:带有参数名字的模型,和不带有参数名
|[VGG16](https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip) | 72.08%/90.63% | 71.65%/90.57% |
|[VGG19](https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip) | 72.56%/90.83% | 72.32%/90.98% |
|[MobileNetV1](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip) | 70.91%/89.54% | 70.51%/89.35% |
|[MobileNetV2](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.zip) | 71.90%/90.55% | 71.53%/90.41% |
|[ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) | 76.35%/92.80% | 76.22%/92.92% |
|[ResNet101](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip) | 77.49%/93.57% | 77.56%/93.64% |
|[ResNet152](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip) | 78.12%/93.93% | 77.92%/93.87% |
......
......@@ -6,7 +6,7 @@ python train.py \
--class_dim=1000 \
--image_shape=3,224,224 \
--model_save_dir=output/ \
--with_mem_opt=False \
--with_mem_opt=True \
--lr_strategy=piecewise_decay \
--lr=0.1
# >log_SE_ResNeXt50_32x4d.txt 2>&1 &
......@@ -19,7 +19,7 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=False \
# --with_mem_opt=True \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.01
......@@ -32,7 +32,7 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=False \
# --with_mem_opt=True \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
......@@ -46,12 +46,22 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=False \
# --with_mem_opt=True \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
#python train.py \
# --model=MobileNetV2 \
# --batch_size=500 \
# --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=True \
# --lr_strategy=cosine_decay \
# --num_epochs=200 \
# --lr=0.1
#ResNet50:
#python train.py \
# --model=ResNet50 \
......@@ -60,7 +70,7 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=False \
# --with_mem_opt=True \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
......@@ -87,7 +97,7 @@ python train.py \
# --lr_strategy=piecewise_decay \
# --lr=0.1 \
# --num_epochs=120 \
# --l2_decay=1e-4 \(TODO)
# --l2_decay=1e-4
#SE_ResNeXt50:
......@@ -99,7 +109,7 @@ python train.py \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=200 \
# --l2_decay=12e-5 \(TODO)
# --l2_decay=12e-5
#SE_ResNeXt101:
#python train.py \
......@@ -110,7 +120,7 @@ python train.py \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=200 \
# --l2_decay=15e-5 \(TODO)
# --l2_decay=15e-5
#VGG11:
#python train.py \
......@@ -121,7 +131,7 @@ python train.py \
# --lr_strategy=cosine_decay \
# --lr=0.1 \
# --num_epochs=90 \
# --l2_decay=2e-4 \(TODO)
# --l2_decay=2e-4
#VGG13:
#python train.py
......@@ -132,4 +142,4 @@ python train.py \
# --lr_strategy=cosine_decay \
# --lr=0.01 \
# --num_epochs=90 \
# --l2_decay=3e-4 \(TODO)
# --l2_decay=3e-4
......@@ -10,7 +10,6 @@ import math
import paddle
import paddle.fluid as fluid
import paddle.dataset.flowers as flowers
import models
import reader
import argparse
import functools
......@@ -19,8 +18,8 @@ import utils
from utils.learning_rate import cosine_decay
from utils.fp16_utils import create_master_params_grads, master_param_to_train_param
from utility import add_arguments, print_arguments
import models
import models_name
IMAGENET1000 = 1281167
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
......@@ -40,25 +39,32 @@ add_arg('lr_strategy', str, "piecewise_decay", "Set the learning rate
add_arg('model', str, "SE_ResNeXt50_32x4d", "Set the network to use.")
add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.")
add_arg('data_dir', str, "./data/ILSVRC2012", "The ImageNet dataset root dir.")
add_arg('model_category', str, "models", "Whether to use models_name or not, valid value:'models','models_name'" )
add_arg('model_category', str, "models", "Whether to use models_name or not, valid value:'models','models_name'." )
add_arg('fp16', bool, False, "Enable half precision training with fp16." )
add_arg('scale_loss', float, 1.0, "Scale loss for fp16." )
add_arg('l2_decay', float, 1e-4, "L2_decay parameter.")
add_arg('momentum_rate', float, 0.9, "momentum_rate.")
# yapf: enable
def set_models(model):
def set_models(model_category):
global models
if model == "models":
models = models
assert model_category in ["models", "models_name"
], "{} is not in lists: {}".format(
model_category, ["models", "models_name"])
if model_category == "models_name":
import models_name as models
else:
models = models_name
import models as models
def optimizer_setting(params):
ls = params["learning_strategy"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
if ls["name"] == "piecewise_decay":
if "total_images" not in params:
total_images = 1281167
total_images = IMAGENET1000
else:
total_images = params["total_images"]
batch_size = ls["batch_size"]
......@@ -71,16 +77,17 @@ def optimizer_setting(params):
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
elif ls["name"] == "cosine_decay":
if "total_images" not in params:
total_images = 1281167
total_images = IMAGENET1000
else:
total_images = params["total_images"]
batch_size = ls["batch_size"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
step = int(total_images / batch_size + 1)
lr = params["lr"]
......@@ -89,43 +96,42 @@ def optimizer_setting(params):
optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay(
learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(4e-5))
elif ls["name"] == "exponential_decay":
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
elif ls["name"] == "linear_decay":
if "total_images" not in params:
total_images = 1281167
total_images = IMAGENET1000
else:
total_images = params["total_images"]
batch_size = ls["batch_size"]
step = int(total_images / batch_size +1)
lr = params["lr"]
num_epochs = params["num_epochs"]
learning_decay_rate_factor=ls["learning_decay_rate_factor"]
num_epochs_per_decay = ls["num_epochs_per_decay"]
NUM_GPUS = 1
start_lr = params["lr"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
end_lr = 0
total_step = int((total_images / batch_size) * num_epochs)
lr = fluid.layers.polynomial_decay(
start_lr, total_step, end_lr, power=1)
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.exponential_decay(
learning_rate = lr * NUM_GPUS,
decay_steps = step * num_epochs_per_decay / NUM_GPUS,
decay_rate = learning_decay_rate_factor),
momentum=0.9,
regularization = fluid.regularizer.L2Decay(4e-5))
learning_rate=lr,
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
else:
lr = params["lr"]
l2_decay = params["l2_decay"]
momentum_rate = params["momentum_rate"]
optimizer = fluid.optimizer.Momentum(
learning_rate=lr,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
momentum=momentum_rate,
regularization=fluid.regularizer.L2Decay(l2_decay))
return optimizer
def net_config(image, label, model, args):
model_list = [m for m in dir(models) if "__" not in m]
assert args.model in model_list,"{} is not lists: {}".format(
args.model, model_list)
assert args.model in model_list, "{} is not lists: {}".format(args.model,
model_list)
class_dim = args.class_dim
model_name = args.model
......@@ -148,8 +154,9 @@ def net_config(image, label, model, args):
acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
else:
out = model.net(input=image, class_dim=class_dim)
cost, pred = fluid.layers.softmax_with_cross_entropy(out, label, return_softmax=True)
out = model.net(input=image, class_dim=class_dim)
cost, pred = fluid.layers.softmax_with_cross_entropy(
out, label, return_softmax=True)
if args.scale_loss > 1:
avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
else:
......@@ -190,19 +197,25 @@ def build_program(is_train, main_prog, startup_prog, args):
params["num_epochs"] = args.num_epochs
params["learning_strategy"]["batch_size"] = args.batch_size
params["learning_strategy"]["name"] = args.lr_strategy
params["l2_decay"] = args.l2_decay
params["momentum_rate"] = args.momentum_rate
optimizer = optimizer_setting(params)
if args.fp16:
params_grads = optimizer.backward(avg_cost)
master_params_grads = create_master_params_grads(
params_grads, main_prog, startup_prog, args.scale_loss)
optimizer.apply_gradients(master_params_grads)
master_param_to_train_param(master_params_grads, params_grads, main_prog)
master_param_to_train_param(master_params_grads,
params_grads, main_prog)
else:
optimizer.minimize(avg_cost)
global_lr = optimizer._global_learning_rate()
return py_reader, avg_cost, acc_top1, acc_top5
if is_train:
return py_reader, avg_cost, acc_top1, acc_top5, global_lr
else:
return py_reader, avg_cost, acc_top1, acc_top5
def train(args):
......@@ -220,7 +233,7 @@ def train(args):
startup_prog.random_seed = 1000
train_prog.random_seed = 1000
train_py_reader, train_cost, train_acc1, train_acc5 = build_program(
train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
is_train=True,
main_prog=train_prog,
startup_prog=startup_prog,
......@@ -255,7 +268,8 @@ def train(args):
if visible_device:
device_num = len(visible_device.split(','))
else:
device_num = subprocess.check_output(['nvidia-smi', '-L']).decode().count('\n')
device_num = subprocess.check_output(
['nvidia-smi', '-L']).decode().count('\n')
train_batch_size = args.batch_size / device_num
test_batch_size = 16
......@@ -283,11 +297,12 @@ def train(args):
use_cuda=bool(args.use_gpu),
loss_name=train_cost.name)
train_fetch_list = [train_cost.name, train_acc1.name, train_acc5.name]
train_fetch_list = [
train_cost.name, train_acc1.name, train_acc5.name, global_lr.name
]
test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]
params = models.__dict__[args.model]().params
for pass_id in range(params["num_epochs"]):
train_py_reader.start()
......@@ -299,7 +314,9 @@ def train(args):
try:
while True:
t1 = time.time()
loss, acc1, acc5 = train_exe.run(fetch_list=train_fetch_list)
loss, acc1, acc5, lr = train_exe.run(
fetch_list=train_fetch_list)
t2 = time.time()
period = t2 - t1
loss = np.mean(np.array(loss))
......@@ -308,12 +325,14 @@ def train(args):
train_info[0].append(loss)
train_info[1].append(acc1)
train_info[2].append(acc5)
lr = np.mean(np.array(lr))
train_time.append(period)
if batch_id % 10 == 0:
print("Pass {0}, trainbatch {1}, loss {2}, \
acc1 {3}, acc5 {4} time {5}"
.format(pass_id, batch_id, loss, acc1, acc5,
"%2.2f sec" % period))
acc1 {3}, acc5 {4}, lr{5}, time {6}"
.format(pass_id, batch_id, loss, acc1, acc5, "%.5f" %
lr, "%2.2f sec" % period))
sys.stdout.flush()
batch_id += 1
except fluid.core.EOFException:
......@@ -322,7 +341,8 @@ def train(args):
train_loss = np.array(train_info[0]).mean()
train_acc1 = np.array(train_info[1]).mean()
train_acc5 = np.array(train_info[2]).mean()
train_speed = np.array(train_time).mean() / (train_batch_size * device_num)
train_speed = np.array(train_time).mean() / (train_batch_size *
device_num)
test_py_reader.start()
......@@ -394,10 +414,7 @@ def train(args):
def main():
args = parser.parse_args()
models_now = args.model_category
assert models_now in ["models", "models_name"], "{} is not in lists: {}".format(
models_now, ["models", "models_name"])
set_models(models_now)
set_models(args.model_category)
print_arguments(args)
train(args)
......
......@@ -202,5 +202,5 @@ env CUDA_VISIBLE_DEVICE=0 python infer.py \
|模型| 错误率|
|- |:-: |
|[ocr_ctc_params](https://drive.google.com/open?id=1gsg2ODO2_F2pswXwW5MXpf8RY8-BMRyZ) | 22.3% |
|[ocr_attention_params](https://drive.google.com/open?id=1Bx7-94mngyTaMA5kVjzYHDPAdXxOYbRm) | 15.8%|
|[ocr_ctc_params](https://paddle-ocr-models.bj.bcebos.com/ocr_ctc.zip) | 22.3% |
|[ocr_attention_params](https://paddle-ocr-models.bj.bcebos.com/ocr_attention.zip) | 15.8%|
# Faster RCNN Objective Detection
# RCNN Objective Detection
---
## Table of Contents
......@@ -9,7 +9,6 @@
- [Training](#training)
- [Evaluation](#evaluation)
- [Inference and Visualization](#inference-and-visualization)
- [Appendix](#appendix)
## Installation
......@@ -17,17 +16,20 @@ Running sample code in this directory requires PaddelPaddle Fluid v.1.0.0 and la
## Introduction
[Faster Rcnn](https://arxiv.org/abs/1506.01497) is a typical two stage detector. The total framework of network can be divided into four parts, as shown below:
<p align="center">
<img src="image/Faster_RCNN.jpg" height=400 width=400 hspace='10'/> <br />
Faster RCNN model
</p>
Region Convolutional Neural Network (RCNN) models are two stages detector. According to proposals and feature extraction, obtain class and more precise proposals.
Now RCNN model contains two typical models: Faster RCNN and Mask RCNN.
[Faster RCNN](https://arxiv.org/abs/1506.01497), The total framework of network can be divided into four parts:
1. Base conv layer. As a CNN objective dection, Faster RCNN extract feature maps using a basic convolutional network. The feature maps then can be shared by RPN and fc layers. This sampel uses [ResNet-50](https://arxiv.org/abs/1512.03385) as base conv layer.
2. Region Proposal Network (RPN). RPN generates proposals for detection。This block generates anchors by a set of size and ratio and classifies anchors into fore-ground and back-ground by softmax. Then refine anchors to obtain more precise proposals using box regression.
3. RoI Align. This layer takes feature maps and proposals as input. The proposals are mapped to feature maps and pooled to the same size. The output are sent to fc layers for classification and regression. RoIPool and RoIAlign are used separately to this layer and it can be set in roi\_func in config.py.
4. Detection layer. Using the output of roi pooling to compute the class and locatoin of each proposal in two fc layers.
[Mask RCNN](https://arxiv.org/abs/1703.06870) is a classical instance segmentation model and an extension of Faster RCNN
Mask RCNN is a two stage model as well. At the first stage, it generates proposals from input images. At the second stage, it obtains class result, bbox and mask which is the result from segmentation branch on original Faster RCNN model. It decouples the relation between mask and classification.
## Data preparation
Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download dataset as below:
......@@ -62,12 +64,24 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed.
After data preparation, one can start the training step by:
- Faster RCNN
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model}
--data_dir=${path_to_data}
--pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} \
--MASK_ON=False
- Mask RCNN
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} \
--MASK_ON=True
- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train.
- Set ```MASK_ON``` to choose Faster RCNN or Mask RCNN model.
- For more help on arguments:
python train.py --help
......@@ -93,7 +107,6 @@ After data preparation, one can start the training step by:
* In first 500 iteration, the learning rate increases linearly from 0.00333 to 0.01. Then lr is decayed at 120000, 160000 iteration with multiplier 0.1, 0.01. The maximum iteration is 180000. Also, we released a 2x model which has 360000 iterations and lr is decayed at 240000, 320000. These configuration can be set by max_iter and lr_steps in config.py.
* Set the learning rate of bias to two times as global lr in non basic convolutional layers.
* In basic convolutional layers, parameters of affine layers and res body do not update.
* Use Nvidia Tesla V100 8GPU, total time for training is about 40 hours.
## Evaluation
......@@ -101,14 +114,27 @@ Evaluation is to evaluate the performance of a trained model. This sample provid
`eval_coco_map.py` is the main executor for evalution, one can start evalution step by:
- Faster RCNN
python eval_coco_map.py \
--dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \
--MASK_ON=False
- Mask RCNN
python eval_coco_map.py \
--dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \
--MASK_ON=True
- Set ```export CUDA_VISIBLE_DEVICES=0``` to specifiy one GPU to eval.
- Set ```MASK_ON``` to choose Faster RCNN or Mask RCNN model.
Evalutaion result is shown as below:
Faster RCNN:
| Model | RoI function | Batch size | Max iteration | mAP |
| :--------------- | :--------: | :------------: | :------------------: |------: |
| [Fluid RoIPool minibatch padding](http://paddlemodels.bj.bcebos.com/faster_rcnn/model_pool_minibatch_padding.tar.gz) | RoIPool | 8 | 180000 | 0.316 |
......@@ -121,6 +147,14 @@ Evalutaion result is shown as below:
* Fluid RoIAlign no padding: Images without padding.
* Fluid RoIAlign no padding 2x: Images without padding, train for 360000 iterations, learning rate is decayed at 240000, 320000.
Mask RCNN:
| Model | Batch size | Max iteration | box mAP | mask mAP |
| :--------------- | :--------: | :------------: | :--------: |------: |
| [Fluid mask no padding](https://paddlemodels.bj.bcebos.com/faster_rcnn/Fluid_mask_no_padding.tar.gz) | 8 | 180000 | 0.359 | 0.314 |
* Fluid mask no padding: Use RoIAlign. Images without padding.
## Inference and Visualization
Inference is used to get prediction score or image features based on trained models. `infer.py` is the main executor for inference, one can start infer step by:
......@@ -135,8 +169,12 @@ Inference is used to get prediction score or image features based on trained mod
Visualization of infer result is shown as below:
<p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br />
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <br />
Faster RCNN Visualization Examples
</p>
<p align="center">
<img src="image/000000000139_mask.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517_mask.jpg" height=300 width=400 hspace='10'/> <br />
Mask RCNN Visualization Examples
</p>
# Faster RCNN 目标检测
# RCNN 系列目标检测
---
## 内容
......@@ -9,25 +9,27 @@
- [模型训练](#模型训练)
- [模型评估](#模型评估)
- [模型推断及可视化](#模型推断及可视化)
- [附录](#附录)
## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.0.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/0.15.0/beginners_guide/install/install_doc.html#paddlepaddle)中的说明来更新PaddlePaddle。
## 简介
区域卷积神经网络(RCNN)系列模型为两阶段目标检测器。通过对图像生成候选区域,提取特征,判别特征类别并修正候选框位置。
RCNN系列目前包含两个代表模型:Faster RCNN,Mask RCNN
[Faster Rcnn](https://arxiv.org/abs/1506.01497) 是典型的两阶段目标检测器。如下图所示,整体网络可以分为4个主要内容:
<p align="center">
<img src="image/Faster_RCNN.jpg" height=400 width=400 hspace='10'/> <br />
Faster RCNN 目标检测模型
</p>
[Faster RCNN](https://arxiv.org/abs/1506.01497) 整体网络可以分为4个主要内容:
1. 基础卷积层。作为一种卷积神经网络目标检测方法,Faster RCNN首先使用一组基础的卷积网络提取图像的特征图。特征图被后续RPN层和全连接层共享。本示例采用[ResNet-50](https://arxiv.org/abs/1512.03385)作为基础卷积层。
2. 区域生成网络(RPN)。RPN网络用于生成候选区域(proposals)。该层通过一组固定的尺寸和比例得到一组锚点(anchors), 通过softmax判断锚点属于前景或者背景,再利用区域回归修正锚点从而获得精确的候选区域。
3. RoI Align。该层收集输入的特征图和候选区域,将候选区域映射到特征图中并池化为统一大小的区域特征图,送入全连接层判定目标类别, 该层可选用RoIPool和RoIAlign两种方式,在config.py中设置roi\_func。
4. 检测层。利用区域特征图计算候选区域的类别,同时再次通过区域回归获得检测框最终的精确位置。
[Mask RCNN](https://arxiv.org/abs/1703.06870) 扩展自Faster RCNN,是经典的实例分割模型。
Mask RCNN同样为两阶段框架,第一阶段扫描图像生成候选框;第二阶段根据候选框得到分类结果,边界框,同时在原有Faster RCNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕。
## 数据准备
[MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。
......@@ -61,12 +63,24 @@ Faster RCNN 目标检测模型
数据准备完毕后,可以通过如下的方式启动训练:
- Faster RCNN
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model}
--data_dir=${path_to_data}
--pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} \
--MASK_ON=False
- Mask RCNN
python train.py \
--model_save_dir=output/ \
--pretrained_model=${path_to_pretrain_model} \
--data_dir=${path_to_data} \
--MASK_ON=True
- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 通过设置```MASK_ON```选择Faster RCNN和Mask RCNN模型。
- 可选参数见:
python train.py --help
......@@ -83,11 +97,10 @@ Faster RCNN 目标检测模型
**训练策略:**
* 采用momentum优化算法训练Faster RCNN,momentum=0.9。
* 采用momentum优化算法训练,momentum=0.9。
* 权重衰减系数为0.0001,前500轮学习率从0.00333线性增加至0.01。在120000,160000轮时使用0.1,0.01乘子进行学习率衰减,最大训练180000轮。同时我们也提供了2x模型,该模型采用更多的迭代轮数进行训练,训练360000轮,学习率在240000,320000轮衰减,其他参数不变,训练最大轮数和学习率策略可以在config.py中对max_iter和lr_steps进行设置。
* 非基础卷积层卷积bias学习率为整体学习率2倍。
* 基础卷积层中,affine_layers参数不更新,res2层参数不更新。
* 使用Nvidia Tesla V100 8卡并行,总共训练时长大约40小时。
## 模型评估
......@@ -95,14 +108,27 @@ Faster RCNN 目标检测模型
`eval_coco_map.py`是评估模块的主要执行程序,调用示例如下:
- Faster RCNN
python eval_coco_map.py \
--dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \
--MASK_ON=False
- Mask RCNN
python eval_coco_map.py \
--dataset=coco2017 \
--pretrained_model=${path_to_pretrain_model} \
--MASK_ON=True
- 通过设置export CUDA\_VISIBLE\_DEVICES=0指定单卡GPU评估。
- 通过设置```MASK_ON```选择Faster RCNN和Mask RCNN模型。
下表为模型评估结果:
Faster RCNN
| 模型 | RoI处理方式 | 批量大小 | 迭代次数 | mAP |
| :--------------- | :--------: | :------------: | :------------------: |------: |
| [Fluid RoIPool minibatch padding](http://paddlemodels.bj.bcebos.com/faster_rcnn/model_pool_minibatch_padding.tar.gz) | RoIPool | 8 | 180000 | 0.316 |
......@@ -117,6 +143,14 @@ Faster RCNN 目标检测模型
* Fluid RoIAlign no padding: 使用RoIAlign,不对图像做填充处理。
* Fluid RoIAlign no padding 2x: 使用RoIAlign,不对图像做填充处理。训练360000轮,学习率在240000,320000轮衰减。
Mask RCNN:
| 模型 | 批量大小 | 迭代次数 | box mAP | mask mAP |
| :--------------- | :--------: | :------------: | :--------: |------: |
| [Fluid mask no padding](https://paddlemodels.bj.bcebos.com/faster_rcnn/Fluid_mask_no_padding.tar.gz) | 8 | 180000 | 0.359 | 0.314 |
* Fluid mask no padding: 使用RoIAlign,不对图像做填充处理
## 模型推断及可视化
模型推断可以获取图像中的物体及其对应的类别,`infer.py`是主要执行程序,调用示例如下:
......@@ -131,8 +165,12 @@ Faster RCNN 目标检测模型
下图为模型可视化预测结果:
<p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br />
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/> <br />
Faster RCNN 预测可视化
</p>
<p align="center">
<img src="image/000000000139_mask.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517_mask.jpg" height=300 width=400 hspace='10'/> <br />
Mask RCNN 预测可视化
</p>
......@@ -6,18 +6,19 @@ sys.path.append(os.environ['ceroot'])
from kpi import CostKpi
from kpi import DurationKpi
each_pass_duration_card1_kpi = DurationKpi('each_pass_duration_card1', 0.08, 0, actived=True)
each_pass_duration_card1_kpi = DurationKpi(
'each_pass_duration_card1', 0.08, 0, actived=True)
train_loss_card1_kpi = CostKpi('train_loss_card1', 0.08, 0)
each_pass_duration_card4_kpi = DurationKpi('each_pass_duration_card4', 0.08, 0, actived=True)
each_pass_duration_card4_kpi = DurationKpi(
'each_pass_duration_card4', 0.08, 0, actived=True)
train_loss_card4_kpi = CostKpi('train_loss_card4', 0.08, 0)
tracking_kpis = [
each_pass_duration_card1_kpi,
train_loss_card1_kpi,
each_pass_duration_card4_kpi,
train_loss_card4_kpi,
]
each_pass_duration_card1_kpi,
train_loss_card1_kpi,
each_pass_duration_card4_kpi,
train_loss_card4_kpi,
]
def parse_log(log):
......
......@@ -69,6 +69,7 @@ def clip_xyxy_to_image(x1, y1, x2, y2, height, width):
y2 = np.minimum(height - 1., np.maximum(0., y2))
return x1, y1, x2, y2
def nms(dets, thresh):
"""Apply classic DPM-style greedy NMS."""
if dets.shape[0] == 0:
......@@ -123,3 +124,21 @@ def nms(dets, thresh):
return np.where(suppressed == 0)[0]
def expand_boxes(boxes, scale):
"""Expand an array of boxes by a given scale."""
w_half = (boxes[:, 2] - boxes[:, 0]) * .5
h_half = (boxes[:, 3] - boxes[:, 1]) * .5
x_c = (boxes[:, 2] + boxes[:, 0]) * .5
y_c = (boxes[:, 3] + boxes[:, 1]) * .5
w_half *= scale
h_half *= scale
boxes_exp = np.zeros(boxes.shape)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#
# Based on:
# --------------------------------------------------------
# Detectron
# Copyright (c) 2017-present, Facebook, Inc.
# Licensed under the Apache License, Version 2.0;
# Written by Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
def colormap(rgb=False):
color_list = np.array([
0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494,
0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078,
0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000,
1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000,
0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667,
0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000,
0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000,
1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000,
0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500,
0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667,
0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333,
0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000,
0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333,
0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000,
1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000,
1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.167,
0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000,
0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000,
0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000,
0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000,
0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833,
0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286,
0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714,
0.714, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000
]).astype(np.float32)
color_list = color_list.reshape((-1, 3)) * 255
if not rgb:
color_list = color_list[:, ::-1]
return color_list
......@@ -90,6 +90,9 @@ _C.TRAIN.freeze_at = 2
# min area of ground truth box
_C.TRAIN.gt_min_area = -1
# Use horizontally-flipped images during training?
_C.TRAIN.use_flipped = True
#
# Inference options
#
......@@ -120,7 +123,7 @@ _C.TEST.rpn_post_nms_top_n = 1000
_C.TEST.rpn_min_size = 0.0
# max number of detections
_C.TEST.detectiions_per_im = 100
_C.TEST.detections_per_im = 100
# NMS threshold used on RPN proposals
_C.TEST.rpn_nms_thresh = 0.7
......@@ -129,6 +132,9 @@ _C.TEST.rpn_nms_thresh = 0.7
# Model options
#
# Whether use mask rcnn head
_C.MASK_ON = True
# weight for bbox regression targets
_C.bbox_reg_weights = [0.1, 0.1, 0.2, 0.2]
......@@ -156,6 +162,15 @@ _C.roi_resolution = 14
# spatial scale
_C.spatial_scale = 1. / 16.
# resolution to represent mask labels
_C.resolution = 14
# Number of channels in the mask head
_C.dim_reduced = 256
# Threshold for converting soft masks to hard masks
_C.mrcnn_thresh_binarize = 0.5
#
# SOLVER options
#
......@@ -204,12 +219,6 @@ _C.pixel_means = [102.9801, 115.9465, 122.7717]
# clip box to prevent overflowing
_C.bbox_clip = np.log(1000. / 16.)
# dataset path
_C.train_file_list = 'annotations/instances_train2017.json'
_C.train_data_dir = 'train2017'
_C.val_file_list = 'annotations/instances_val2017.json'
_C.val_data_dir = 'val2017'
def merge_cfg_from_args(args, mode):
"""Merge config keys, values in args into the global config."""
......
......@@ -18,8 +18,7 @@ from __future__ import print_function
import os
import time
import numpy as np
from eval_helper import get_nmsed_box
from eval_helper import get_dt_res
from eval_helper import *
import paddle
import paddle.fluid as fluid
import reader
......@@ -30,21 +29,21 @@ import json
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval, Params
from config import cfg
from roidbs import DatasetPath
def eval():
if '2014' in cfg.dataset:
test_list = 'annotations/instances_val2014.json'
elif '2017' in cfg.dataset:
test_list = 'annotations/instances_val2017.json'
data_path = DatasetPath('val')
test_list = data_path.get_file_list()
image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
class_nums = cfg.class_num
devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(","))
total_batch_size = devices_num * cfg.TRAIN.im_per_batch
cocoGt = COCO(os.path.join(cfg.data_dir, test_list))
numId_to_catId_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
cocoGt = COCO(test_list)
num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
category_ids = cocoGt.getCatIds()
label_list = {
item['id']: item['name']
......@@ -52,51 +51,82 @@ def eval():
}
label_list[0] = ['background']
model = model_builder.FasterRCNN(
model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=False,
is_train=False)
model.build_model(image_shape)
rpn_rois, confs, locs = model.eval_out()
pred_boxes = model.eval_bbox_out()
if cfg.MASK_ON:
masks = model.eval_mask_out()
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
# yapf: disable
if cfg.pretrained_model:
def if_exist(var):
return os.path.exists(os.path.join(cfg.pretrained_model, var.name))
fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)
# yapf: enable
test_reader = reader.test(total_batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
dts_res = []
fetch_list = [rpn_rois, confs, locs]
segms_res = []
if cfg.MASK_ON:
fetch_list = [pred_boxes, masks]
else:
fetch_list = [pred_boxes]
eval_start = time.time()
for batch_id, batch_data in enumerate(test_reader()):
start = time.time()
im_info = []
for data in batch_data:
im_info.append(data[1])
rpn_rois_v, confs_v, locs_v = exe.run(
fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(batch_data),
return_numpy=False)
new_lod, nmsed_out = get_nmsed_box(rpn_rois_v, confs_v, locs_v,
class_nums, im_info,
numId_to_catId_map)
result = exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(batch_data),
return_numpy=False)
pred_boxes_v = result[0]
if cfg.MASK_ON:
masks_v = result[1]
dts_res += get_dt_res(total_batch_size, new_lod, nmsed_out, batch_data)
new_lod = pred_boxes_v.lod()
nmsed_out = pred_boxes_v
dts_res += get_dt_res(total_batch_size, new_lod[0], nmsed_out,
batch_data, num_id_to_cat_id_map)
if cfg.MASK_ON and np.array(masks_v).shape != (1, 1):
segms_out = segm_results(nmsed_out, masks_v, im_info)
segms_res += get_segms_res(total_batch_size, new_lod[0], segms_out,
batch_data, num_id_to_cat_id_map)
end = time.time()
print('batch id: {}, time: {}'.format(batch_id, end - start))
with open("detection_result.json", 'w') as outfile:
eval_end = time.time()
total_time = eval_end - eval_start
print('average time of eval is: {}'.format(total_time / (batch_id + 1)))
with open("detection_bbox_result.json", 'w') as outfile:
json.dump(dts_res, outfile)
print("start evaluate using coco api")
cocoDt = cocoGt.loadRes("detection_result.json")
print("start evaluate bbox using coco api")
cocoDt = cocoGt.loadRes("detection_bbox_result.json")
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if cfg.MASK_ON:
with open("detection_segms_result.json", 'w') as outfile:
json.dump(segms_res, outfile)
print("start evaluate mask using coco api")
cocoDt = cocoGt.loadRes("detection_segms_result.json")
cocoEval = COCOeval(cocoGt, cocoDt, 'segm')
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
if __name__ == '__main__':
args = parse_args()
......
......@@ -21,6 +21,10 @@ from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
from config import cfg
import pycocotools.mask as mask_util
import six
from colormap import colormap
import cv2
def box_decoder(deltas, boxes, weights):
......@@ -80,8 +84,7 @@ def clip_tiled_boxes(boxes, im_shape):
return boxes
def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info,
numId_to_catId_map):
def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info):
lod = rpn_rois.lod()[0]
rpn_rois_v = np.array(rpn_rois)
variance_v = np.array(cfg.bbox_reg_weights)
......@@ -106,38 +109,41 @@ def get_nmsed_box(rpn_rois, confs, locs, class_nums, im_info,
inds = np.where(scores_n[:, j] > cfg.TEST.score_thresh)[0]
scores_j = scores_n[inds, j]
rois_j = rois_n[inds, j * 4:(j + 1) * 4]
dets_j = np.hstack((rois_j, scores_j[:, np.newaxis])).astype(
dets_j = np.hstack((scores_j[:, np.newaxis], rois_j)).astype(
np.float32, copy=False)
keep = box_utils.nms(dets_j, cfg.TEST.nms_thresh)
nms_dets = dets_j[keep, :]
#add labels
cat_id = numId_to_catId_map[j]
label = np.array([cat_id for _ in range(len(keep))])
label = np.array([j for _ in range(len(keep))])
nms_dets = np.hstack((nms_dets, label[:, np.newaxis])).astype(
np.float32, copy=False)
cls_boxes[j] = nms_dets
# Limit to max_per_image detections **over all classes**
image_scores = np.hstack(
[cls_boxes[j][:, -2] for j in range(1, class_nums)])
if len(image_scores) > cfg.TEST.detectiions_per_im:
image_thresh = np.sort(image_scores)[-cfg.TEST.detectiions_per_im]
[cls_boxes[j][:, 1] for j in range(1, class_nums)])
if len(image_scores) > cfg.TEST.detections_per_im:
image_thresh = np.sort(image_scores)[-cfg.TEST.detections_per_im]
for j in range(1, class_nums):
keep = np.where(cls_boxes[j][:, -2] >= image_thresh)[0]
keep = np.where(cls_boxes[j][:, 1] >= image_thresh)[0]
cls_boxes[j] = cls_boxes[j][keep, :]
im_results_n = np.vstack([cls_boxes[j] for j in range(1, class_nums)])
im_results[i] = im_results_n
new_lod.append(len(im_results_n) + new_lod[-1])
boxes = im_results_n[:, :-2]
scores = im_results_n[:, -2]
labels = im_results_n[:, -1]
boxes = im_results_n[:, 2:]
scores = im_results_n[:, 1]
labels = im_results_n[:, 0]
im_results = np.vstack([im_results[k] for k in range(len(lod) - 1)])
return new_lod, im_results
def get_dt_res(batch_size, lod, nmsed_out, data):
def get_dt_res(batch_size, lod, nmsed_out, data, num_id_to_cat_id_map):
dts_res = []
nmsed_out_v = np.array(nmsed_out)
if nmsed_out_v.shape == (
1,
1, ):
return dts_res
assert (len(lod) == batch_size + 1), \
"Error Lod Tensor offset dimension. Lod({}) vs. batch_size({})"\
.format(len(lod), batch_size)
......@@ -150,7 +156,8 @@ def get_dt_res(batch_size, lod, nmsed_out, data):
for j in range(dt_num_this_img):
dt = nmsed_out_v[k]
k = k + 1
xmin, ymin, xmax, ymax, score, category_id = dt.tolist()
num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
category_id = num_id_to_cat_id_map[num_id]
w = xmax - xmin + 1
h = ymax - ymin + 1
bbox = [xmin, ymin, w, h]
......@@ -164,24 +171,131 @@ def get_dt_res(batch_size, lod, nmsed_out, data):
return dts_res
def draw_bounding_box_on_image(image_path, nms_out, draw_threshold, label_list):
image = Image.open(image_path)
def get_segms_res(batch_size, lod, segms_out, data, num_id_to_cat_id_map):
segms_res = []
segms_out_v = np.array(segms_out)
k = 0
for i in range(batch_size):
dt_num_this_img = lod[i + 1] - lod[i]
image_id = int(data[i][-1])
for j in range(dt_num_this_img):
dt = segms_out_v[k]
k = k + 1
segm, num_id, score = dt.tolist()
cat_id = num_id_to_cat_id_map[num_id]
if six.PY3:
if 'counts' in segm:
segm['counts'] = segm['counts'].decode("utf8")
segm_res = {
'image_id': image_id,
'category_id': cat_id,
'segmentation': segm,
'score': score
}
segms_res.append(segm_res)
return segms_res
def draw_bounding_box_on_image(image_path,
nms_out,
draw_threshold,
label_list,
num_id_to_cat_id_map,
image=None):
if image is None:
image = Image.open(image_path)
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
for dt in nms_out:
xmin, ymin, xmax, ymax, score, category_id = dt.tolist()
for dt in np.array(nms_out):
num_id, score, xmin, ymin, xmax, ymax = dt.tolist()
category_id = num_id_to_cat_id_map[num_id]
if score < draw_threshold:
continue
bbox = dt[:4]
xmin, ymin, xmax, ymax = bbox
draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)],
width=4,
width=2,
fill='red')
if image.mode == 'RGB':
draw.text((xmin, ymin), label_list[int(category_id)], (255, 255, 0))
image_name = image_path.split('/')[-1]
print("image with bbox drawed saved as {}".format(image_name))
image.save(image_name)
def draw_mask_on_image(image_path, segms_out, draw_threshold, alpha=0.7):
image = Image.open(image_path)
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
mask_color_id = 0
w_ratio = .4
image = np.array(image).astype('float32')
for dt in np.array(segms_out):
segm, num_id, score = dt.tolist()
if score < draw_threshold:
continue
mask = mask_util.decode(segm) * 255
color_list = colormap(rgb=True)
color_mask = color_list[mask_color_id % len(color_list), 0:3]
mask_color_id += 1
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
image[idx[0], idx[1], :] *= 1.0 - alpha
image[idx[0], idx[1], :] += alpha * color_mask
image = Image.fromarray(image.astype('uint8'))
return image
def segm_results(im_results, masks, im_info):
im_results = np.array(im_results)
class_num = cfg.class_num
M = cfg.resolution
scale = (M + 2.0) / M
lod = masks.lod()[0]
masks_v = np.array(masks)
boxes = im_results[:, 2:]
labels = im_results[:, 0]
segms_results = [[] for _ in range(len(lod) - 1)]
sum = 0
for i in range(len(lod) - 1):
im_results_n = im_results[lod[i]:lod[i + 1]]
cls_segms = []
masks_n = masks_v[lod[i]:lod[i + 1]]
boxes_n = boxes[lod[i]:lod[i + 1]]
labels_n = labels[lod[i]:lod[i + 1]]
im_h = int(round(im_info[i][0] / im_info[i][2]))
im_w = int(round(im_info[i][1] / im_info[i][2]))
boxes_n = box_utils.expand_boxes(boxes_n, scale)
boxes_n = boxes_n.astype(np.int32)
padded_mask = np.zeros((M + 2, M + 2), dtype=np.float32)
for j in range(len(im_results_n)):
class_id = int(labels_n[j])
padded_mask[1:-1, 1:-1] = masks_n[j, class_id, :, :]
ref_box = boxes_n[j, :]
w = ref_box[2] - ref_box[0] + 1
h = ref_box[3] - ref_box[1] + 1
w = np.maximum(w, 1)
h = np.maximum(h, 1)
mask = cv2.resize(padded_mask, (w, h))
mask = np.array(mask > cfg.mrcnn_thresh_binarize, dtype=np.uint8)
im_mask = np.zeros((im_h, im_w), dtype=np.uint8)
x_0 = max(ref_box[0], 0)
x_1 = min(ref_box[2] + 1, im_w)
y_0 = max(ref_box[1], 0)
y_1 = min(ref_box[3] + 1, im_h)
im_mask[y_0:y_1, x_0:x_1] = mask[(y_0 - ref_box[1]):(y_1 - ref_box[
1]), (x_0 - ref_box[0]):(x_1 - ref_box[0])]
sum += im_mask.sum()
rle = mask_util.encode(
np.array(
im_mask[:, :, np.newaxis], order='F'))[0]
cls_segms.append(rle)
segms_results[i] = np.array(cls_segms)[:, np.newaxis]
segms_results = np.vstack([segms_results[k] for k in range(len(lod) - 1)])
im_results = np.hstack([segms_results, im_results])
return im_results[:, :3]
import os
import time
import numpy as np
from eval_helper import get_nmsed_box
from eval_helper import get_dt_res
from eval_helper import draw_bounding_box_on_image
from eval_helper import *
import paddle
import paddle.fluid as fluid
import reader
......@@ -14,17 +12,16 @@ import json
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval, Params
from config import cfg
from roidbs import DatasetPath
def infer():
if '2014' in cfg.dataset:
test_list = 'annotations/instances_val2014.json'
elif '2017' in cfg.dataset:
test_list = 'annotations/instances_val2017.json'
data_path = DatasetPath('val')
test_list = data_path.get_file_list()
cocoGt = COCO(os.path.join(cfg.data_dir, test_list))
numId_to_catId_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
cocoGt = COCO(test_list)
num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())}
category_ids = cocoGt.getCatIds()
label_list = {
item['id']: item['name']
......@@ -34,13 +31,15 @@ def infer():
image_shape = [3, cfg.TEST.max_size, cfg.TEST.max_size]
class_nums = cfg.class_num
model = model_builder.FasterRCNN(
model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=False,
is_train=False)
model.build_model(image_shape)
rpn_rois, confs, locs = model.eval_out()
pred_boxes = model.eval_bbox_out()
if cfg.MASK_ON:
masks = model.eval_mask_out()
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
# yapf: disable
......@@ -53,17 +52,29 @@ def infer():
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
dts_res = []
fetch_list = [rpn_rois, confs, locs]
segms_res = []
if cfg.MASK_ON:
fetch_list = [pred_boxes, masks]
else:
fetch_list = [pred_boxes]
data = next(infer_reader())
im_info = [data[0][1]]
rpn_rois_v, confs_v, locs_v = exe.run(
fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data),
return_numpy=False)
new_lod, nmsed_out = get_nmsed_box(rpn_rois_v, confs_v, locs_v, class_nums,
im_info, numId_to_catId_map)
result = exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data),
return_numpy=False)
pred_boxes_v = result[0]
if cfg.MASK_ON:
masks_v = result[1]
new_lod = pred_boxes_v.lod()
nmsed_out = pred_boxes_v
path = os.path.join(cfg.image_path, cfg.image_name)
draw_bounding_box_on_image(path, nmsed_out, cfg.draw_threshold, label_list)
image = None
if cfg.MASK_ON:
segms_out = segm_results(nmsed_out, masks_v, im_info)
image = draw_mask_on_image(path, segms_out, cfg.draw_threshold)
draw_bounding_box_on_image(path, nmsed_out, cfg.draw_threshold, label_list,
num_id_to_cat_id_map, image)
if __name__ == '__main__':
......
......@@ -16,11 +16,12 @@ import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
from paddle.fluid.initializer import Normal
from paddle.fluid.initializer import MSRA
from paddle.fluid.regularizer import L2Decay
from config import cfg
class FasterRCNN(object):
class RCNN(object):
def __init__(self,
add_conv_body_func=None,
add_roi_box_head_func=None,
......@@ -32,7 +33,6 @@ class FasterRCNN(object):
self.is_train = is_train
self.use_pyreader = use_pyreader
self.use_random = use_random
#self.py_reader = None
def build_model(self, image_shape):
self.build_input(image_shape)
......@@ -41,31 +41,62 @@ class FasterRCNN(object):
self.rpn_heads(body_conv)
# Fast RCNN
self.fast_rcnn_heads(body_conv)
if not self.is_train:
self.eval_bbox()
# Mask RCNN
if cfg.MASK_ON:
self.mask_rcnn_heads(body_conv)
def loss(self):
losses = []
# Fast RCNN loss
loss_cls, loss_bbox = self.fast_rcnn_loss()
# RPN loss
rpn_cls_loss, rpn_reg_loss = self.rpn_loss()
return loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss,
losses = [loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss]
rkeys = ['loss', 'loss_cls', 'loss_bbox', \
'loss_rpn_cls', 'loss_rpn_bbox',]
if cfg.MASK_ON:
loss_mask = self.mask_rcnn_loss()
losses = losses + [loss_mask]
rkeys = rkeys + ["loss_mask"]
loss = fluid.layers.sum(losses)
rloss = [loss] + losses
return rloss, rkeys
def eval_out(self):
cls_prob = fluid.layers.softmax(self.cls_score, use_cudnn=False)
return [self.rpn_rois, cls_prob, self.bbox_pred]
def eval_mask_out(self):
return self.mask_fcn_logits
def eval_bbox_out(self):
return self.pred_result
def build_input(self, image_shape):
if self.use_pyreader:
in_shapes = [[-1] + image_shape, [-1, 4], [-1, 1], [-1, 1],
[-1, 3], [-1, 1]]
lod_levels = [0, 1, 1, 1, 0, 0]
dtypes = [
'float32', 'float32', 'int32', 'int32', 'float32', 'int32'
]
if cfg.MASK_ON:
in_shapes.append([-1, 2])
lod_levels.append(3)
dtypes.append('float32')
self.py_reader = fluid.layers.py_reader(
capacity=64,
shapes=[[-1] + image_shape, [-1, 4], [-1, 1], [-1, 1], [-1, 3],
[-1, 1]],
lod_levels=[0, 1, 1, 1, 0, 0],
dtypes=[
"float32", "float32", "int32", "int32", "float32", "int32"
],
shapes=in_shapes,
lod_levels=lod_levels,
dtypes=dtypes,
use_double_buffer=True)
self.image, self.gt_box, self.gt_label, self.is_crowd, \
self.im_info, self.im_id = fluid.layers.read_file(self.py_reader)
ins = fluid.layers.read_file(self.py_reader)
self.image = ins[0]
self.gt_box = ins[1]
self.gt_label = ins[2]
self.is_crowd = ins[3]
self.im_info = ins[4]
self.im_id = ins[5]
if cfg.MASK_ON:
self.gt_masks = ins[6]
else:
self.image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
......@@ -74,24 +105,55 @@ class FasterRCNN(object):
self.gt_label = fluid.layers.data(
name='gt_label', shape=[1], dtype='int32', lod_level=1)
self.is_crowd = fluid.layers.data(
name='is_crowd',
shape=[-1],
dtype='int32',
lod_level=1,
append_batch_size=False)
name='is_crowd', shape=[1], dtype='int32', lod_level=1)
self.im_info = fluid.layers.data(
name='im_info', shape=[3], dtype='float32')
self.im_id = fluid.layers.data(
name='im_id', shape=[1], dtype='int32')
if cfg.MASK_ON:
self.gt_masks = fluid.layers.data(
name='gt_masks', shape=[2], dtype='float32', lod_level=3)
def feeds(self):
if not self.is_train:
return [self.image, self.im_info, self.im_id]
if not cfg.MASK_ON:
return [
self.image, self.gt_box, self.gt_label, self.is_crowd,
self.im_info, self.im_id
]
return [
self.image, self.gt_box, self.gt_label, self.is_crowd, self.im_info,
self.im_id
self.im_id, self.gt_masks
]
def eval_bbox(self):
self.im_scale = fluid.layers.slice(
self.im_info, [1], starts=[2], ends=[3])
im_scale_lod = fluid.layers.sequence_expand(self.im_scale,
self.rpn_rois)
boxes = self.rpn_rois / im_scale_lod
cls_prob = fluid.layers.softmax(self.cls_score, use_cudnn=False)
bbox_pred_reshape = fluid.layers.reshape(self.bbox_pred,
(-1, cfg.class_num, 4))
decoded_box = fluid.layers.box_coder(
prior_box=boxes,
prior_box_var=cfg.bbox_reg_weights,
target_box=bbox_pred_reshape,
code_type='decode_center_size',
box_normalized=False,
axis=1)
cliped_box = fluid.layers.box_clip(
input=decoded_box, im_info=self.im_info)
self.pred_result = fluid.layers.multiclass_nms(
bboxes=cliped_box,
scores=cls_prob,
score_threshold=cfg.TEST.score_thresh,
nms_top_k=-1,
nms_threshold=cfg.TEST.nms_thresh,
keep_top_k=cfg.TEST.detections_per_im,
normalized=False)
def rpn_heads(self, rpn_input):
# RPN hidden representation
dim_out = rpn_input.shape[1]
......@@ -157,7 +219,7 @@ class FasterRCNN(object):
nms_thresh = param_obj.rpn_nms_thresh
min_size = param_obj.rpn_min_size
eta = param_obj.rpn_eta
rpn_rois, rpn_roi_probs = fluid.layers.generate_proposals(
self.rpn_rois, self.rpn_roi_probs = fluid.layers.generate_proposals(
scores=rpn_cls_score_prob,
bbox_deltas=self.rpn_bbox_pred,
im_info=self.im_info,
......@@ -168,10 +230,9 @@ class FasterRCNN(object):
nms_thresh=nms_thresh,
min_size=min_size,
eta=eta)
self.rpn_rois = rpn_rois
if self.is_train:
outs = fluid.layers.generate_proposal_labels(
rpn_rois=rpn_rois,
rpn_rois=self.rpn_rois,
gt_classes=self.gt_label,
is_crowd=self.is_crowd,
gt_boxes=self.gt_box,
......@@ -191,27 +252,28 @@ class FasterRCNN(object):
self.bbox_inside_weights = outs[3]
self.bbox_outside_weights = outs[4]
if cfg.MASK_ON:
mask_out = fluid.layers.generate_mask_labels(
im_info=self.im_info,
gt_classes=self.gt_label,
is_crowd=self.is_crowd,
gt_segms=self.gt_masks,
rois=self.rois,
labels_int32=self.labels_int32,
num_classes=cfg.class_num,
resolution=cfg.resolution)
self.mask_rois = mask_out[0]
self.roi_has_mask_int32 = mask_out[1]
self.mask_int32 = mask_out[2]
def fast_rcnn_heads(self, roi_input):
if self.is_train:
pool_rois = self.rois
else:
pool_rois = self.rpn_rois
if cfg.roi_func == 'RoIPool':
pool = fluid.layers.roi_pool(
input=roi_input,
rois=pool_rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale)
elif cfg.roi_func == 'RoIAlign':
pool = fluid.layers.roi_align(
input=roi_input,
rois=pool_rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale,
sampling_ratio=cfg.sampling_ratio)
rcnn_out = self.add_roi_box_head_func(pool)
self.res5_2_sum = self.add_roi_box_head_func(roi_input, pool_rois)
rcnn_out = fluid.layers.pool2d(
self.res5_2_sum, pool_type='avg', pool_size=7, name='res5_pool')
self.cls_score = fluid.layers.fc(input=rcnn_out,
size=cfg.class_num,
act=None,
......@@ -237,15 +299,87 @@ class FasterRCNN(object):
learning_rate=2.,
regularizer=L2Decay(0.)))
def SuffixNet(self, conv5):
mask_out = fluid.layers.conv2d_transpose(
input=conv5,
num_filters=cfg.dim_reduced,
filter_size=2,
stride=2,
act='relu',
param_attr=ParamAttr(
name='conv5_mask_w', initializer=MSRA(uniform=False)),
bias_attr=ParamAttr(
name='conv5_mask_b', learning_rate=2., regularizer=L2Decay(0.)))
act_func = None
if not self.is_train:
act_func = 'sigmoid'
mask_fcn_logits = fluid.layers.conv2d(
input=mask_out,
num_filters=cfg.class_num,
filter_size=1,
act=act_func,
param_attr=ParamAttr(
name='mask_fcn_logits_w', initializer=MSRA(uniform=False)),
bias_attr=ParamAttr(
name="mask_fcn_logits_b",
learning_rate=2.,
regularizer=L2Decay(0.)))
if not self.is_train:
mask_fcn_logits = fluid.layers.lod_reset(mask_fcn_logits,
self.pred_result)
return mask_fcn_logits
def mask_rcnn_heads(self, mask_input):
if self.is_train:
conv5 = fluid.layers.gather(self.res5_2_sum,
self.roi_has_mask_int32)
self.mask_fcn_logits = self.SuffixNet(conv5)
else:
self.eval_bbox()
pred_res_shape = fluid.layers.shape(self.pred_result)
shape = fluid.layers.reduce_prod(pred_res_shape)
shape = fluid.layers.reshape(shape, [1, 1])
ones = fluid.layers.fill_constant([1, 1], value=1, dtype='int32')
cond = fluid.layers.equal(x=shape, y=ones)
ie = fluid.layers.IfElse(cond)
with ie.true_block():
pred_res_null = ie.input(self.pred_result)
ie.output(pred_res_null)
with ie.false_block():
pred_res = ie.input(self.pred_result)
pred_boxes = fluid.layers.slice(
pred_res, [1], starts=[2], ends=[6])
im_scale_lod = fluid.layers.sequence_expand(self.im_scale,
pred_boxes)
mask_rois = pred_boxes * im_scale_lod
conv5 = self.add_roi_box_head_func(mask_input, mask_rois)
mask_fcn = self.SuffixNet(conv5)
ie.output(mask_fcn)
self.mask_fcn_logits = ie()[0]
def mask_rcnn_loss(self):
mask_label = fluid.layers.cast(x=self.mask_int32, dtype='float32')
reshape_dim = cfg.class_num * cfg.resolution * cfg.resolution
mask_fcn_logits_reshape = fluid.layers.reshape(self.mask_fcn_logits,
(-1, reshape_dim))
loss_mask = fluid.layers.sigmoid_cross_entropy_with_logits(
x=mask_fcn_logits_reshape,
label=mask_label,
ignore_index=-1,
normalize=True)
loss_mask = fluid.layers.reduce_sum(loss_mask, name='loss_mask')
return loss_mask
def fast_rcnn_loss(self):
labels_int64 = fluid.layers.cast(x=self.labels_int32, dtype='int64')
labels_int64.stop_gradient = True
#loss_cls = fluid.layers.softmax_with_cross_entropy(
# logits=cls_score,
# label=labels_int64
# )
cls_prob = fluid.layers.softmax(self.cls_score, use_cudnn=False)
loss_cls = fluid.layers.cross_entropy(cls_prob, labels_int64)
loss_cls = fluid.layers.softmax_with_cross_entropy(
logits=self.cls_score,
label=labels_int64,
numeric_stable_mode=True, )
loss_cls = fluid.layers.reduce_mean(loss_cls)
loss_bbox = fluid.layers.smooth_l1(
x=self.bbox_pred,
......@@ -303,5 +437,4 @@ class FasterRCNN(object):
norm = fluid.layers.reduce_prod(score_shape)
norm.stop_gradient = True
rpn_reg_loss = rpn_reg_loss / norm
return rpn_cls_loss, rpn_reg_loss
......@@ -160,8 +160,22 @@ def add_ResNet50_conv4_body(body_input):
return res4
def add_ResNet_roi_conv5_head(head_input):
res5 = layer_warp(bottleneck, head_input, 512, 3, 2, name="res5")
res5_pool = fluid.layers.pool2d(
res5, pool_type='avg', pool_size=7, name='res5_pool')
return res5_pool
def add_ResNet_roi_conv5_head(head_input, rois):
if cfg.roi_func == 'RoIPool':
pool = fluid.layers.roi_pool(
input=head_input,
rois=rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale)
elif cfg.roi_func == 'RoIAlign':
pool = fluid.layers.roi_align(
input=head_input,
rois=rois,
pooled_height=cfg.roi_resolution,
pooled_width=cfg.roi_resolution,
spatial_scale=cfg.spatial_scale,
sampling_ratio=cfg.sampling_ratio)
res5 = layer_warp(bottleneck, pool, 512, 3, 2, name="res5")
return res5
......@@ -37,18 +37,15 @@ def train():
devices = os.getenv("CUDA_VISIBLE_DEVICES") or ""
devices_num = len(devices.split(","))
total_batch_size = devices_num * cfg.TRAIN.im_per_batch
model = model_builder.FasterRCNN(
model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=cfg.use_pyreader,
use_random=False)
model.build_model(image_shape)
loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss = model.loss()
loss_cls.persistable = True
loss_bbox.persistable = True
rpn_cls_loss.persistable = True
rpn_reg_loss.persistable = True
loss = loss_cls + loss_bbox + rpn_cls_loss + rpn_reg_loss
losses, keys = model.loss()
loss = losses[0]
fetch_list = [loss]
boundaries = cfg.lr_steps
gamma = cfg.lr_gamma
......@@ -95,8 +92,6 @@ def train():
train_reader = reader.train(batch_size=total_batch_size, shuffle=False)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
fetch_list = [loss, loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss]
def run(iterations):
reader_time = []
run_time = []
......@@ -109,20 +104,16 @@ def train():
reader_time.append(end_time - start_time)
start_time = time.time()
if cfg.parallel:
losses = train_exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
else:
losses = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
outs = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
end_time = time.time()
run_time.append(end_time - start_time)
total_images += len(data)
lr = np.array(fluid.global_scope().find_var('learning_rate')
.get_tensor())
print("Batch {:d}, lr {:.6f}, loss {:.6f} ".format(batch_id, lr[0],
losses[0][0]))
print("Batch {:d}, loss {:.6f} ".format(batch_id, np.mean(outs[0])))
return reader_time, run_time, total_images
def run_pyreader(iterations):
......@@ -135,18 +126,16 @@ def train():
for batch_id in range(iterations):
start_time = time.time()
if cfg.parallel:
losses = train_exe.run(
outs = train_exe.run(
fetch_list=[v.name for v in fetch_list])
else:
losses = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list])
outs = exe.run(fluid.default_main_program(),
fetch_list=[v.name for v in fetch_list])
end_time = time.time()
run_time.append(end_time - start_time)
total_images += devices_num
lr = np.array(fluid.global_scope().find_var('learning_rate')
.get_tensor())
print("Batch {:d}, lr {:.6f}, loss {:.6f} ".format(batch_id, lr[
0], losses[0][0]))
print("Batch {:d}, loss {:.6f} ".format(batch_id,
np.mean(outs[0])))
except fluid.core.EOFException:
py_reader.reset()
......
......@@ -27,6 +27,46 @@ from collections import deque
from roidbs import JsonDataset
import data_utils
from config import cfg
import segm_utils
def roidb_reader(roidb, mode):
im, im_scales = data_utils.get_image_blob(roidb, mode)
im_id = roidb['id']
im_height = np.round(roidb['height'] * im_scales)
im_width = np.round(roidb['width'] * im_scales)
im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
if mode == 'val' or mode == 'infer':
return im, im_info, im_id
gt_boxes = roidb['gt_boxes'].astype('float32')
gt_classes = roidb['gt_classes'].astype('int32')
is_crowd = roidb['is_crowd'].astype('int32')
segms = roidb['segms']
outs = (im, gt_boxes, gt_classes, is_crowd, im_info, im_id)
if cfg.MASK_ON:
gt_masks = []
valid = True
segms = roidb['segms']
assert len(segms) == is_crowd.shape[0]
for i in range(len(roidb['segms'])):
segm, iscrowd = segms[i], is_crowd[i]
gt_segm = []
if iscrowd:
gt_segm.append([[0, 0]])
else:
for poly in segm:
if len(poly) == 0:
valid = False
break
gt_segm.append(np.array(poly).reshape(-1, 2))
if (not valid) or len(gt_segm) == 0:
break
gt_masks.append(gt_segm)
outs = outs + (gt_masks, )
return outs
def coco(mode,
......@@ -34,48 +74,16 @@ def coco(mode,
total_batch_size=None,
padding_total=False,
shuffle=False):
if 'coco2014' in cfg.dataset:
cfg.train_file_list = 'annotations/instances_train2014.json'
cfg.train_data_dir = 'train2014'
cfg.val_file_list = 'annotations/instances_val2014.json'
cfg.val_data_dir = 'val2014'
elif 'coco2017' in cfg.dataset:
cfg.train_file_list = 'annotations/instances_train2017.json'
cfg.train_data_dir = 'train2017'
cfg.val_file_list = 'annotations/instances_val2017.json'
cfg.val_data_dir = 'val2017'
else:
raise NotImplementedError('Dataset {} not supported'.format(
cfg.dataset))
cfg.mean_value = np.array(cfg.pixel_means)[np.newaxis,
np.newaxis, :].astype('float32')
total_batch_size = total_batch_size if total_batch_size else batch_size
if mode != 'infer':
assert total_batch_size % batch_size == 0
if mode == 'train':
cfg.train_file_list = os.path.join(cfg.data_dir, cfg.train_file_list)
cfg.train_data_dir = os.path.join(cfg.data_dir, cfg.train_data_dir)
elif mode == 'test' or mode == 'infer':
cfg.val_file_list = os.path.join(cfg.data_dir, cfg.val_file_list)
cfg.val_data_dir = os.path.join(cfg.data_dir, cfg.val_data_dir)
json_dataset = JsonDataset(train=(mode == 'train'))
json_dataset = JsonDataset(mode)
roidbs = json_dataset.get_roidb()
print("{} on {} with {} roidbs".format(mode, cfg.dataset, len(roidbs)))
def roidb_reader(roidb, mode):
im, im_scales = data_utils.get_image_blob(roidb, mode)
im_id = roidb['id']
im_height = np.round(roidb['height'] * im_scales)
im_width = np.round(roidb['width'] * im_scales)
im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
if mode == 'test' or mode == 'infer':
return im, im_info, im_id
gt_boxes = roidb['gt_boxes'].astype('float32')
gt_classes = roidb['gt_classes'].astype('int32')
is_crowd = roidb['is_crowd'].astype('int32')
return im, gt_boxes, gt_classes, is_crowd, im_info, im_id
def padding_minibatch(batch_data):
if len(batch_data) == 1:
return batch_data
......@@ -93,39 +101,53 @@ def coco(mode,
def reader():
if mode == "train":
roidb_perm = deque(np.random.permutation(roidbs))
if shuffle:
roidb_perm = deque(np.random.permutation(roidbs))
else:
roidb_perm = deque(roidbs)
roidb_cur = 0
count = 0
batch_out = []
device_num = total_batch_size / batch_size
while True:
roidb = roidb_perm[0]
roidb_cur += 1
roidb_perm.rotate(-1)
if roidb_cur >= len(roidbs):
roidb_perm = deque(np.random.permutation(roidbs))
if shuffle:
roidb_perm = deque(np.random.permutation(roidbs))
else:
roidb_perm = deque(roidbs)
roidb_cur = 0
im, gt_boxes, gt_classes, is_crowd, im_info, im_id = roidb_reader(
roidb, mode)
if gt_boxes.shape[0] == 0:
# im, gt_boxes, gt_classes, is_crowd, im_info, im_id, gt_masks
datas = roidb_reader(roidb, mode)
if datas[1].shape[0] == 0:
continue
batch_out.append(
(im, gt_boxes, gt_classes, is_crowd, im_info, im_id))
if cfg.MASK_ON:
if len(datas[-1]) != datas[1].shape[0]:
continue
batch_out.append(datas)
if not padding_total:
if len(batch_out) == batch_size:
yield padding_minibatch(batch_out)
count += 1
batch_out = []
else:
if len(batch_out) == total_batch_size:
batch_out = padding_minibatch(batch_out)
for i in range(total_batch_size / batch_size):
for i in range(device_num):
sub_batch_out = []
for j in range(batch_size):
sub_batch_out.append(batch_out[i * batch_size +
j])
yield sub_batch_out
count += 1
sub_batch_out = []
batch_out = []
elif mode == "test":
iter_id = count // device_num
if iter_id >= cfg.max_iter:
return
elif mode == "val":
batch_out = []
for roidb in roidbs:
im, im_info, im_id = roidb_reader(roidb, mode)
......@@ -153,7 +175,7 @@ def train(batch_size, total_batch_size=None, padding_total=False, shuffle=True):
def test(batch_size, total_batch_size=None, padding_total=False):
return coco('test', batch_size, total_batch_size, shuffle=False)
return coco('val', batch_size, total_batch_size, shuffle=False)
def infer():
......
......@@ -36,24 +36,39 @@ import matplotlib
matplotlib.use('Agg')
from pycocotools.coco import COCO
import box_utils
import segm_utils
from config import cfg
logger = logging.getLogger(__name__)
class DatasetPath(object):
def __init__(self, mode):
self.mode = mode
mode_name = 'train' if mode == 'train' else 'val'
if cfg.dataset != 'coco2014' and cfg.dataset != 'coco2017':
raise NotImplementedError('Dataset {} not supported'.format(
cfg.dataset))
self.sub_name = mode_name + cfg.dataset[-4:]
def get_data_dir(self):
return os.path.join(cfg.data_dir, self.sub_name)
def get_file_list(self):
sfile_list = 'annotations/instances_' + self.sub_name + '.json'
return os.path.join(cfg.data_dir, sfile_list)
class JsonDataset(object):
"""A class representing a COCO json dataset."""
def __init__(self, train=False):
def __init__(self, mode):
print('Creating: {}'.format(cfg.dataset))
self.name = cfg.dataset
self.is_train = train
if self.is_train:
data_dir = cfg.train_data_dir
file_list = cfg.train_file_list
else:
data_dir = cfg.val_data_dir
file_list = cfg.val_file_list
self.is_train = mode == 'train'
data_path = DatasetPath(mode)
data_dir = data_path.get_data_dir()
file_list = data_path.get_file_list()
self.image_directory = data_dir
self.COCO = COCO(file_list)
# Set up dataset classes
......@@ -91,8 +106,9 @@ class JsonDataset(object):
end_time = time.time()
print('_add_gt_annotations took {:.3f}s'.format(end_time -
start_time))
print('Appending horizontally-flipped training examples...')
self._extend_with_flipped_entries(roidb)
if cfg.TRAIN.use_flipped:
print('Appending horizontally-flipped training examples...')
self._extend_with_flipped_entries(roidb)
print('Loaded dataset: {:s}'.format(self.name))
print('{:d} roidb entries'.format(len(roidb)))
if self.is_train:
......@@ -111,6 +127,7 @@ class JsonDataset(object):
entry['gt_classes'] = np.empty((0), dtype=np.int32)
entry['gt_id'] = np.empty((0), dtype=np.int32)
entry['is_crowd'] = np.empty((0), dtype=np.bool)
entry['segms'] = []
# Remove unwanted fields that come from the json file (if they exist)
for k in ['date_captured', 'url', 'license', 'file_name']:
if k in entry:
......@@ -126,9 +143,15 @@ class JsonDataset(object):
objs = self.COCO.loadAnns(ann_ids)
# Sanitize bboxes -- some are invalid
valid_objs = []
valid_segms = []
width = entry['width']
height = entry['height']
for obj in objs:
if isinstance(obj['segmentation'], list):
# Valid polygons have >= 3 points, so require >= 6 coordinates
obj['segmentation'] = [
p for p in obj['segmentation'] if len(p) >= 6
]
if obj['area'] < cfg.TRAIN.gt_min_area:
continue
if 'ignore' in obj and obj['ignore'] == 1:
......@@ -141,6 +164,8 @@ class JsonDataset(object):
if obj['area'] > 0 and x2 > x1 and y2 > y1:
obj['clean_bbox'] = [x1, y1, x2, y2]
valid_objs.append(obj)
valid_segms.append(obj['segmentation'])
num_valid_objs = len(valid_objs)
gt_boxes = np.zeros((num_valid_objs, 4), dtype=entry['gt_boxes'].dtype)
......@@ -158,6 +183,7 @@ class JsonDataset(object):
entry['gt_classes'] = np.append(entry['gt_classes'], gt_classes)
entry['gt_id'] = np.append(entry['gt_id'], gt_id)
entry['is_crowd'] = np.append(entry['is_crowd'], is_crowd)
entry['segms'].extend(valid_segms)
def _extend_with_flipped_entries(self, roidb):
"""Flip each entry in the given roidb and return a new roidb that is the
......@@ -175,11 +201,13 @@ class JsonDataset(object):
gt_boxes[:, 2] = width - oldx1 - 1
assert (gt_boxes[:, 2] >= gt_boxes[:, 0]).all()
flipped_entry = {}
dont_copy = ('gt_boxes', 'flipped')
dont_copy = ('gt_boxes', 'flipped', 'segms')
for k, v in entry.items():
if k not in dont_copy:
flipped_entry[k] = v
flipped_entry['gt_boxes'] = gt_boxes
flipped_entry['segms'] = segm_utils.flip_segms(
entry['segms'], entry['height'], entry['width'])
flipped_entry['flipped'] = True
flipped_roidb.append(flipped_entry)
roidb.extend(flipped_roidb)
......
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
model=$1 # faster_rcnn, mask_rcnn
if [ "$model" = "faster_rcnn" ]; then
mask_on="--MASK_ON False"
elif [ "$model" = "mask_rcnn" ]; then
mask_on="--MASK_ON True"
else
echo "Invalid model provided. Please use one of {faster_rcnn, mask_rcnn}"
exit 1
fi
python -u ../eval_coco_map.py \
$mask_on \
--pretrained_model=../output/model_iter179999 \
--data_dir=../dataset/coco/ \
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
model=$1 # faster_rcnn, mask_rcnn
if [ "$model" = "faster_rcnn" ]; then
mask_on="--MASK_ON False"
elif [ "$model" = "mask_rcnn" ]; then
mask_on="--MASK_ON True"
else
echo "Invalid model provided. Please use one of {faster_rcnn, mask_rcnn}"
exit 1
fi
python -u ../infer.py \
$mask_on \
--pretrained_model=../output/model_iter179999 \
--image_path=../dataset/coco/val2017/ \
--image_name=000000000139.jpg \
--draw_threshold=0.6
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
model=$1 # faster_rcnn, mask_rcnn
if [ "$model" = "faster_rcnn" ]; then
mask_on="--MASK_ON False"
elif [ "$model" = "mask_rcnn" ]; then
mask_on="--MASK_ON True"
else
echo "Invalid model provided. Please use one of {faster_rcnn, mask_rcnn}"
exit 1
fi
python -u ../train.py \
$mask_on \
--model_save_dir=../output/ \
--pretrained_model=../imagenet_resnet50_fusebn/ \
--data_dir=../dataset/coco/ \
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://w_idxw.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# Detectron
# Copyright (c) 2017-present, Facebook, Inc.
# Licensed under the Apache License, Version 2.0;
# Written by Ross Girshick
# --------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import pycocotools.mask as mask_util
import cv2
def is_poly(segm):
"""Determine if segm is a polygon. Valid segm expected (polygon or RLE)."""
assert isinstance(segm, (list, dict)), \
'Invalid segm type: {}'.format(type(segm))
return isinstance(segm, list)
def segms_to_rle(segms, height, width):
rle = segms
if isinstance(segms, list):
# polygon -- a single object might consist of multiple parts
# we merge all parts into one mask rle code
rles = mask_util.frPyObjects(segms, height, width)
rle = mask_util.merge(rles)
elif isinstance(segms['counts'], list):
# uncompressed RLE
rle = mask_util.frPyObjects(segms, height, width)
return rle
def segms_to_mask(segms, iscrowd, height, width):
print('segms: ', segms)
if iscrowd:
return [[0 for i in range(width)] for j in range(height)]
rle = segms_to_rle(segms, height, width)
mask = mask_util.decode(rle)
return mask
def flip_segms(segms, height, width):
"""Left/right flip each mask in a list of masks."""
def _flip_poly(poly, width):
flipped_poly = np.array(poly)
flipped_poly[0::2] = width - np.array(poly[0::2]) - 1
return flipped_poly.tolist()
def _flip_rle(rle, height, width):
if 'counts' in rle and type(rle['counts']) == list:
# Magic RLE format handling painfully discovered by looking at the
# COCO API showAnns function.
rle = mask_util.frPyObjects([rle], height, width)
mask = mask_util.decode(rle)
mask = mask[:, ::-1, :]
rle = mask_util.encode(np.array(mask, order='F', dtype=np.uint8))
return rle
flipped_segms = []
for segm in segms:
if is_poly(segm):
# Polygon format
flipped_segms.append([_flip_poly(poly, width) for poly in segm])
else:
# RLE format
flipped_segms.append(_flip_rle(segm, height, width))
return flipped_segms
......@@ -20,7 +20,8 @@ import sys
import numpy as np
import time
import shutil
from utility import parse_args, print_arguments, SmoothedValue
from utility import parse_args, print_arguments, SmoothedValue, TrainingStats, now_time
import collections
import paddle
import paddle.fluid as fluid
......@@ -35,7 +36,7 @@ def train():
learning_rate = cfg.learning_rate
image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]
if cfg.debug or cfg.enable_ce:
if cfg.enable_ce:
fluid.default_startup_program().random_seed = 1000
fluid.default_main_program().random_seed = 1000
import random
......@@ -49,36 +50,36 @@ def train():
use_random = True
if cfg.enable_ce:
use_random = False
model = model_builder.FasterRCNN(
model = model_builder.RCNN(
add_conv_body_func=resnet.add_ResNet50_conv4_body,
add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
use_pyreader=cfg.use_pyreader,
use_random=use_random)
model.build_model(image_shape)
loss_cls, loss_bbox, rpn_cls_loss, rpn_reg_loss = model.loss()
loss_cls.persistable = True
loss_bbox.persistable = True
rpn_cls_loss.persistable = True
rpn_reg_loss.persistable = True
loss = loss_cls + loss_bbox + rpn_cls_loss + rpn_reg_loss
losses, keys = model.loss()
loss = losses[0]
fetch_list = losses
boundaries = cfg.lr_steps
gamma = cfg.lr_gamma
step_num = len(cfg.lr_steps)
values = [learning_rate * (gamma**i) for i in range(step_num + 1)]
lr = exponential_with_warmup_decay(
learning_rate=learning_rate,
boundaries=boundaries,
values=values,
warmup_iter=cfg.warm_up_iter,
warmup_factor=cfg.warm_up_factor)
optimizer = fluid.optimizer.Momentum(
learning_rate=exponential_with_warmup_decay(
learning_rate=learning_rate,
boundaries=boundaries,
values=values,
warmup_iter=cfg.warm_up_iter,
warmup_factor=cfg.warm_up_factor),
learning_rate=lr,
regularization=fluid.regularizer.L2Decay(cfg.weight_decay),
momentum=cfg.momentum)
optimizer.minimize(loss)
fetch_list = fetch_list + [lr]
fluid.memory_optimize(fluid.default_main_program())
fluid.memory_optimize(
fluid.default_main_program(), skip_opt_set=set(fetch_list))
place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
......@@ -107,7 +108,8 @@ def train():
py_reader = model.py_reader
py_reader.decorate_paddle_reader(train_reader)
else:
train_reader = reader.train(batch_size=total_batch_size, shuffle=shuffle)
train_reader = reader.train(
batch_size=total_batch_size, shuffle=shuffle)
feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())
def save_model(postfix):
......@@ -116,88 +118,72 @@ def train():
shutil.rmtree(model_path)
fluid.io.save_persistables(exe, model_path)
fetch_list = [loss, rpn_cls_loss, rpn_reg_loss, loss_cls, loss_bbox]
def train_loop_pyreader():
py_reader.start()
smoothed_loss = SmoothedValue(cfg.log_window)
train_stats = TrainingStats(cfg.log_window, keys)
try:
start_time = time.time()
prev_start_time = start_time
total_time = 0
last_loss = 0
every_pass_loss = []
for iter_id in range(cfg.max_iter):
prev_start_time = start_time
start_time = time.time()
losses = train_exe.run(fetch_list=[v.name for v in fetch_list])
every_pass_loss.append(np.mean(np.array(losses[0])))
smoothed_loss.add_value(np.mean(np.array(losses[0])))
lr = np.array(fluid.global_scope().find_var('learning_rate')
.get_tensor())
print("Iter {:d}, lr {:.6f}, loss {:.6f}, time {:.5f}".format(
iter_id, lr[0],
smoothed_loss.get_median_value(
), start_time - prev_start_time))
end_time = time.time()
total_time += end_time - start_time
last_loss = np.mean(np.array(losses[0]))
outs = train_exe.run(fetch_list=[v.name for v in fetch_list])
stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
train_stats.update(stats)
logs = train_stats.log()
strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
now_time(), iter_id,
np.mean(outs[-1]), logs, start_time - prev_start_time)
print(strs)
sys.stdout.flush()
if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
save_model("model_iter{}".format(iter_id))
# only for ce
end_time = time.time()
total_time = end_time - start_time
last_loss = np.array(outs[0]).mean()
if cfg.enable_ce:
gpu_num = devices_num
epoch_idx = iter_id + 1
loss = last_loss
print("kpis\teach_pass_duration_card%s\t%s" %
(gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" %
(gpu_num, loss))
except fluid.core.EOFException:
(gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))
except (StopIteration, fluid.core.EOFException):
py_reader.reset()
return np.mean(every_pass_loss)
def train_loop():
start_time = time.time()
prev_start_time = start_time
start = start_time
total_time = 0
last_loss = 0
every_pass_loss = []
smoothed_loss = SmoothedValue(cfg.log_window)
train_stats = TrainingStats(cfg.log_window, keys)
for iter_id, data in enumerate(train_reader()):
prev_start_time = start_time
start_time = time.time()
losses = train_exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
loss_v = np.mean(np.array(losses[0]))
every_pass_loss.append(loss_v)
smoothed_loss.add_value(loss_v)
lr = np.array(fluid.global_scope().find_var('learning_rate')
.get_tensor())
end_time = time.time()
total_time += end_time - start_time
last_loss = loss_v
print("Iter {:d}, lr {:.6f}, loss {:.6f}, time {:.5f}".format(
iter_id, lr[0],
smoothed_loss.get_median_value(), start_time - prev_start_time))
outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
feed=feeder.feed(data))
stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
train_stats.update(stats)
logs = train_stats.log()
strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
now_time(), iter_id,
np.mean(outs[-1]), logs, start_time - prev_start_time)
print(strs)
sys.stdout.flush()
if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
save_model("model_iter{}".format(iter_id))
if (iter_id + 1) == cfg.max_iter:
break
end_time = time.time()
total_time = end_time - start_time
last_loss = np.array(outs[0]).mean()
# only for ce
if cfg.enable_ce:
gpu_num = devices_num
epoch_idx = iter_id + 1
loss = last_loss
print("kpis\teach_pass_duration_card%s\t%s" %
(gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" %
(gpu_num, loss))
(gpu_num, total_time / epoch_idx))
print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))
return np.mean(every_pass_loss)
......
......@@ -22,7 +22,9 @@ import sys
import distutils.util
import numpy as np
import six
import collections
from collections import deque
import datetime
from paddle.fluid import core
import argparse
import functools
......@@ -85,6 +87,37 @@ class SmoothedValue(object):
return np.median(self.deque)
def now_time():
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
class TrainingStats(object):
def __init__(self, window_size, stats_keys):
self.smoothed_losses_and_metrics = {
key: SmoothedValue(window_size)
for key in stats_keys
}
def update(self, stats):
for k, v in self.smoothed_losses_and_metrics.items():
v.add_value(stats[k])
def get(self, extras=None):
stats = collections.OrderedDict()
if extras:
for k, v in extras.items():
stats[k] = v
for k, v in self.smoothed_losses_and_metrics.items():
stats[k] = round(v.get_median_value(), 3)
return stats
def log(self, extras=None):
d = self.get(extras)
strs = ', '.join(str(dict({x: y})).strip('{}') for x, y in d.items())
return strs
def parse_args():
"""return all args
"""
......@@ -108,14 +141,15 @@ def parse_args():
add_arg('learning_rate', float, 0.01, "Learning rate.")
add_arg('max_iter', int, 180000, "Iter number.")
add_arg('log_window', int, 20, "Log smooth window, set 1 for debug, set 20 for train.")
# FAST RCNN
# RCNN
# RPN
add_arg('anchor_sizes', int, [32,64,128,256,512], "The size of anchors.")
add_arg('aspect_ratios', float, [0.5,1.0,2.0], "The ratio of anchors.")
add_arg('variance', float, [1.,1.,1.,1.], "The variance of anchors.")
add_arg('rpn_stride', float, [16.,16.], "Stride of the feature map that RPN is attached.")
add_arg('rpn_nms_thresh', float, 0.7, "NMS threshold used on RPN proposals")
# TRAIN TEST INFER
# TRAIN VAL INFER
add_arg('MASK_ON', bool, False, "Option for different models. If False, choose faster_rcnn. If True, choose mask_rcnn")
add_arg('im_per_batch', int, 1, "Minibatch size.")
add_arg('max_size', int, 1333, "The resized image height.")
add_arg('scales', int, [800], "The resized image height.")
......@@ -124,7 +158,6 @@ def parse_args():
add_arg('nms_thresh', float, 0.5, "NMS threshold.")
add_arg('score_thresh', float, 0.05, "score threshold for NMS.")
add_arg('snapshot_stride', int, 10000, "save model every snapshot stride.")
add_arg('debug', bool, False, "Debug mode")
# SINGLE EVAL AND DRAW
add_arg('draw_threshold', float, 0.8, "Confidence threshold to draw bbox.")
add_arg('image_path', str, 'dataset/coco/val2017', "The image path used to inference and visualize.")
......@@ -138,5 +171,5 @@ def parse_args():
if 'train' in file_name or 'profile' in file_name:
merge_cfg_from_args(args, 'train')
else:
merge_cfg_from_args(args, 'test')
merge_cfg_from_args(args, 'val')
return args
checkpoints
output*
*.pyc
*.swp
*_result
# VideoClassification
Video Classification
To run train:
bash ./scripts/train/train_${model_name}.sh
To run test:
bash ./scripts/test/test_${model_name}.sh
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
try:
from configparser import ConfigParser
except:
from ConfigParser import ConfigParser
from utils import AttrDict
CONFIG_SECS = [
'train',
'valid',
'test',
'infer',
]
def parse_config(cfg_file):
parser = ConfigParser()
cfg = AttrDict()
parser.read(cfg_file)
for sec in parser.sections():
sec_dict = AttrDict()
for k, v in parser.items(sec):
try:
v = eval(v)
except:
pass
setattr(sec_dict, k, v)
setattr(cfg, sec.upper(), sec_dict)
return cfg
def merge_configs(cfg, sec, args_dict):
assert sec in CONFIG_SECS, "invalid config section {}".format(sec)
sec_dict = getattr(cfg, sec.upper())
for k, v in args_dict.items():
if v is None:
continue
try:
if hasattr(sec_dict, k):
setattr(sec_dict, k, v)
except:
pass
return cfg
[MODEL]
name = "AttentionCluster"
dataset = "YouTube-8M"
bone_network = None
drop_rate = 0.5
feature_num = 2
feature_names = ['rgb', 'audio']
feature_dims = [1024, 128]
seg_num = 100
cluster_nums = [32, 32]
num_classes = 3862
topk = 20
[TRAIN]
epoch = 5
learning_rate = 0.001
pretrain_base = None
batch_size = 2048
use_gpu = True
num_gpus = 8
filelist = "dataset/youtube8m/train.list"
[VALID]
batch_size = 2048
filelist = "dataset/youtube8m/val.list"
[TEST]
batch_size = 256
filelist = "dataset/youtube8m/test.list"
[INFER]
batch_size = 1
filelist = "dataset/youtube8m/infer.list"
[MODEL]
name = "AttentionLSTM"
dataset = "YouTube-8M"
bone_nework = None
drop_rate = 0.5
feature_num = 2
feature_names = ['rgb', 'audio']
feature_dims = [1024, 128]
embedding_size = 512
lstm_size = 1024
num_classes = 3862
topk = 20
[TRAIN]
epoch = 10
learning_rate = 0.001
decay_epochs = [5]
decay_gamma = 0.1
weight_decay = 0.0008
num_samples = 5000000
pretrain_base = None
batch_size = 1024
use_gpu = True
num_gpus = 8
filelist = "dataset/youtube8m/train.list"
[VALID]
batch_size = 1024
filelist = "dataset/youtube8m/val.list"
[TEST]
batch_size = 128
filelist = "dataset/youtube8m/test.list"
[INFER]
batch_size = 1
filelist = "dataset/youtube8m/infer.list"
[MODEL]
name = "NEXTVLAD"
num_classes = 3862
topk = 20
video_feature_size = 1024
audio_feature_size = 128
cluster_size = 128
hidden_size = 2048
groups = 8
expansion = 2
drop_rate = 0.5
gating_reduction = 8
eigen_file = "./dataset/youtube8m/yt8m_pca/eigenvals.npy"
[TRAIN]
epoch = 6
learning_rate = 0.0002
lr_boundary_examples = 2000000
max_iter = 700000
learning_rate_decay = 0.8
l2_penalty = 1e-5
gradient_clip_norm = 1.0
use_gpu = True
num_gpus = 4
batch_size = 160
filelist = "./dataset/youtube8m/train.list"
[VALID]
batch_size = 160
filelist = "./dataset/youtube8m/val.list"
[TEST]
batch_size = 40
filelist = "./dataset/youtube8m/test.list"
[INFER]
batch_size = 1
filelist = "./dataset/youtube8m/infer.list"
[MODEL]
name = "STNET"
format = "pkl"
num_classes = 400
seg_num = 7
seglen = 5
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
num_layers = 50
[TRAIN]
epoch = 60
short_size = 256
target_size = 224
num_reader_threads = 12
buf_size = 1024
batch_size = 128
num_gpus = 8
use_gpu = True
filelist = "./dataset/kinetics/train.list"
learning_rate = 0.01
learning_rate_decay = 0.1
l2_weight_decay = 1e-4
momentum = 0.9
total_videos = 224684
pretrain_base = "./dataset/pretrained/ResNet50_pretrained"
[VALID]
short_size = 256
target_size = 224
num_reader_threads = 12
buf_size = 1024
batch_size = 128
filelist = "./dataset/kinetics/val.list"
[TEST]
short_size = 256
target_size = 256
num_reader_threads = 12
buf_size = 1024
batch_size = 16
filelist = "./dataset/kinetics/test.list"
[INFER]
short_size = 256
target_size = 256
num_reader_threads = 12
buf_size = 1024
batch_size = 1
filelist = "./dataset/kinetics/infer.list"
[MODEL]
name = "TSN"
format = "pkl"
num_classes = 400
seg_num = 3
seglen = 1
image_mean = [0.485, 0.456, 0.406]
image_std = [0.229, 0.224, 0.225]
num_layers = 50
[TRAIN]
epoch = 45
short_size = 256
target_size = 224
num_reader_threads = 12
buf_size = 1024
batch_size = 256
use_gpu = True
num_gpus = 8
filelist = "./dataset/kinetics/train.list"
learning_rate = 0.01
learning_rate_decay = 0.1
l2_weight_decay = 1e-4
momentum = 0.9
total_videos = 224684
[VALID]
short_size = 256
target_size = 224
num_reader_threads = 12
buf_size = 1024
batch_size = 256
filelist = "./dataset/kinetics/val.list"
[TEST]
short_size = 256
target_size = 224
num_reader_threads = 12
buf_size = 1024
batch_size = 32
filelist = "./dataset/kinetics/test.list"
[INFER]
short_size = 256
target_size = 224
num_reader_threads = 12
buf_size = 1024
batch_size = 1
filelist = "./dataset/kinetics/infer.list"
from .reader_utils import regist_reader, get_reader
from .feature_reader import FeatureReader
from .kinetics_reader import KineticsReader
from .nonlocal_reader import NonlocalReader
regist_reader("ATTENTIONCLUSTER", FeatureReader)
regist_reader("NEXTVLAD", FeatureReader)
regist_reader("ATTENTIONLSTM", FeatureReader)
regist_reader("TSN", KineticsReader)
regist_reader("TSM", KineticsReader)
regist_reader("STNET", KineticsReader)
regist_reader("NONLOCAL", NonlocalReader)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import sys
from .reader_utils import DataReader
try:
import cPickle as pickle
from cStringIO import StringIO
except ImportError:
import pickle
from io import BytesIO
import numpy as np
import random
python_ver = sys.version_info
class FeatureReader(DataReader):
"""
Data reader for youtube-8M dataset, which was stored as features extracted by prior networks
This is for the three models: lstm, attention cluster, nextvlad
dataset cfg: num_classes
batch_size
list
NextVlad only: eigen_file
"""
def __init__(self, name, mode, cfg):
self.name = name
self.mode = mode
self.num_classes = cfg.MODEL.num_classes
# set batch size and file list
self.batch_size = cfg[mode.upper()]['batch_size']
self.filelist = cfg[mode.upper()]['filelist']
self.eigen_file = cfg.MODEL.get('eigen_file', None)
self.seg_num = cfg.MODEL.get('seg_num', None)
def create_reader(self):
fl = open(self.filelist).readlines()
fl = [line.strip() for line in fl if line.strip() != '']
if self.mode == 'train':
random.shuffle(fl)
def reader():
batch_out = []
for filepath in fl:
if python_ver < (3, 0):
data = pickle.load(open(filepath, 'rb'))
else:
data = pickle.load(open(filepath, 'rb'), encoding='bytes')
indexes = list(range(len(data)))
if self.mode == 'train':
random.shuffle(indexes)
for i in indexes:
record = data[i]
nframes = record[b'nframes']
rgb = record[b'feature'].astype(float)
audio = record[b'audio'].astype(float)
if self.mode != 'infer':
label = record[b'label']
one_hot_label = make_one_hot(label, self.num_classes)
video = record[b'video']
rgb = rgb[0:nframes, :]
audio = audio[0:nframes, :]
rgb = dequantize(
rgb, max_quantized_value=2., min_quantized_value=-2.)
audio = dequantize(
audio, max_quantized_value=2, min_quantized_value=-2)
if self.name == 'NEXTVLAD':
# add the effect of eigen values
eigen_file = self.eigen_file
eigen_val = np.sqrt(np.load(eigen_file)
[:1024, 0]).astype(np.float32)
eigen_val = eigen_val + 1e-4
rgb = (rgb - 4. / 512) * eigen_val
if self.name == 'ATTENTIONCLUSTER':
sample_inds = generate_random_idx(rgb.shape[0],
self.seg_num)
rgb = rgb[sample_inds]
audio = audio[sample_inds]
if self.mode != 'infer':
batch_out.append((rgb, audio, one_hot_label))
else:
batch_out.append((rgb, audio, video))
if len(batch_out) == self.batch_size:
yield batch_out
batch_out = []
return reader
def dequantize(feat_vector, max_quantized_value=2., min_quantized_value=-2.):
"""
Dequantize the feature from the byte format to the float format
"""
assert max_quantized_value > min_quantized_value
quantized_range = max_quantized_value - min_quantized_value
scalar = quantized_range / 255.0
bias = (quantized_range / 512.0) + min_quantized_value
return feat_vector * scalar + bias
def make_one_hot(label, dim=3862):
one_hot_label = np.zeros(dim)
one_hot_label = one_hot_label.astype(float)
for ind in label:
one_hot_label[int(ind)] = 1
return one_hot_label
def generate_random_idx(feature_len, seg_num):
idxs = []
stride = float(feature_len) / seg_num
for i in range(seg_num):
pos = (i + np.random.random()) * stride
idxs.append(min(feature_len - 1, int(pos)))
return idxs
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import math
import random
import functools
try:
import cPickle as pickle
from cStringIO import StringIO
except ImportError:
import pickle
from io import BytesIO
import numpy as np
import paddle
from PIL import Image, ImageEnhance
import logging
from .reader_utils import DataReader
logger = logging.getLogger(__name__)
python_ver = sys.version_info
class KineticsReader(DataReader):
"""
Data reader for kinetics dataset of two format mp4 and pkl.
1. mp4, the original format of kinetics400
2. pkl, the mp4 was decoded previously and stored as pkl
In both case, load the data, and then get the frame data in the form of numpy and label as an integer.
dataset cfg: format
num_classes
seg_num
short_size
target_size
num_reader_threads
buf_size
image_mean
image_std
batch_size
list
"""
def __init__(self, name, mode, cfg):
self.name = name
self.mode = mode
self.format = cfg.MODEL.format
self.num_classes = cfg.MODEL.num_classes
self.seg_num = cfg.MODEL.seg_num
self.seglen = cfg.MODEL.seglen
self.short_size = cfg[mode.upper()]['short_size']
self.target_size = cfg[mode.upper()]['target_size']
self.num_reader_threads = cfg[mode.upper()]['num_reader_threads']
self.buf_size = cfg[mode.upper()]['buf_size']
self.img_mean = np.array(cfg.MODEL.image_mean).reshape(
[3, 1, 1]).astype(np.float32)
self.img_std = np.array(cfg.MODEL.image_std).reshape(
[3, 1, 1]).astype(np.float32)
# set batch size and file list
self.batch_size = cfg[mode.upper()]['batch_size']
self.filelist = cfg[mode.upper()]['filelist']
def create_reader(self):
_reader = _reader_creator(self.filelist, self.mode, seg_num=self.seg_num, seglen = self.seglen, \
short_size = self.short_size, target_size = self.target_size, \
img_mean = self.img_mean, img_std = self.img_std, \
shuffle = (self.mode == 'train'), \
num_threads = self.num_reader_threads, \
buf_size = self.buf_size, format = self.format)
def _batch_reader():
batch_out = []
for imgs, label in _reader():
if imgs is None:
continue
batch_out.append((imgs, label))
if len(batch_out) == self.batch_size:
yield batch_out
batch_out = []
return _batch_reader
def _reader_creator(pickle_list,
mode,
seg_num,
seglen,
short_size,
target_size,
img_mean,
img_std,
shuffle=False,
num_threads=1,
buf_size=1024,
format='pkl'):
def reader():
with open(pickle_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(lines)
for line in lines:
pickle_path = line.strip()
yield [pickle_path]
if format == 'pkl':
decode_func = decode_pickle
elif format == 'mp4':
decode_func = decode_mp4
else:
raise "Not implemented format {}".format(format)
mapper = functools.partial(
decode_func,
mode=mode,
seg_num=seg_num,
seglen=seglen,
short_size=short_size,
target_size=target_size,
img_mean=img_mean,
img_std=img_std)
return paddle.reader.xmap_readers(mapper, reader, num_threads, buf_size)
def decode_mp4(sample, mode, seg_num, seglen, short_size, target_size, img_mean,
img_std):
sample = sample[0].split(' ')
mp4_path = sample[0]
# when infer, we store vid as label
label = int(sample[1])
try:
imgs = mp4_loader(mp4_path, seg_num, seglen, mode)
if len(imgs) < 1:
logger.error('{} frame length {} less than 1.'.format(mp4_path,
len(imgs)))
return None, None
except:
logger.error('Error when loading {}'.format(mp4_path))
return None, None
return imgs_transform(imgs, label, mode, seg_num, seglen, \
short_size, target_size, img_mean, img_std)
def decode_pickle(sample, mode, seg_num, seglen, short_size, target_size,
img_mean, img_std):
pickle_path = sample[0]
try:
if python_ver < (3, 0):
data_loaded = pickle.load(open(pickle_path, 'rb'))
else:
data_loaded = pickle.load(open(pickle_path, 'rb'), encoding='bytes')
vid, label, frames = data_loaded
if len(frames) < 1:
logger.error('{} frame length {} less than 1.'.format(pickle_path,
len(frames)))
return None, None
except:
logger.info('Error when loading {}'.format(pickle_path))
return None, None
if mode == 'train' or mode == 'valid' or mode == 'test':
ret_label = label
elif mode == 'infer':
ret_label = vid
imgs = video_loader(frames, seg_num, seglen, mode)
return imgs_transform(imgs, ret_label, mode, seg_num, seglen, \
short_size, target_size, img_mean, img_std)
def imgs_transform(imgs, label, mode, seg_num, seglen, short_size, target_size,
img_mean, img_std):
imgs = group_scale(imgs, short_size)
if mode == 'train':
imgs = group_random_crop(imgs, target_size)
imgs = group_random_flip(imgs)
else:
imgs = group_center_crop(imgs, target_size)
np_imgs = (np.array(imgs[0]).astype('float32').transpose(
(2, 0, 1))).reshape(1, 3, target_size, target_size) / 255
for i in range(len(imgs) - 1):
img = (np.array(imgs[i + 1]).astype('float32').transpose(
(2, 0, 1))).reshape(1, 3, target_size, target_size) / 255
np_imgs = np.concatenate((np_imgs, img))
imgs = np_imgs
imgs -= img_mean
imgs /= img_std
imgs = np.reshape(imgs, (seg_num, seglen * 3, target_size, target_size))
return imgs, label
def group_random_crop(img_group, target_size):
w, h = img_group[0].size
th, tw = target_size, target_size
assert (w >= target_size) and (h >= target_size), \
"image width({}) and height({}) should be larger than crop size".format(w, h, target_size)
out_images = []
x1 = random.randint(0, w - tw)
y1 = random.randint(0, h - th)
for img in img_group:
if w == tw and h == th:
out_images.append(img)
else:
out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return out_images
def group_random_flip(img_group):
v = random.random()
if v < 0.5:
ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
return ret
else:
return img_group
def group_center_crop(img_group, target_size):
img_crop = []
for img in img_group:
w, h = img.size
th, tw = target_size, target_size
assert (w >= target_size) and (h >= target_size), \
"image width({}) and height({}) should be larger than crop size".format(w, h, target_size)
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
img_crop.append(img.crop((x1, y1, x1 + tw, y1 + th)))
return img_crop
def group_scale(imgs, target_size):
resized_imgs = []
for i in range(len(imgs)):
img = imgs[i]
w, h = img.size
if (w <= h and w == target_size) or (h <= w and h == target_size):
resized_imgs.append(img)
continue
if w < h:
ow = target_size
oh = int(target_size * 4.0 / 3.0)
resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
else:
oh = target_size
ow = int(target_size * 4.0 / 3.0)
resized_imgs.append(img.resize((ow, oh), Image.BILINEAR))
return resized_imgs
def imageloader(buf):
if isinstance(buf, str):
img = Image.open(StringIO(buf))
else:
img = Image.open(BytesIO(buf))
return img.convert('RGB')
def video_loader(frames, nsample, seglen, mode):
videolen = len(frames)
average_dur = int(videolen / nsample)
imgs = []
for i in range(nsample):
idx = 0
if mode == 'train':
if average_dur >= seglen:
idx = random.randint(0, average_dur - seglen)
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
else:
if average_dur >= seglen:
idx = (average_dur - seglen) // 2
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
for jj in range(idx, idx + seglen):
imgbuf = frames[int(jj % videolen)]
img = imageloader(imgbuf)
imgs.append(img)
return imgs
def mp4_loader(filepath, nsample, seglen, mode):
cap = cv2.VideoCapture(filepath)
videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
average_dur = int(videolen / nsample)
sampledFrames = []
for i in range(videolen):
ret, frame = cap.read()
# maybe first frame is empty
if ret == False:
continue
img = frame[:, :, ::-1]
sampledFrames.append(img)
imgs = []
for i in range(nsample):
idx = 0
if mode == 'train':
if average_dur >= seglen:
idx = random.randint(0, average_dur - seglen)
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
else:
if average_dur >= seglen:
idx = (average_dur - 1) // 2
idx += i * average_dur
elif average_dur >= 1:
idx += i * average_dur
else:
idx = i
for jj in range(idx, idx + seglen):
imgbuf = sampledFrames[int(jj % videolen)]
img = Image.fromarray(imgbuf, mode='RGB')
imgs.append(img)
return imgs
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import random
import time
import multiprocessing
import numpy as np
import cv2
import logging
from .reader_utils import DataReader
logger = logging.getLogger(__name__)
class NonlocalReader(DataReader):
"""
Data reader for kinetics dataset, which read mp4 file and decode into numpy.
This is for nonlocal neural network model.
cfg: num_classes
num_reader_threads
image_mean
image_std
batch_size
list
crop_size
sample_rate
video_length
jitter_scales
Test only cfg: num_test_clips
use_multi_crop
"""
def __init__(self, name, mode, cfg):
self.name = name
self.mode = mode
self.cfg = cfg
def create_reader(self):
cfg = self.cfg
mode = self.mode
num_reader_threads = cfg[mode.upper()]['num_reader_threads']
assert num_reader_threads >=1, \
"number of reader threads({}) should be a positive integer".format(num_reader_threads)
if num_reader_threads == 1:
reader_func = make_reader
else:
reader_func = make_multi_reader
dataset_args = {}
dataset_args['image_mean'] = cfg.MODEL.image_mean
dataset_args['image_std'] = cfg.MODEL.image_std
dataset_args['crop_size'] = cfg[mode.upper()]['crop_size']
dataset_args['sample_rate'] = cfg[mode.upper()]['sample_rate']
dataset_args['video_length'] = cfg[mode.upper()]['video_length']
dataset_args['min_size'] = cfg[mode.upper()]['jitter_scales'][0]
dataset_args['max_size'] = cfg[mode.upper()]['jitter_scales'][1]
dataset_args['num_reader_threads'] = num_reader_threads
filelist = cfg[mode.upper()]['list']
batch_size = cfg[mode.upper()]['batch_size']
if self.mode == 'train':
sample_times = 1
return reader_func(filelist, batch_size, sample_times, True, True,
**dataset_args)
elif self.mode == 'valid':
sample_times = 1
return reader_func(filelist, batch_size, sample_times, False, False,
**dataset_args)
elif self.mode == 'test':
sample_times = cfg['TEST']['num_test_clips']
if cfg['TEST']['use_multi_crop'] == 1:
sample_times = int(sample_times / 3)
if cfg['TEST']['use_multi_crop'] == 2:
sample_times = int(sample_times / 6)
return reader_func(filelist, batch_size, sample_times, False, False,
**dataset_args)
else:
logger.info('Not implemented')
raise NotImplementedError
def video_fast_get_frame(video_path,
sampling_rate=1,
length=64,
start_frm=-1,
sample_times=1):
cap = cv2.VideoCapture(video_path)
frame_cnt = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
sampledFrames = []
video_output = np.ndarray(shape=[length, height, width, 3], dtype=np.uint8)
use_start_frm = start_frm
if start_frm < 0:
if (frame_cnt - length * sampling_rate > 0):
use_start_frm = random.randint(0,
frame_cnt - length * sampling_rate)
else:
use_start_frm = 0
else:
frame_gaps = float(frame_cnt) / float(sample_times)
use_start_frm = int(frame_gaps * start_frm) % frame_cnt
for i in range(frame_cnt):
ret, frame = cap.read()
# maybe first frame is empty
if ret == False:
continue
img = frame[:, :, ::-1]
sampledFrames.append(img)
for idx in range(length):
i = use_start_frm + idx * sampling_rate
i = i % len(sampledFrames)
video_output[idx] = sampledFrames[i]
cap.release()
return video_output
def apply_resize(rgbdata, min_size, max_size):
length, height, width, channel = rgbdata.shape
ratio = 1.0
# generate random scale between [min_size, max_size]
if min_size == max_size:
side_length = min_size
else:
side_length = np.random.randint(min_size, max_size)
if height > width:
ratio = float(side_length) / float(width)
else:
ratio = float(side_length) / float(height)
out_height = int(height * ratio)
out_width = int(width * ratio)
outdata = np.zeros(
(length, out_height, out_width, channel), dtype=rgbdata.dtype)
for i in range(length):
outdata[i] = cv2.resize(rgbdata[i], (out_width, out_height))
return outdata
def crop_mirror_transform(rgbdata,
mean,
std,
cropsize=224,
use_mirror=True,
center_crop=False,
spatial_pos=-1):
channel, length, height, width = rgbdata.shape
assert height >= cropsize, "crop size should not be larger than video height"
assert width >= cropsize, "crop size should not be larger than video width"
# crop to specific scale
if center_crop:
h_off = int((height - cropsize) / 2)
w_off = int((width - cropsize) / 2)
if spatial_pos >= 0:
now_pos = spatial_pos % 3
if h_off > 0:
h_off = h_off * now_pos
else:
w_off = w_off * now_pos
else:
h_off = np.random.randint(0, height - cropsize)
w_off = np.random.randint(0, width - cropsize)
outdata = np.zeros(
(channel, length, cropsize, cropsize), dtype=rgbdata.dtype)
outdata[:, :, :, :] = rgbdata[:, :, h_off:h_off + cropsize, w_off:w_off +
cropsize]
# apply mirror
mirror_indicator = (np.random.rand() > 0.5)
mirror_me = use_mirror and mirror_indicator
if spatial_pos > 0:
mirror_me = (int(spatial_pos / 3) > 0)
if mirror_me:
outdata = outdata[:, :, :, ::-1]
# substract mean and divide std
outdata = outdata.astype(np.float32)
outdata = (outdata - mean) / std
return outdata
def make_reader(filelist, batch_size, sample_times, is_training, shuffle,
**dataset_args):
# should add smaple_times param
fl = open(filelist).readlines()
fl = [line.strip() for line in fl if line.strip() != '']
if shuffle:
random.shuffle(fl)
def reader():
batch_out = []
for line in fl:
# start_time = time.time()
line_items = line.split(' ')
fn = line_items[0]
label = int(line_items[1])
if len(line_items) > 2:
start_frm = int(line_items[2])
spatial_pos = int(line_items[3])
in_sample_times = sample_times
else:
start_frm = -1
spatial_pos = -1
in_sample_times = 1
label = np.array([label]).astype(np.int64)
# 1, get rgb data for fixed length of frames
try:
rgbdata = video_fast_get_frame(fn, \
sampling_rate = dataset_args['sample_rate'], length = dataset_args['video_length'], \
start_frm = start_frm, sample_times = in_sample_times)
except:
logger.info('Error when loading {}, just skip this file'.format(
fn))
continue
# add prepocessing
# 2, reszie to randomly scale between [min_size, max_size] when training, or cgf.TEST.SCALE when inference
min_size = dataset_args['min_size']
max_size = dataset_args['max_size']
rgbdata = apply_resize(rgbdata, min_size, max_size)
# transform [length, height, width, channel] to [channel, length, height, width]
rgbdata = np.transpose(rgbdata, [3, 0, 1, 2])
# 3 crop, mirror and transform
rgbdata = crop_mirror_transform(rgbdata, mean = dataset_args['image_mean'], \
std = dataset_args['image_std'], cropsize = dataset_args['crop_size'], \
use_mirror = is_training, center_crop = (not is_training), \
spatial_pos = spatial_pos)
batch_out.append((rgbdata, label))
if len(batch_out) == batch_size:
yield batch_out
batch_out = []
return reader
def make_multi_reader(filelist, batch_size, sample_times, is_training, shuffle,
**dataset_args):
fl = open(filelist).readlines()
fl = [line.strip() for line in fl if line.strip() != '']
if shuffle:
random.shuffle(fl)
n = dataset_args['num_reader_threads']
queue_size = 20
reader_lists = [None] * n
file_num = int(len(fl) // n)
for i in range(n):
if i < len(reader_lists) - 1:
tmp_list = fl[i * file_num:(i + 1) * file_num]
else:
tmp_list = fl[i * file_num:]
reader_lists[i] = tmp_list
def read_into_queue(flq, queue):
batch_out = []
for line in flq:
line_items = line.split(' ')
fn = line_items[0]
label = int(line_items[1])
if len(line_items) > 2:
start_frm = int(line_items[2])
spatial_pos = int(line_items[3])
in_sample_times = sample_times
else:
start_frm = -1
spatial_pos = -1
in_sample_times = 1
label = np.array([label]).astype(np.int64)
# 1, get rgb data for fixed length of frames
try:
rgbdata = video_fast_get_frame(fn, \
sampling_rate = dataset_args['sample_rate'], length = dataset_args['video_length'], \
start_frm = start_frm, sample_times = in_sample_times)
except:
logger.info('Error when loading {}, just skip this file'.format(
fn))
continue
# add prepocessing
# 2, reszie to randomly scale between [min_size, max_size] when training, or cgf.TEST.SCALE when inference
min_size = dataset_args['min_size']
max_size = dataset_args['max_size']
rgbdata = apply_resize(rgbdata, min_size, max_size)
# transform [length, height, width, channel] to [channel, length, height, width]
rgbdata = np.transpose(rgbdata, [3, 0, 1, 2])
# 3 crop, mirror and transform
rgbdata = crop_mirror_transform(rgbdata, mean = dataset_args['image_mean'], \
std = dataset_args['image_std'], cropsize = dataset_args['crop_size'], \
use_mirror = is_training, center_crop = (not is_training), \
spatial_pos = spatial_pos)
batch_out.append((rgbdata, label))
if len(batch_out) == batch_size:
queue.put(batch_out)
batch_out = []
queue.put(None)
def queue_reader():
queue = multiprocessing.Queue(queue_size)
p_list = [None] * len(reader_lists)
# for reader_list in reader_lists:
for i in range(len(reader_lists)):
reader_list = reader_lists[i]
p_list[i] = multiprocessing.Process(
target=read_into_queue, args=(reader_list, queue))
p_list[i].start()
reader_num = len(reader_lists)
finish_num = 0
while finish_num < reader_num:
sample = queue.get()
if sample is None:
finish_num += 1
else:
yield sample
for i in range(len(p_list)):
p_list[i].terminate()
p_list[i].join()
return queue_reader
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import pickle
import cv2
import numpy as np
import random
class ReaderNotFoundError(Exception):
"Error: reader not found"
def __init__(self, reader_name, avail_readers):
super(ReaderNotFoundError, self).__init__()
self.reader_name = reader_name
self.avail_readers = avail_readers
def __str__(self):
msg = "Reader {} Not Found.\nAvailiable readers:\n".format(
self.reader_name)
for reader in self.avail_readers:
msg += " {}\n".format(reader)
return msg
class DataReader(object):
"""data reader for video input"""
def __init__(self, model_name, mode, cfg):
"""Not implemented"""
pass
def create_reader(self):
"""Not implemented"""
pass
class ReaderZoo(object):
def __init__(self):
self.reader_zoo = {}
def regist(self, name, reader):
assert reader.__base__ == DataReader, "Unknow model type {}".format(
type(reader))
self.reader_zoo[name] = reader
def get(self, name, mode, cfg):
for k, v in self.reader_zoo.items():
if k == name:
return v(name, mode, cfg)
raise ReaderNotFoundError(name, self.reader_zoo.keys())
# singleton reader_zoo
reader_zoo = ReaderZoo()
def regist_reader(name, reader):
reader_zoo.regist(name, reader)
def get_reader(name, mode, cfg):
reader_model = reader_zoo.get(name, mode, cfg)
return reader_model.create_reader()
1. download kinetics-400_train.csv and kinetics-400_val.csv
2. ffmpeg is required to decode mp4
3. transfer mp4 video to pkl file, with each pkl stores [video_id, images, label]
python generate_label.py kinetics-400_train.csv kinetics400_label.txt # generate label file
python video2pkl.py kinetics-400_train.csv $Source_dir $Target_dir $NUM_THREADS
import sys
# kinetics-400_train.csv should be down loaded first and set as sys.argv[1]
# sys.argv[2] can be set as kinetics400_label.txt
# python generate_label.py kinetics-400_train.csv kinetics400_label.txt
num_classes = 400
fname = sys.argv[1]
outname = sys.argv[2]
fl = open(fname).readlines()
fl = fl[1:]
outf = open(outname, 'w')
label_list = []
for line in fl:
label = line.strip().split(',')[0].strip('"')
if label in label_list:
continue
else:
label_list.append(label)
assert len(label_list
) == num_classes, "there should be {} labels in list, but ".format(
num_classes, len(label_list))
label_list.sort()
for i in range(num_classes):
outf.write('{} {}'.format(label_list[i], i) + '\n')
outf.close()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import glob
import cPickle
from multiprocessing import Pool
# example command line: python generate_k400_pkl.py kinetics-400_train.csv 8
#
# kinetics-400_train.csv is the training set file of K400 official release
# each line contains laebl,youtube_id,time_start,time_end,split,is_cc
assert (len(sys.argv) == 5)
f = open(sys.argv[1])
source_dir = sys.argv[2]
target_dir = sys.argv[3]
num_threads = sys.argv[4]
all_video_entries = [x.strip().split(',') for x in f.readlines()]
all_video_entries = all_video_entries[1:]
f.close()
category_label_map = {}
f = open('kinetics400_label.txt')
for line in f:
ens = line.strip().split(' ')
category = " ".join(ens[0:-1])
label = int(ens[-1])
category_label_map[category] = label
f.close()
def generate_pkl(entry):
mode = entry[4]
category = entry[0].strip('"')
category_dir = category
video_path = os.path.join(
'./',
entry[1] + "_%06d" % int(entry[2]) + "_%06d" % int(entry[3]) + ".mp4")
video_path = os.path.join(source_dir, category_dir, video_path)
label = category_label_map[category]
vid = './' + video_path.split('/')[-1].split('.')[0]
if os.path.exists(video_path):
if not os.path.exists(vid):
os.makedirs(vid)
os.system('ffmpeg -i ' + video_path + ' -q 0 ' + vid + '/%06d.jpg')
else:
print("File not exists {}".format(video_path))
return
images = sorted(glob.glob(vid + '/*.jpg'))
ims = []
for img in images:
f = open(img)
ims.append(f.read())
f.close()
output_pkl = vid + ".pkl"
output_pkl = os.path.join(target_dir, output_pkl)
f = open(output_pkl, 'w')
cPickle.dump((vid, label, ims), f, -1)
f.close()
os.system('rm -rf %s' % vid)
pool = Pool(processes=int(sys.argv[4]))
pool.map(generate_pkl, all_video_entries)
pool.close()
pool.join()
1. Tensorflow is required to process tfrecords
2. python tf2pkl.py $Source_dir $Target_dir
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""Provides readers configured for different datasets."""
import os, sys
import numpy as np
import tensorflow as tf
from tensorflow import logging
import cPickle
from tensorflow.python.platform import gfile
assert (len(sys.argv) == 3)
source_dir = sys.argv[1]
target_dir = sys.argv[2]
def Dequantize(feat_vector, max_quantized_value=2, min_quantized_value=-2):
"""Dequantize the feature from the byte format to the float format.
Args:
feat_vector: the input 1-d vector.
max_quantized_value: the maximum of the quantized value.
min_quantized_value: the minimum of the quantized value.
Returns:
A float vector which has the same shape as feat_vector.
"""
assert max_quantized_value > min_quantized_value
quantized_range = max_quantized_value - min_quantized_value
scalar = quantized_range / 255.0
bias = (quantized_range / 512.0) + min_quantized_value
return feat_vector * scalar + bias
def resize_axis(tensor, axis, new_size, fill_value=0):
"""Truncates or pads a tensor to new_size on on a given axis.
Truncate or extend tensor such that tensor.shape[axis] == new_size. If the
size increases, the padding will be performed at the end, using fill_value.
Args:
tensor: The tensor to be resized.
axis: An integer representing the dimension to be sliced.
new_size: An integer or 0d tensor representing the new value for
tensor.shape[axis].
fill_value: Value to use to fill any new entries in the tensor. Will be
cast to the type of tensor.
Returns:
The resized tensor.
"""
tensor = tf.convert_to_tensor(tensor)
shape = tf.unstack(tf.shape(tensor))
pad_shape = shape[:]
pad_shape[axis] = tf.maximum(0, new_size - shape[axis])
shape[axis] = tf.minimum(shape[axis], new_size)
shape = tf.stack(shape)
resized = tf.concat([
tf.slice(tensor, tf.zeros_like(shape), shape),
tf.fill(tf.stack(pad_shape), tf.cast(fill_value, tensor.dtype))
], axis)
# Update shape.
new_shape = tensor.get_shape().as_list() # A copy is being made.
new_shape[axis] = new_size
resized.set_shape(new_shape)
return resized
class BaseReader(object):
"""Inherit from this class when implementing new readers."""
def prepare_reader(self, unused_filename_queue):
"""Create a thread for generating prediction and label tensors."""
raise NotImplementedError()
class YT8MFrameFeatureReader(BaseReader):
"""Reads TFRecords of SequenceExamples.
The TFRecords must contain SequenceExamples with the sparse in64 'labels'
context feature and a fixed length byte-quantized feature vector, obtained
from the features in 'feature_names'. The quantized features will be mapped
back into a range between min_quantized_value and max_quantized_value.
"""
def __init__(self,
num_classes=3862,
feature_sizes=[1024],
feature_names=["inc3"],
max_frames=300):
"""Construct a YT8MFrameFeatureReader.
Args:
num_classes: a positive integer for the number of classes.
feature_sizes: positive integer(s) for the feature dimensions as a list.
feature_names: the feature name(s) in the tensorflow record as a list.
max_frames: the maximum number of frames to process.
"""
assert len(feature_names) == len(feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(feature_names), len(feature_sizes))
self.num_classes = num_classes
self.feature_sizes = feature_sizes
self.feature_names = feature_names
self.max_frames = max_frames
def get_video_matrix(self, features, feature_size, max_frames,
max_quantized_value, min_quantized_value):
"""Decodes features from an input string and quantizes it.
Args:
features: raw feature values
feature_size: length of each frame feature vector
max_frames: number of frames (rows) in the output feature_matrix
max_quantized_value: the maximum of the quantized value.
min_quantized_value: the minimum of the quantized value.
Returns:
feature_matrix: matrix of all frame-features
num_frames: number of frames in the sequence
"""
decoded_features = tf.reshape(
tf.cast(tf.decode_raw(features, tf.uint8), tf.float32),
[-1, feature_size])
num_frames = tf.minimum(tf.shape(decoded_features)[0], max_frames)
feature_matrix = decoded_features
return feature_matrix, num_frames
def prepare_reader(self,
filename_queue,
max_quantized_value=2,
min_quantized_value=-2):
"""Creates a single reader thread for YouTube8M SequenceExamples.
Args:
filename_queue: A tensorflow queue of filename locations.
max_quantized_value: the maximum of the quantized value.
min_quantized_value: the minimum of the quantized value.
Returns:
A tuple of video indexes, video features, labels, and padding data.
"""
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
contexts, features = tf.parse_single_sequence_example(
serialized_example,
context_features={
"id": tf.FixedLenFeature([], tf.string),
"labels": tf.VarLenFeature(tf.int64)
},
sequence_features={
feature_name: tf.FixedLenSequenceFeature(
[], dtype=tf.string)
for feature_name in self.feature_names
})
# read ground truth labels
labels = (tf.cast(
tf.sparse_to_dense(
contexts["labels"].values, (self.num_classes, ),
1,
validate_indices=False),
tf.bool))
# loads (potentially) different types of features and concatenates them
num_features = len(self.feature_names)
assert num_features > 0, "No feature selected: feature_names is empty!"
assert len(self.feature_names) == len(self.feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(self.feature_names), len(self.feature_sizes))
num_frames = -1 # the number of frames in the video
feature_matrices = [None
] * num_features # an array of different features
for feature_index in range(num_features):
feature_matrix, num_frames_in_this_feature = self.get_video_matrix(
features[self.feature_names[feature_index]],
self.feature_sizes[feature_index], self.max_frames,
max_quantized_value, min_quantized_value)
if num_frames == -1:
num_frames = num_frames_in_this_feature
#else:
# tf.assert_equal(num_frames, num_frames_in_this_feature)
feature_matrices[feature_index] = feature_matrix
# cap the number of frames at self.max_frames
num_frames = tf.minimum(num_frames, self.max_frames)
# concatenate different features
video_matrix = feature_matrices[0]
audio_matrix = feature_matrices[1]
return contexts["id"], video_matrix, audio_matrix, labels, num_frames
def main(files_pattern):
data_files = gfile.Glob(files_pattern)
filename_queue = tf.train.string_input_producer(
data_files, num_epochs=1, shuffle=False)
reader = YT8MFrameFeatureReader(
feature_sizes=[1024, 128], feature_names=["rgb", "audio"])
vals = reader.prepare_reader(filename_queue)
with tf.Session() as sess:
sess.run(tf.initialize_local_variables())
sess.run(tf.initialize_all_variables())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
vid_num = 0
all_data = []
try:
while not coord.should_stop():
vid, features, audios, labels, nframes = sess.run(vals)
label_index = np.where(labels == True)[0].tolist()
vid_num += 1
#print vid, features.shape, audios.shape, label_index, nframes
features_int = features.astype(np.uint8)
audios_int = audios.astype(np.uint8)
value_dict = {}
value_dict['video'] = vid
value_dict['feature'] = features_int
value_dict['audio'] = audios_int
value_dict['label'] = label_index
value_dict['nframes'] = nframes
all_data.append(value_dict)
except tf.errors.OutOfRangeError:
print('Finished extracting.')
finally:
coord.request_stop()
coord.join(threads)
print vid_num
record_name = files_pattern.split('/')[-1].split('.')[0]
outputdir = target_dir
fn = '%s.pkl' % record_name
outp = open(os.path.join(outputdir, fn), 'wb')
cPickle.dump(all_data, outp, protocol=cPickle.HIGHEST_PROTOCOL)
outp.close()
if __name__ == '__main__':
record_dir = source_dir
record_files = os.listdir(record_dir)
for f in record_files:
record_path = os.path.join(record_dir, f)
main(record_path)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import time
import logging
import argparse
import numpy as np
try:
import cPickle as pickle
except:
import pickle
import paddle.fluid as fluid
from config import *
import models
from datareader import get_reader
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.DEBUG, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-name',
type=str,
default='AttentionCluster',
help='name of model to train.')
parser.add_argument(
'--config',
type=str,
default='configs/attention_cluster.txt',
help='path to config file of model')
parser.add_argument(
'--use-gpu', type=bool, default=True, help='default use gpu.')
parser.add_argument(
'--weights',
type=str,
default=None,
help='weight path, None to use weights from Paddle.')
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='sample number in a batch for inference.')
parser.add_argument(
'--filelist',
type=str,
default=None,
help='path to inferenece data file lists file.')
parser.add_argument(
'--log-interval',
type=int,
default=1,
help='mini-batch interval to log.')
parser.add_argument(
'--infer-topk',
type=int,
default=20,
help='topk predictions to restore.')
parser.add_argument(
'--save-dir', type=str, default='./', help='directory to store results')
args = parser.parse_args()
return args
def infer(args):
# parse config
config = parse_config(args.config)
infer_config = merge_configs(config, 'infer', vars(args))
infer_model = models.get_model(args.model_name, infer_config, mode='infer')
infer_model.build_input(use_pyreader=False)
infer_model.build_model()
infer_feeds = infer_model.feeds()
infer_outputs = infer_model.outputs()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
filelist = args.filelist or infer_config.INFER.filelist
assert os.path.exists(filelist), "{} not exist.".format(args.filelist)
# get infer reader
infer_reader = get_reader(args.model_name.upper(), 'infer', infer_config)
if args.weights:
assert os.path.exists(
args.weights), "Given weight dir {} not exist.".format(args.weights)
# if no weight files specified, download weights from paddle
weights = args.weights or infer_model.get_weights()
def if_exist(var):
return os.path.exists(os.path.join(weights, var.name))
fluid.io.load_vars(exe, weights, predicate=if_exist)
infer_feeder = fluid.DataFeeder(place=place, feed_list=infer_feeds)
fetch_list = [x.name for x in infer_outputs]
periods = []
results = []
cur_time = time.time()
for infer_iter, data in enumerate(infer_reader()):
data_feed_in = [items[:-1] for items in data]
video_id = [items[-1] for items in data]
infer_outs = exe.run(fetch_list=fetch_list,
feed=infer_feeder.feed(data_feed_in))
predictions = np.array(infer_outs[0])
for i in range(len(predictions)):
topk_inds = predictions[i].argsort()[0 - args.infer_topk:]
topk_inds = topk_inds[::-1]
preds = predictions[i][topk_inds]
results.append(
(video_id[i], preds.tolist(), topk_inds.tolist()))
prev_time = cur_time
cur_time = time.time()
period = cur_time - prev_time
periods.append(period)
if args.log_interval > 0 and infer_iter % args.log_interval == 0:
logger.info('Processed {} samples'.format((infer_iter) * len(
predictions)))
logger.info('[INFER] infer finished. average time: {}'.format(
np.mean(periods)))
if not os.path.isdir(args.save_dir):
os.mkdir(args.save_dir)
result_file_name = os.path.join(args.save_dir,
"{}_infer_result".format(args.model_name))
pickle.dump(results, open(result_file_name, 'wb'))
if __name__ == "__main__":
args = parse_args()
logger.info(args)
infer(args)
from .metrics_util import get_metrics
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import numpy as np
import datetime
import logging
logger = logging.getLogger(__name__)
class MetricsCalculator():
def __init__(self, name, mode):
self.name = name
self.mode = mode # 'train', 'val', 'test'
self.reset()
def reset(self):
logger.info('Resetting {} metrics...'.format(self.mode))
self.aggr_acc1 = 0.0
self.aggr_acc5 = 0.0
self.aggr_loss = 0.0
self.aggr_batch_size = 0
def finalize_metrics(self):
self.avg_acc1 = self.aggr_acc1 / self.aggr_batch_size
self.avg_acc5 = self.aggr_acc5 / self.aggr_batch_size
self.avg_loss = self.aggr_loss / self.aggr_batch_size
def get_computed_metrics(self):
json_stats = {}
json_stats['avg_loss'] = self.avg_loss
json_stats['avg_acc1'] = self.avg_acc1
json_stats['avg_acc5'] = self.avg_acc5
return json_stats
def calculate_metrics(self, loss, softmax, labels):
accuracy1 = compute_topk_accuracy(softmax, labels, top_k=1) * 100.
accuracy5 = compute_topk_accuracy(softmax, labels, top_k=5) * 100.
return accuracy1, accuracy5
def accumulate(self, loss, softmax, labels):
cur_batch_size = softmax.shape[0]
# if returned loss is None for e.g. test, just set loss to be 0.
if loss is None:
cur_loss = 0.
else:
cur_loss = np.mean(np.array(loss)) #
self.aggr_batch_size += cur_batch_size
self.aggr_loss += cur_loss * cur_batch_size
accuracy1 = compute_topk_accuracy(softmax, labels, top_k=1) * 100.
accuracy5 = compute_topk_accuracy(softmax, labels, top_k=5) * 100.
self.aggr_acc1 += accuracy1 * cur_batch_size
self.aggr_acc5 += accuracy5 * cur_batch_size
return
# ----------------------------------------------
# other utils
# ----------------------------------------------
def compute_topk_correct_hits(top_k, preds, labels):
'''Compute the number of corret hits'''
batch_size = preds.shape[0]
top_k_preds = np.zeros((batch_size, top_k), dtype=np.float32)
for i in range(batch_size):
top_k_preds[i, :] = np.argsort(-preds[i, :])[:top_k]
correctness = np.zeros(batch_size, dtype=np.int32)
for i in range(batch_size):
if labels[i] in top_k_preds[i, :].astype(np.int32).tolist():
correctness[i] = 1
correct_hits = sum(correctness)
return correct_hits
def compute_topk_accuracy(softmax, labels, top_k):
computed_metrics = {}
assert labels.shape[0] == softmax.shape[0], "Batch size mismatch."
aggr_batch_size = labels.shape[0]
aggr_top_k_correct_hits = compute_topk_correct_hits(top_k, softmax, labels)
# normalize results
computed_metrics = \
float(aggr_top_k_correct_hits) / aggr_batch_size
return computed_metrics
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import logging
import numpy as np
from metrics.youtube8m import eval_util as youtube8m_metrics
from metrics.kinetics import accuracy_metrics as kinetics_metrics
from metrics.multicrop_test import multicrop_test_metrics as multicrop_test_metrics
logger = logging.getLogger(__name__)
class Metrics(object):
def __init__(self, name, mode, metrics_args):
"""Not implemented"""
pass
def calculate_and_log_out(self, loss, pred, label, info=''):
"""Not implemented"""
pass
def accumulate(self, loss, pred, label, info=''):
"""Not implemented"""
pass
def finalize_and_log_out(self, info=''):
"""Not implemented"""
pass
def reset(self):
"""Not implemented"""
pass
class Youtube8mMetrics(Metrics):
def __init__(self, name, mode, metrics_args):
self.name = name
self.mode = mode
self.num_classes = metrics_args['MODEL']['num_classes']
self.topk = metrics_args['MODEL']['topk']
self.calculator = youtube8m_metrics.EvaluationMetrics(self.num_classes,
self.topk)
def calculate_and_log_out(self, loss, pred, label, info=''):
loss = np.mean(np.array(loss))
hit_at_one = youtube8m_metrics.calculate_hit_at_one(pred, label)
perr = youtube8m_metrics.calculate_precision_at_equal_recall_rate(pred,
label)
gap = youtube8m_metrics.calculate_gap(pred, label)
logger.info(info + ' , loss = {0}, Hit@1 = {1}, PERR = {2}, GAP = {3}'.format(\
'%.6f' % loss, '%.2f' % hit_at_one, '%.2f' % perr, '%.2f' % gap))
def accumulate(self, loss, pred, label, info=''):
self.calculator.accumulate(loss, pred, label)
def finalize_and_log_out(self, info=''):
epoch_info_dict = self.calculator.get()
logger.info(info + '\tavg_hit_at_one: {0},\tavg_perr: {1},\tavg_loss :{2},\taps: {3},\tgap:{4}'\
.format(epoch_info_dict['avg_hit_at_one'], epoch_info_dict['avg_perr'], \
epoch_info_dict['avg_loss'], epoch_info_dict['aps'], epoch_info_dict['gap']))
def reset(self):
self.calculator.clear()
class Kinetics400Metrics(Metrics):
def __init__(self, name, mode, metrics_args):
self.name = name
self.mode = mode
self.calculator = kinetics_metrics.MetricsCalculator(name, mode.lower())
def calculate_and_log_out(self, loss, pred, label, info=''):
if loss is not None:
loss = np.mean(np.array(loss))
else:
loss = 0.
acc1, acc5 = self.calculator.calculate_metrics(loss, pred, label)
logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
'%.2f' % acc1, '%.2f' % acc5))
def accumulate(self, loss, pred, label, info=''):
self.calculator.accumulate(loss, pred, label)
def finalize_and_log_out(self, info=''):
self.calculator.finalize_metrics()
metrics_dict = self.calculator.get_computed_metrics()
loss = metrics_dict['avg_loss']
acc1 = metrics_dict['avg_acc1']
acc5 = metrics_dict['avg_acc5']
logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
'%.2f' % acc1, '%.2f' % acc5))
def reset(self):
self.calculator.reset()
class MulticropMetrics(Metrics):
def __init__(self, name, mode, metrics_args):
self.name = name
self.mode = mode
if mode == 'test':
args = {}
args['num_test_clips'] = metrics_args.TEST.num_test_clips
args['dataset_size'] = metrics_args.TEST.dataset_size
args['filename_gt'] = metrics_args.TEST.filename_gt
args['checkpoint_dir'] = metrics_args.TEST.checkpoint_dir
args['num_classes'] = metrics_args.MODEL.num_classes
self.calculator = multicrop_test_metrics.MetricsCalculator(
name, mode.lower(), **args)
else:
self.calculator = kinetics_metrics.MetricsCalculator(name,
mode.lower())
def calculate_and_log_out(self, loss, pred, label, info=''):
if self.mode == 'test':
pass
else:
if loss is not None:
loss = np.mean(np.array(loss))
else:
loss = 0.
acc1, acc5 = self.calculator.calculate_metrics(loss, pred, label)
logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
'%.2f' % acc1, '%.2f' % acc5))
def accumulate(self, loss, pred, label):
self.calculator.accumulate(loss, pred, label)
def finalize_and_log_out(self, info=''):
if self.mode == 'test':
self.calculator.finalize_metrics()
else:
self.calculator.finalize_metrics()
metrics_dict = self.calculator.get_computed_metrics()
loss = metrics_dict['avg_loss']
acc1 = metrics_dict['avg_acc1']
acc5 = metrics_dict['avg_acc5']
logger.info(info + '\tLoss: {},\ttop1_acc: {}, \ttop5_acc: {}'.format('%.6f' % loss, \
'%.2f' % acc1, '%.2f' % acc5))
def reset(self):
self.calculator.reset()
class MetricsZoo(object):
def __init__(self):
self.metrics_zoo = {}
def regist(self, name, metrics):
assert metrics.__base__ == Metrics, "Unknow model type {}".format(
type(metrics))
self.metrics_zoo[name] = metrics
def get(self, name, mode, cfg):
for k, v in self.metrics_zoo.items():
if k == name:
return v(name, mode, cfg)
raise MetricsNotFoundError(name, self.metrics_zoo.keys())
# singleton metrics_zoo
metrics_zoo = MetricsZoo()
def regist_metrics(name, metrics):
metrics_zoo.regist(name, metrics)
def get_metrics(name, mode, cfg):
return metrics_zoo.get(name, mode, cfg)
regist_metrics("NEXTVLAD", Youtube8mMetrics)
regist_metrics("ATTENTIONLSTM", Youtube8mMetrics)
regist_metrics("ATTENTIONCLUSTER", Youtube8mMetrics)
regist_metrics("TSN", Kinetics400Metrics)
regist_metrics("TSM", Kinetics400Metrics)
regist_metrics("STNET", Kinetics400Metrics)
regist_metrics("NONLOCAL", MulticropMetrics)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import sys
import os
import numpy as np
import datetime
import logging
from collections import defaultdict
import pickle
logger = logging.getLogger(__name__)
class MetricsCalculator():
def __init__(self, name, mode, **metrics_args):
"""
metrics args:
num_test_clips, number of clips of each video when test
dataset_size, total number of videos in the dataset
filename_gt, a file with each line stores the groud truth of each video
checkpoint_dir, dir where to store the test results
num_classes, number of classes of the dataset
"""
self.name = name
self.mode = mode # 'train', 'val', 'test'
self.metrics_args = metrics_args
self.num_test_clips = metrics_args['num_test_clips']
self.dataset_size = metrics_args['dataset_size']
self.filename_gt = metrics_args['filename_gt']
self.checkpoint_dir = metrics_args['checkpoint_dir']
self.num_classes = metrics_args['num_classes']
self.reset()
def reset(self):
logger.info('Resetting {} metrics...'.format(self.mode))
self.aggr_acc1 = 0.0
self.aggr_acc5 = 0.0
self.aggr_loss = 0.0
self.aggr_batch_size = 0
self.seen_inds = defaultdict(int)
self.results = []
def calculate_metrics(self, loss, pred, labels):
pass
def accumulate(self, loss, pred, labels):
labels = labels.astype(int)
for i in range(pred.shape[0]):
probs = pred[i, :].tolist()
vid = labels[i]
self.seen_inds[vid] += 1
if self.seen_inds[vid] > self.num_test_clips:
logger.warning('Video id {} have been seen. Skip.'.format(vid,
))
continue
save_pairs = [vid, probs]
self.results.append(save_pairs)
logger.info("({0} / {1}) videos".format(\
len(self.seen_inds), self.dataset_size))
def finalize_metrics(self):
if self.filename_gt is not None:
evaluate_results(self.results, self.filename_gt, self.dataset_size, \
self.num_classes, self.num_test_clips)
# save temporary file
pkl_path = os.path.join(self.checkpoint_dir, "results_probs.pkl")
with open(pkl_path, 'w') as f:
pickle.dump(self.results, f)
logger.info('Temporary file saved to: {}'.format(pkl_path))
def read_groundtruth(filename_gt):
f = open(filename_gt, 'r')
labels = []
for line in f:
rows = line.split()
labels.append(int(rows[1]))
f.close()
return labels
def evaluate_results(results, filename_gt, test_dataset_size, num_classes,
num_test_clips):
gt_labels = read_groundtruth(filename_gt)
sample_num = test_dataset_size
class_num = num_classes
sample_video_times = num_test_clips
counts = np.zeros(sample_num, dtype=np.int32)
probs = np.zeros((sample_num, class_num))
assert (len(gt_labels) == sample_num)
"""
clip_accuracy: the (e.g.) 10*19761 clips' average accuracy
clip1_accuracy: the 1st clip's accuracy (starting from frame 0)
"""
clip_accuracy = 0
clip1_accuracy = 0
clip1_count = 0
seen_inds = defaultdict(int)
# evaluate
for entry in results:
vid = entry[0]
prob = np.array(entry[1])
probs[vid] += prob[0:class_num]
counts[vid] += 1
idx = prob.argmax()
if idx == gt_labels[vid]:
# clip accuracy
clip_accuracy += 1
# clip1 accuracy
seen_inds[vid] += 1
if seen_inds[vid] == 1:
clip1_count += 1
if idx == gt_labels[vid]:
clip1_accuracy += 1
# sanity checkcnt = 0
max_clips = 0
min_clips = sys.maxsize
count_empty = 0
count_corrupted = 0
for i in range(sample_num):
max_clips = max(max_clips, counts[i])
min_clips = min(min_clips, counts[i])
if counts[i] != sample_video_times:
count_corrupted += 1
logger.warning('Id: {} count: {}'.format(i, counts[i]))
if counts[i] == 0:
count_empty += 1
logger.info('Num of empty videos: {}'.format(count_empty))
logger.info('Num of corrupted videos: {}'.format(count_corrupted))
logger.info('Max num of clips in a video: {}'.format(max_clips))
logger.info('Min num of clips in a video: {}'.format(min_clips))
# clip1 accuracy for sanity (# print clip1 first as it is lowest)
logger.info('Clip1 accuracy: {:.2f} percent ({}/{})'.format(
100. * clip1_accuracy / clip1_count, clip1_accuracy, clip1_count))
# clip accuracy for sanity
logger.info('Clip accuracy: {:.2f} percent ({}/{})'.format(
100. * clip_accuracy / len(results), clip_accuracy, len(results)))
# compute accuracy
accuracy = 0
accuracy_top5 = 0
for i in range(sample_num):
prob = probs[i]
# top-1
idx = prob.argmax()
if idx == gt_labels[i] and counts[i] > 0:
accuracy = accuracy + 1
ids = np.argsort(prob)[::-1]
for j in range(5):
if ids[j] == gt_labels[i] and counts[i] > 0:
accuracy_top5 = accuracy_top5 + 1
break
accuracy = float(accuracy) / float(sample_num)
accuracy_top5 = float(accuracy_top5) / float(sample_num)
logger.info('-' * 80)
logger.info('top-1 accuracy: {:.2f} percent'.format(accuracy * 100))
logger.info('top-5 accuracy: {:.2f} percent'.format(accuracy_top5 * 100))
logger.info('-' * 80)
for i in range(sample_num):
prob = probs[i]
# top-1
idx = prob.argmax()
if idx == gt_labels[i] and counts[i] > 0:
accuracy = accuracy + 1
ids = np.argsort(prob)[::-1]
for j in range(5):
if ids[j] == gt_labels[i] and counts[i] > 0:
accuracy_top5 = accuracy_top5 + 1
break
accuracy = float(accuracy) / float(sample_num)
accuracy_top5 = float(accuracy_top5) / float(sample_num)
logger.info('-' * 80)
logger.info('top-1 accuracy: {:.2f} percent'.format(accuracy * 100))
logger.info('top-5 accuracy: {:.2f} percent'.format(accuracy_top5 * 100))
logger.info('-' * 80)
return
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculate or keep track of the interpolated average precision.
It provides an interface for calculating interpolated average precision for an
entire list or the top-n ranked items. For the definition of the
(non-)interpolated average precision:
http://trec.nist.gov/pubs/trec15/appendices/CE.MEASURES06.pdf
Example usages:
1) Use it as a static function call to directly calculate average precision for
a short ranked list in the memory.
```
import random
p = np.array([random.random() for _ in xrange(10)])
a = np.array([random.choice([0, 1]) for _ in xrange(10)])
ap = average_precision_calculator.AveragePrecisionCalculator.ap(p, a)
```
2) Use it as an object for long ranked list that cannot be stored in memory or
the case where partial predictions can be observed at a time (Tensorflow
predictions). In this case, we first call the function accumulate many times
to process parts of the ranked list. After processing all the parts, we call
peek_interpolated_ap_at_n.
```
p1 = np.array([random.random() for _ in xrange(5)])
a1 = np.array([random.choice([0, 1]) for _ in xrange(5)])
p2 = np.array([random.random() for _ in xrange(5)])
a2 = np.array([random.choice([0, 1]) for _ in xrange(5)])
# interpolated average precision at 10 using 1000 break points
calculator = average_precision_calculator.AveragePrecisionCalculator(10)
calculator.accumulate(p1, a1)
calculator.accumulate(p2, a2)
ap3 = calculator.peek_ap_at_n()
```
"""
import heapq
import random
import numbers
import numpy
class AveragePrecisionCalculator(object):
"""Calculate the average precision and average precision at n."""
def __init__(self, top_n=None):
"""Construct an AveragePrecisionCalculator to calculate average precision.
This class is used to calculate the average precision for a single label.
Args:
top_n: A positive Integer specifying the average precision at n, or
None to use all provided data points.
Raises:
ValueError: An error occurred when the top_n is not a positive integer.
"""
if not ((isinstance(top_n, int) and top_n >= 0) or top_n is None):
raise ValueError("top_n must be a positive integer or None.")
self._top_n = top_n # average precision at n
self._total_positives = 0 # total number of positives have seen
self._heap = [] # max heap of (prediction, actual)
@property
def heap_size(self):
"""Gets the heap size maintained in the class."""
return len(self._heap)
@property
def num_accumulated_positives(self):
"""Gets the number of positive samples that have been accumulated."""
return self._total_positives
def accumulate(self, predictions, actuals, num_positives=None):
"""Accumulate the predictions and their ground truth labels.
After the function call, we may call peek_ap_at_n to actually calculate
the average precision.
Note predictions and actuals must have the same shape.
Args:
predictions: a list storing the prediction scores.
actuals: a list storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
then it's possible some true positives were missed in them. In that case,
you can provide 'num_positives' in order to accurately track recall.
Raises:
ValueError: An error occurred when the format of the input is not the
numpy 1-D array or the shape of predictions and actuals does not match.
"""
if len(predictions) != len(actuals):
raise ValueError(
"the shape of predictions and actuals does not match.")
if not num_positives is None:
if not isinstance(num_positives,
numbers.Number) or num_positives < 0:
raise ValueError(
"'num_positives' was provided but it wan't a nonzero number."
)
if not num_positives is None:
self._total_positives += num_positives
else:
self._total_positives += numpy.size(numpy.where(actuals > 0))
topk = self._top_n
heap = self._heap
for i in range(numpy.size(predictions)):
if topk is None or len(heap) < topk:
heapq.heappush(heap, (predictions[i], actuals[i]))
else:
if predictions[i] > heap[0][0]: # heap[0] is the smallest
heapq.heappop(heap)
heapq.heappush(heap, (predictions[i], actuals[i]))
def clear(self):
"""Clear the accumulated predictions."""
self._heap = []
self._total_positives = 0
def peek_ap_at_n(self):
"""Peek the non-interpolated average precision at n.
Returns:
The non-interpolated average precision at n (default 0).
If n is larger than the length of the ranked list,
the average precision will be returned.
"""
if self.heap_size <= 0:
return 0
predlists = numpy.array(list(zip(*self._heap)))
ap = self.ap_at_n(
predlists[0],
predlists[1],
n=self._top_n,
total_num_positives=self._total_positives)
return ap
@staticmethod
def ap(predictions, actuals):
"""Calculate the non-interpolated average precision.
Args:
predictions: a numpy 1-D array storing the sparse prediction scores.
actuals: a numpy 1-D array storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
Returns:
The non-interpolated average precision at n.
If n is larger than the length of the ranked list,
the average precision will be returned.
Raises:
ValueError: An error occurred when the format of the input is not the
numpy 1-D array or the shape of predictions and actuals does not match.
"""
return AveragePrecisionCalculator.ap_at_n(predictions, actuals, n=None)
@staticmethod
def ap_at_n(predictions, actuals, n=20, total_num_positives=None):
"""Calculate the non-interpolated average precision.
Args:
predictions: a numpy 1-D array storing the sparse prediction scores.
actuals: a numpy 1-D array storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
n: the top n items to be considered in ap@n.
total_num_positives : (optionally) you can specify the number of total
positive
in the list. If specified, it will be used in calculation.
Returns:
The non-interpolated average precision at n.
If n is larger than the length of the ranked list,
the average precision will be returned.
Raises:
ValueError: An error occurred when
1) the format of the input is not the numpy 1-D array;
2) the shape of predictions and actuals does not match;
3) the input n is not a positive integer.
"""
if len(predictions) != len(actuals):
raise ValueError(
"the shape of predictions and actuals does not match.")
if n is not None:
if not isinstance(n, int) or n <= 0:
raise ValueError("n must be 'None' or a positive integer."
" It was '%s'." % n)
ap = 0.0
predictions = numpy.array(predictions)
actuals = numpy.array(actuals)
# add a shuffler to avoid overestimating the ap
predictions, actuals = AveragePrecisionCalculator._shuffle(predictions,
actuals)
sortidx = sorted(
range(len(predictions)), key=lambda k: predictions[k], reverse=True)
if total_num_positives is None:
numpos = numpy.size(numpy.where(actuals > 0))
else:
numpos = total_num_positives
if numpos == 0:
return 0
if n is not None:
numpos = min(numpos, n)
delta_recall = 1.0 / numpos
poscount = 0.0
# calculate the ap
r = len(sortidx)
if n is not None:
r = min(r, n)
for i in range(r):
if actuals[sortidx[i]] > 0:
poscount += 1
ap += poscount / (i + 1) * delta_recall
return ap
@staticmethod
def _shuffle(predictions, actuals):
random.seed(0)
suffidx = random.sample(range(len(predictions)), len(predictions))
predictions = predictions[suffidx]
actuals = actuals[suffidx]
return predictions, actuals
@staticmethod
def _zero_one_normalize(predictions, epsilon=1e-7):
"""Normalize the predictions to the range between 0.0 and 1.0.
For some predictions like SVM predictions, we need to normalize them before
calculate the interpolated average precision. The normalization will not
change the rank in the original list and thus won't change the average
precision.
Args:
predictions: a numpy 1-D array storing the sparse prediction scores.
epsilon: a small constant to avoid denominator being zero.
Returns:
The normalized prediction.
"""
denominator = numpy.max(predictions) - numpy.min(predictions)
ret = (predictions - numpy.min(predictions)) / numpy.max(denominator,
epsilon)
return ret
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides functions to help with evaluating models."""
import datetime
import numpy
from . import mean_average_precision_calculator as map_calculator
from . import average_precision_calculator as ap_calculator
def flatten(l):
""" Merges a list of lists into a single list. """
return [item for sublist in l for item in sublist]
def calculate_hit_at_one(predictions, actuals):
"""Performs a local (numpy) calculation of the hit at one.
Args:
predictions: Matrix containing the outputs of the model.
Dimensions are 'batch' x 'num_classes'.
actuals: Matrix containing the ground truth labels.
Dimensions are 'batch' x 'num_classes'.
Returns:
float: The average hit at one across the entire batch.
"""
top_prediction = numpy.argmax(predictions, 1)
hits = actuals[numpy.arange(actuals.shape[0]), top_prediction]
return numpy.average(hits)
def calculate_precision_at_equal_recall_rate(predictions, actuals):
"""Performs a local (numpy) calculation of the PERR.
Args:
predictions: Matrix containing the outputs of the model.
Dimensions are 'batch' x 'num_classes'.
actuals: Matrix containing the ground truth labels.
Dimensions are 'batch' x 'num_classes'.
Returns:
float: The average precision at equal recall rate across the entire batch.
"""
aggregated_precision = 0.0
num_videos = actuals.shape[0]
for row in numpy.arange(num_videos):
num_labels = int(numpy.sum(actuals[row]))
top_indices = numpy.argpartition(predictions[row],
-num_labels)[-num_labels:]
item_precision = 0.0
for label_index in top_indices:
if predictions[row][label_index] > 0:
item_precision += actuals[row][label_index]
item_precision /= top_indices.size
aggregated_precision += item_precision
aggregated_precision /= num_videos
return aggregated_precision
def calculate_gap(predictions, actuals, top_k=20):
"""Performs a local (numpy) calculation of the global average precision.
Only the top_k predictions are taken for each of the videos.
Args:
predictions: Matrix containing the outputs of the model.
Dimensions are 'batch' x 'num_classes'.
actuals: Matrix containing the ground truth labels.
Dimensions are 'batch' x 'num_classes'.
top_k: How many predictions to use per video.
Returns:
float: The global average precision.
"""
gap_calculator = ap_calculator.AveragePrecisionCalculator()
sparse_predictions, sparse_labels, num_positives = top_k_by_class(
predictions, actuals, top_k)
gap_calculator.accumulate(
flatten(sparse_predictions), flatten(sparse_labels), sum(num_positives))
return gap_calculator.peek_ap_at_n()
def top_k_by_class(predictions, labels, k=20):
"""Extracts the top k predictions for each video, sorted by class.
Args:
predictions: A numpy matrix containing the outputs of the model.
Dimensions are 'batch' x 'num_classes'.
k: the top k non-zero entries to preserve in each prediction.
Returns:
A tuple (predictions,labels, true_positives). 'predictions' and 'labels'
are lists of lists of floats. 'true_positives' is a list of scalars. The
length of the lists are equal to the number of classes. The entries in the
predictions variable are probability predictions, and
the corresponding entries in the labels variable are the ground truth for
those predictions. The entries in 'true_positives' are the number of true
positives for each class in the ground truth.
Raises:
ValueError: An error occurred when the k is not a positive integer.
"""
if k <= 0:
raise ValueError("k must be a positive integer.")
k = min(k, predictions.shape[1])
num_classes = predictions.shape[1]
prediction_triplets = []
for video_index in range(predictions.shape[0]):
prediction_triplets.extend(
top_k_triplets(predictions[video_index], labels[video_index], k))
out_predictions = [[] for v in range(num_classes)]
out_labels = [[] for v in range(num_classes)]
for triplet in prediction_triplets:
out_predictions[triplet[0]].append(triplet[1])
out_labels[triplet[0]].append(triplet[2])
out_true_positives = [numpy.sum(labels[:, i]) for i in range(num_classes)]
return out_predictions, out_labels, out_true_positives
def top_k_triplets(predictions, labels, k=20):
"""Get the top_k for a 1-d numpy array. Returns a sparse list of tuples in
(prediction, class) format"""
m = len(predictions)
k = min(k, m)
indices = numpy.argpartition(predictions, -k)[-k:]
return [(index, predictions[index], labels[index]) for index in indices]
class EvaluationMetrics(object):
"""A class to store the evaluation metrics."""
def __init__(self, num_class, top_k):
"""Construct an EvaluationMetrics object to store the evaluation metrics.
Args:
num_class: A positive integer specifying the number of classes.
top_k: A positive integer specifying how many predictions are considered per video.
Raises:
ValueError: An error occurred when MeanAveragePrecisionCalculator cannot
not be constructed.
"""
self.sum_hit_at_one = 0.0
self.sum_perr = 0.0
self.sum_loss = 0.0
self.map_calculator = map_calculator.MeanAveragePrecisionCalculator(
num_class)
self.global_ap_calculator = ap_calculator.AveragePrecisionCalculator()
self.top_k = top_k
self.num_examples = 0
#def accumulate(self, predictions, labels, loss):
def accumulate(self, loss, predictions, labels):
"""Accumulate the metrics calculated locally for this mini-batch.
Args:
predictions: A numpy matrix containing the outputs of the model.
Dimensions are 'batch' x 'num_classes'.
labels: A numpy matrix containing the ground truth labels.
Dimensions are 'batch' x 'num_classes'.
loss: A numpy array containing the loss for each sample.
Returns:
dictionary: A dictionary storing the metrics for the mini-batch.
Raises:
ValueError: An error occurred when the shape of predictions and actuals
does not match.
"""
batch_size = labels.shape[0]
mean_hit_at_one = calculate_hit_at_one(predictions, labels)
mean_perr = calculate_precision_at_equal_recall_rate(predictions,
labels)
mean_loss = numpy.mean(loss)
# Take the top 20 predictions.
sparse_predictions, sparse_labels, num_positives = top_k_by_class(
predictions, labels, self.top_k)
self.map_calculator.accumulate(sparse_predictions, sparse_labels,
num_positives)
self.global_ap_calculator.accumulate(
flatten(sparse_predictions),
flatten(sparse_labels), sum(num_positives))
self.num_examples += batch_size
self.sum_hit_at_one += mean_hit_at_one * batch_size
self.sum_perr += mean_perr * batch_size
self.sum_loss += mean_loss * batch_size
return {
"hit_at_one": mean_hit_at_one,
"perr": mean_perr,
"loss": mean_loss
}
def get(self):
"""Calculate the evaluation metrics for the whole epoch.
Raises:
ValueError: If no examples were accumulated.
Returns:
dictionary: a dictionary storing the evaluation metrics for the epoch. The
dictionary has the fields: avg_hit_at_one, avg_perr, avg_loss, and
aps (default nan).
"""
if self.num_examples <= 0:
raise ValueError("total_sample must be positive.")
avg_hit_at_one = self.sum_hit_at_one / self.num_examples
avg_perr = self.sum_perr / self.num_examples
avg_loss = self.sum_loss / self.num_examples
aps = self.map_calculator.peek_map_at_n()
gap = self.global_ap_calculator.peek_ap_at_n()
epoch_info_dict = {}
return {
"avg_hit_at_one": avg_hit_at_one,
"avg_perr": avg_perr,
"avg_loss": avg_loss,
"aps": aps,
"gap": gap
}
def clear(self):
"""Clear the evaluation metrics and reset the EvaluationMetrics object."""
self.sum_hit_at_one = 0.0
self.sum_perr = 0.0
self.sum_loss = 0.0
self.map_calculator.clear()
self.global_ap_calculator.clear()
self.num_examples = 0
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculate the mean average precision.
It provides an interface for calculating mean average precision
for an entire list or the top-n ranked items.
Example usages:
We first call the function accumulate many times to process parts of the ranked
list. After processing all the parts, we call peek_map_at_n
to calculate the mean average precision.
```
import random
p = np.array([[random.random() for _ in xrange(50)] for _ in xrange(1000)])
a = np.array([[random.choice([0, 1]) for _ in xrange(50)]
for _ in xrange(1000)])
# mean average precision for 50 classes.
calculator = mean_average_precision_calculator.MeanAveragePrecisionCalculator(
num_class=50)
calculator.accumulate(p, a)
aps = calculator.peek_map_at_n()
```
"""
import numpy
from . import average_precision_calculator
class MeanAveragePrecisionCalculator(object):
"""This class is to calculate mean average precision.
"""
def __init__(self, num_class):
"""Construct a calculator to calculate the (macro) average precision.
Args:
num_class: A positive Integer specifying the number of classes.
top_n_array: A list of positive integers specifying the top n for each
class. The top n in each class will be used to calculate its average
precision at n.
The size of the array must be num_class.
Raises:
ValueError: An error occurred when num_class is not a positive integer;
or the top_n_array is not a list of positive integers.
"""
if not isinstance(num_class, int) or num_class <= 1:
raise ValueError("num_class must be a positive integer.")
self._ap_calculators = [] # member of AveragePrecisionCalculator
self._num_class = num_class # total number of classes
for i in range(num_class):
self._ap_calculators.append(
average_precision_calculator.AveragePrecisionCalculator())
def accumulate(self, predictions, actuals, num_positives=None):
"""Accumulate the predictions and their ground truth labels.
Args:
predictions: A list of lists storing the prediction scores. The outer
dimension corresponds to classes.
actuals: A list of lists storing the ground truth labels. The dimensions
should correspond to the predictions input. Any value
larger than 0 will be treated as positives, otherwise as negatives.
num_positives: If provided, it is a list of numbers representing the
number of true positives for each class. If not provided, the number of
true positives will be inferred from the 'actuals' array.
Raises:
ValueError: An error occurred when the shape of predictions and actuals
does not match.
"""
if not num_positives:
num_positives = [None for i in predictions.shape[1]]
calculators = self._ap_calculators
for i in range(len(predictions)):
calculators[i].accumulate(predictions[i], actuals[i],
num_positives[i])
def clear(self):
for calculator in self._ap_calculators:
calculator.clear()
def is_empty(self):
return ([calculator.heap_size for calculator in self._ap_calculators] ==
[0 for _ in range(self._num_class)])
def peek_map_at_n(self):
"""Peek the non-interpolated mean average precision at n.
Returns:
An array of non-interpolated average precision at n (default 0) for each
class.
"""
aps = [
self._ap_calculators[i].peek_ap_at_n()
for i in range(self._num_class)
]
return aps
from .model import regist_model, get_model
from .attention_cluster import AttentionCluster
from .nextvlad import NEXTVLAD
from .tsn import TSN
from .stnet import STNET
from .attention_lstm import AttentionLSTM
# regist models
regist_model("AttentionCluster", AttentionCluster)
regist_model("NEXTVLAD", NEXTVLAD)
regist_model("TSN", TSN)
regist_model("STNET", STNET)
regist_model("AttentionLSTM", AttentionLSTM)
from __future__ import absolute_import
from .attention_cluster import *
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from ..model import ModelBase
from .shifting_attention import ShiftingAttentionModel
from .logistic_model import LogisticModel
__all__ = ["AttentionCluster"]
class AttentionCluster(ModelBase):
def __init__(self, name, cfg, mode='train'):
super(AttentionCluster, self).__init__(name, cfg, mode)
self.get_config()
def get_config(self):
# get model configs
self.feature_num = self.cfg.MODEL.feature_num
self.feature_names = self.cfg.MODEL.feature_names
self.feature_dims = self.cfg.MODEL.feature_dims
self.cluster_nums = self.cfg.MODEL.cluster_nums
self.seg_num = self.cfg.MODEL.seg_num
self.class_num = self.cfg.MODEL.num_classes
self.drop_rate = self.cfg.MODEL.drop_rate
if self.mode == 'train':
self.learning_rate = self.get_config_from_sec('train',
'learning_rate', 1e-3)
def build_input(self, use_pyreader):
if use_pyreader:
assert self.mode != 'infer', \
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
shapes = []
for dim in self.feature_dims:
shapes.append([-1, self.seg_num, dim])
shapes.append([-1, self.class_num]) # label
self.py_reader = fluid.layers.py_reader(
capacity=1024,
shapes=shapes,
lod_levels=[0] * (self.feature_num + 1),
dtypes=['float32'] * (self.feature_num + 1),
name='train_py_reader'
if self.is_training else 'test_py_reader',
use_double_buffer=True)
inputs = fluid.layers.read_file(self.py_reader)
self.feature_input = inputs[:self.feature_num]
self.label_input = inputs[-1]
else:
self.feature_input = []
for name, dim in zip(self.feature_names, self.feature_dims):
self.feature_input.append(
fluid.layers.data(
shape=[self.seg_num, dim], dtype='float32', name=name))
if self.mode == 'infer':
self.label_input = None
else:
self.label_input = fluid.layers.data(
shape=[self.class_num], dtype='float32', name='label')
def build_model(self):
att_outs = []
for i, (input_dim, cluster_num, feature) in enumerate(
zip(self.feature_dims, self.cluster_nums, self.feature_input)):
att = ShiftingAttentionModel(input_dim, self.seg_num, cluster_num,
"satt{}".format(i))
att_out = att.forward(feature)
att_outs.append(att_out)
out = fluid.layers.concat(att_outs, axis=1)
if self.drop_rate > 0.:
out = fluid.layers.dropout(
out, self.drop_rate, is_test=(not self.is_training))
fc1 = fluid.layers.fc(
out,
size=1024,
act='tanh',
param_attr=ParamAttr(
name="fc1.weights",
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=ParamAttr(
name="fc1.bias", initializer=fluid.initializer.MSRA()))
fc2 = fluid.layers.fc(
fc1,
size=4096,
act='tanh',
param_attr=ParamAttr(
name="fc2.weights",
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=ParamAttr(
name="fc2.bias", initializer=fluid.initializer.MSRA()))
aggregate_model = LogisticModel()
self.output, self.logit = aggregate_model.build_model(
model_input=fc2,
vocab_size=self.class_num,
is_training=self.is_training)
def optimizer(self):
assert self.mode == 'train', "optimizer only can be get in train mode"
return fluid.optimizer.AdamOptimizer(self.learning_rate)
def loss(self):
assert self.mode != 'infer', "invalid loss calculationg in infer mode"
cost = fluid.layers.sigmoid_cross_entropy_with_logits(
x=self.logit, label=self.label_input)
cost = fluid.layers.reduce_sum(cost, dim=-1)
self.loss_ = fluid.layers.mean(x=cost)
return self.loss_
def outputs(self):
return [self.output, self.logit]
def feeds(self):
return self.feature_input if self.mode == 'infer' else self.feature_input + [
self.label_input
]
def weights_info(self):
return (
"attention_cluster_youtube8m",
"https://paddlemodels.bj.bcebos.com/video_classification/attention_cluster_youtube8m.tar.gz"
)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.fluid as fluid
class LogisticModel(object):
"""Logistic model."""
def build_model(self,
model_input,
vocab_size,
**unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
logit = fluid.layers.fc(
input=model_input,
size=vocab_size,
act=None,
name='logits_clf',
param_attr=fluid.ParamAttr(
name='logistic.weights',
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=fluid.ParamAttr(
name='logistic.bias',
initializer=fluid.initializer.MSRA(uniform=False)))
output = fluid.layers.sigmoid(logit)
return output, logit
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
import numpy as np
class ShiftingAttentionModel(object):
"""Shifting Attention Model"""
def __init__(self, input_dim, seg_num, n_att, name):
self.n_att = n_att
self.input_dim = input_dim
self.seg_num = seg_num
self.name = name
self.gnorm = np.sqrt(n_att)
def softmax_m1(self, x):
x_shape = fluid.layers.shape(x)
x_shape.stop_gradient = True
flat_x = fluid.layers.reshape(x, shape=(-1, self.seg_num))
flat_softmax = fluid.layers.softmax(flat_x)
return fluid.layers.reshape(
flat_softmax, shape=x.shape, actual_shape=x_shape)
def glorot(self, n):
return np.sqrt(1.0 / np.sqrt(n))
def forward(self, x):
"""Forward shifting attention model.
Args:
x: input features in shape of [N, L, F].
Returns:
out: output features in shape of [N, F * C]
"""
trans_x = fluid.layers.transpose(x, perm=[0, 2, 1])
# scores and weight in shape [N, C, L], sum(weights, -1) = 1
trans_x = fluid.layers.unsqueeze(trans_x, [-1])
scores = fluid.layers.conv2d(
trans_x,
self.n_att,
filter_size=1,
param_attr=ParamAttr(
name=self.name + ".conv.weight",
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=ParamAttr(
name=self.name + ".conv.bias",
initializer=fluid.initializer.MSRA()))
scores = fluid.layers.squeeze(scores, [-1])
weights = self.softmax_m1(scores)
glrt = self.glorot(self.n_att)
self.w = fluid.layers.create_parameter(
shape=(self.n_att, ),
dtype=x.dtype,
attr=ParamAttr(self.name + ".shift_w"),
default_initializer=fluid.initializer.Normal(0.0, glrt))
self.b = fluid.layers.create_parameter(
shape=(self.n_att, ),
dtype=x.dtype,
attr=ParamAttr(name=self.name + ".shift_b"),
default_initializer=fluid.initializer.Normal(0.0, glrt))
outs = []
for i in range(self.n_att):
# slice weight and expand to shape [N, L, C]
weight = fluid.layers.slice(
weights, axes=[1], starts=[i], ends=[i + 1])
weight = fluid.layers.transpose(weight, perm=[0, 2, 1])
weight = fluid.layers.expand(weight, [1, 1, self.input_dim])
w_i = fluid.layers.slice(self.w, axes=[0], starts=[i], ends=[i + 1])
b_i = fluid.layers.slice(self.b, axes=[0], starts=[i], ends=[i + 1])
shift = fluid.layers.reduce_sum(x * weight, dim=1) * w_i + b_i
l2_norm = fluid.layers.l2_normalize(shift, axis=-1)
outs.append(l2_norm / self.gnorm)
out = fluid.layers.concat(outs, axis=1)
return out
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from ..model import ModelBase
from .lstm_attention import LSTMAttentionModel
__all__ = ["AttentionLSTM"]
class AttentionLSTM(ModelBase):
def __init__(self, name, cfg, mode='train'):
super(AttentionLSTM, self).__init__(name, cfg, mode)
self.get_config()
def get_config(self):
# get model configs
self.feature_num = self.cfg.MODEL.feature_num
self.feature_names = self.cfg.MODEL.feature_names
self.feature_dims = self.cfg.MODEL.feature_dims
self.num_classes = self.cfg.MODEL.num_classes
self.embedding_size = self.cfg.MODEL.embedding_size
self.lstm_size = self.cfg.MODEL.lstm_size
self.drop_rate = self.cfg.MODEL.drop_rate
# get mode configs
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size', 1)
self.num_gpus = self.get_config_from_sec(self.mode, 'num_gpus', 1)
if self.mode == 'train':
self.learning_rate = self.get_config_from_sec('train',
'learning_rate', 1e-3)
self.weight_decay = self.get_config_from_sec('train',
'weight_decay', 8e-4)
self.num_samples = self.get_config_from_sec('train', 'num_samples',
5000000)
self.decay_epochs = self.get_config_from_sec('train',
'decay_epochs', [5])
self.decay_gamma = self.get_config_from_sec('train', 'decay_gamma',
0.1)
def build_input(self, use_pyreader):
if use_pyreader:
assert self.mode != 'infer', \
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
shapes = []
for dim in self.feature_dims:
shapes.append([-1, dim])
shapes.append([-1, self.num_classes]) # label
self.py_reader = fluid.layers.py_reader(
capacity=1024,
shapes=shapes,
lod_levels=[1] * self.feature_num + [0],
dtypes=['float32'] * (self.feature_num + 1),
name='train_py_reader'
if self.is_training else 'test_py_reader',
use_double_buffer=True)
inputs = fluid.layers.read_file(self.py_reader)
self.feature_input = inputs[:self.feature_num]
self.label_input = inputs[-1]
else:
self.feature_input = []
for name, dim in zip(self.feature_names, self.feature_dims):
self.feature_input.append(
fluid.layers.data(
shape=[dim], lod_level=1, dtype='float32', name=name))
if self.mode == 'infer':
self.label_input = None
else:
self.label_input = fluid.layers.data(
shape=[self.num_classes], dtype='float32', name='label')
def build_model(self):
att_outs = []
for i, (input_dim, feature
) in enumerate(zip(self.feature_dims, self.feature_input)):
att = LSTMAttentionModel(input_dim, self.embedding_size,
self.lstm_size, self.drop_rate)
att_out = att.forward(feature, is_training=(self.mode == 'train'))
att_outs.append(att_out)
out = fluid.layers.concat(att_outs, axis=1)
fc1 = fluid.layers.fc(
input=out,
size=8192,
act='relu',
bias_attr=ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
fc2 = fluid.layers.fc(
input=fc1,
size=4096,
act='tanh',
bias_attr=ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
self.logit = fluid.layers.fc(input=fc2, size=self.num_classes, act=None, \
bias_attr=ParamAttr(regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
self.output = fluid.layers.sigmoid(self.logit)
def optimizer(self):
assert self.mode == 'train', "optimizer only can be get in train mode"
values = [
self.learning_rate * (self.decay_gamma**i)
for i in range(len(self.decay_epochs) + 1)
]
iter_per_epoch = self.num_samples / self.batch_size
boundaries = [e * iter_per_epoch for e in self.decay_epochs]
return fluid.optimizer.RMSProp(
learning_rate=fluid.layers.piecewise_decay(
values=values, boundaries=boundaries),
centered=True,
regularization=fluid.regularizer.L2Decay(self.weight_decay))
def loss(self):
assert self.mode != 'infer', "invalid loss calculationg in infer mode"
cost = fluid.layers.sigmoid_cross_entropy_with_logits(
x=self.logit, label=self.label_input)
cost = fluid.layers.reduce_sum(cost, dim=-1)
sum_cost = fluid.layers.reduce_sum(cost)
self.loss_ = fluid.layers.scale(
sum_cost, scale=self.num_gpus, bias_after_scale=False)
return self.loss_
def outputs(self):
return [self.output, self.logit]
def feeds(self):
return self.feature_input if self.mode == 'infer' else self.feature_input + [
self.label_input
]
def weights_info(self):
return (None, None)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
import numpy as np
class LSTMAttentionModel(object):
"""LSTM Attention Model"""
def __init__(self,
bias_attr,
embedding_size=512,
lstm_size=1024,
drop_rate=0.5):
self.lstm_size = lstm_size
self.embedding_size = embedding_size
self.drop_rate = drop_rate
def forward(self, input, is_training):
input_fc = fluid.layers.fc(
input=input,
size=self.embedding_size,
act='tanh',
bias_attr=ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
lstm_forward_fc = fluid.layers.fc(
input=input_fc,
size=self.lstm_size * 4,
act=None,
bias_attr=ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
lstm_forward, _ = fluid.layers.dynamic_lstm(
input=lstm_forward_fc, size=self.lstm_size * 4, is_reverse=False)
lsmt_backward_fc = fluid.layers.fc(
input=input_fc,
size=self.lstm_size * 4,
act=None,
bias_attr=ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
lstm_backward, _ = fluid.layers.dynamic_lstm(
input=lsmt_backward_fc, size=self.lstm_size * 4, is_reverse=True)
lstm_concat = fluid.layers.concat(
input=[lstm_forward, lstm_backward], axis=1)
lstm_dropout = fluid.layers.dropout(
x=lstm_concat, dropout_prob=self.drop_rate, is_test=(not is_training))
lstm_weight = fluid.layers.fc(
input=lstm_dropout,
size=1,
act='sequence_softmax',
bias_attr=ParamAttr(
regularizer=fluid.regularizer.L2Decay(0.0),
initializer=fluid.initializer.NormalInitializer(scale=0.0)))
scaled = fluid.layers.elementwise_mul(
x=lstm_dropout, y=lstm_weight, axis=0)
lstm_pool = fluid.layers.sequence_pool(input=scaled, pool_type='sum')
return lstm_pool
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import logging
try:
from configparser import ConfigParser
except:
from ConfigParser import ConfigParser
import paddle.fluid as fluid
from datareader import get_reader
from metrics import get_metrics
from .utils import download, AttrDict
WEIGHT_DIR = os.path.expanduser("~/.paddle/weights")
logger = logging.getLogger(__name__)
class NotImplementError(Exception):
"Error: model function not implement"
def __init__(self, model, function):
super(NotImplementError, self).__init__()
self.model = model.__class__.__name__
self.function = function.__name__
def __str__(self):
return "Function {}() is not implemented in model {}".format(
self.function, self.model)
class ModelNotFoundError(Exception):
"Error: model not found"
def __init__(self, model_name, avail_models):
super(ModelNotFoundError, self).__init__()
self.model_name = model_name
self.avail_models = avail_models
def __str__(self):
msg = "Model {} Not Found.\nAvailiable models:\n".format(
self.model_name)
for model in self.avail_models:
msg += " {}\n".format(model)
return msg
class ModelBase(object):
def __init__(self, name, cfg, mode='train'):
assert mode in ['train', 'valid', 'test', 'infer'], \
"Unknown mode type {}".format(mode)
self.name = name
self.is_training = (mode == 'train')
self.mode = mode
self.py_reader = None
# parse config
# assert os.path.exists(cfg), \
# "Config file {} not exists".format(cfg)
# self._config = ModelConfig(cfg)
# self._config.parse()
# if args and isinstance(args, dict):
# self._config.merge_configs(mode, args)
# self.cfg = self._config.get_configs()
self.cfg = cfg
def build_model(self):
"build model struct"
raise NotImplementError(self, self.build_model)
def build_input(self, use_pyreader):
"build input Variable"
raise NotImplementError(self, self.build_input)
def optimizer(self):
"get model optimizer"
raise NotImplementError(self, self.optimizer)
def outputs():
"get output variable"
raise notimplementerror(self, self.outputs)
def loss(self):
"get loss variable"
raise notimplementerror(self, self.loss)
def feeds(self):
"get feed inputs list"
raise NotImplementError(self, self.feeds)
def weights_info(self):
"get model weight default path and download url"
raise NotImplementError(self, self.weights_info)
def get_weights(self):
"get model weight file path, download weight from Paddle if not exist"
path, url = self.weights_info()
path = os.path.join(WEIGHT_DIR, path)
if os.path.exists(path):
return path
logger.info("Download weights of {} from {}".format(self.name, url))
download(url, path)
return path
def pyreader(self):
return self.py_reader
def epoch_num(self):
"get train epoch num"
return self.cfg.TRAIN.epoch
def pretrain_info(self):
"get pretrain base model directory"
return (None, None)
def get_pretrain_weights(self):
"get model weight file path, download weight from Paddle if not exist"
path, url = self.pretrain_info()
if not path:
return None
path = os.path.join(WEIGHT_DIR, path)
if os.path.exists(path):
return path
logger.info("Download pretrain weights of {} from {}".format(
self.name, url))
download(url, path)
return path
def load_pretrain_params(self, exe, pretrain, prog, place):
logger.info("Load pretrain weights from {}".format(pretrain))
fluid.io.load_params(exe, pretrain, main_program=prog)
def get_config_from_sec(self, sec, item, default=None):
if sec.upper() not in self.cfg:
return default
return self.cfg[sec.upper()].get(item, default)
class ModelZoo(object):
def __init__(self):
self.model_zoo = {}
def regist(self, name, model):
assert model.__base__ == ModelBase, "Unknow model type {}".format(
type(model))
self.model_zoo[name] = model
def get(self, name, cfg, mode='train'):
for k, v in self.model_zoo.items():
if k == name:
return v(name, cfg, mode)
raise ModelNotFoundError(name, self.model_zoo.keys())
# singleton model_zoo
model_zoo = ModelZoo()
def regist_model(name, model):
model_zoo.regist(name, model)
def get_model(name, cfg, mode='train'):
return model_zoo.get(name, cfg, mode)
from __future__ import absolute_import
from .nextvlad import *
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle
import paddle.fluid as fluid
class LogisticModel(object):
"""Logistic model with L2 regularization."""
def create_model(self,
model_input,
vocab_size,
l2_penalty=None,
**unused_params):
"""Creates a logistic model.
Args:
model_input: 'batch' x 'num_features' matrix of input features.
vocab_size: The number of classes in the dataset.
Returns:
A dictionary with a tensor containing the probability predictions of the
model in the 'predictions' key. The dimensions of the tensor are
batch_size x num_classes."""
logits = fluid.layers.fc(
input=model_input,
size=vocab_size,
act=None,
name='logits_clf',
param_attr=fluid.ParamAttr(
name='logits_clf_weights',
initializer=fluid.initializer.MSRA(uniform=False),
regularizer=fluid.regularizer.L2DecayRegularizer(l2_penalty)),
bias_attr=fluid.ParamAttr(
name='logits_clf_bias',
regularizer=fluid.regularizer.L2DecayRegularizer(l2_penalty)))
output = fluid.layers.sigmoid(logits)
return {'predictions': output, 'logits': logits}
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from ..model import ModelBase
from .clf_model import LogisticModel
from . import nextvlad_model
__all__ = ["NEXTVLAD"]
class NEXTVLAD(ModelBase):
def __init__(self, name, cfg, mode='train'):
super(NEXTVLAD, self).__init__(name, cfg, mode=mode)
self.get_config()
def get_config(self):
# model params
self.num_classes = self.get_config_from_sec('model', 'num_classes')
self.video_feature_size = self.get_config_from_sec('model',
'video_feature_size')
self.audio_feature_size = self.get_config_from_sec('model',
'audio_feature_size')
self.cluster_size = self.get_config_from_sec('model', 'cluster_size')
self.hidden_size = self.get_config_from_sec('model', 'hidden_size')
self.groups = self.get_config_from_sec('model', 'groups')
self.expansion = self.get_config_from_sec('model', 'expansion')
self.drop_rate = self.get_config_from_sec('model', 'drop_rate')
self.gating_reduction = self.get_config_from_sec('model',
'gating_reduction')
self.eigen_file = self.get_config_from_sec('model', 'eigen_file')
# training params
self.base_learning_rate = self.get_config_from_sec('train',
'learning_rate')
self.lr_boundary_examples = self.get_config_from_sec(
'train', 'lr_boundary_examples')
self.max_iter = self.get_config_from_sec('train', 'max_iter')
self.learning_rate_decay = self.get_config_from_sec(
'train', 'learning_rate_decay')
self.l2_penalty = self.get_config_from_sec('train', 'l2_penalty')
self.gradient_clip_norm = self.get_config_from_sec('train',
'gradient_clip_norm')
self.use_gpu = self.get_config_from_sec('train', 'use_gpu')
self.num_gpus = self.get_config_from_sec('train', 'num_gpus')
# other params
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_pyreader=True):
rgb_shape = [self.video_feature_size]
audio_shape = [self.audio_feature_size]
label_shape = [self.num_classes]
if use_pyreader:
assert self.mode != 'infer', \
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
py_reader = fluid.layers.py_reader(
capacity=100,
shapes=[[-1] + rgb_shape, [-1] + audio_shape,
[-1] + label_shape],
lod_levels=[1, 1, 0],
dtypes=['float32', 'float32', 'float32'],
name='train_py_reader'
if self.is_training else 'test_py_reader',
use_double_buffer=True)
rgb, audio, label = fluid.layers.read_file(py_reader)
self.py_reader = py_reader
else:
rgb = fluid.layers.data(
name='train_rgb' if self.is_training else 'test_rgb',
shape=rgb_shape,
dtype='float32',
lod_level=1)
audio = fluid.layers.data(
name='train_audio' if self.is_training else 'test_audio',
shape=audio_shape,
dtype='float32',
lod_level=1)
if self.mode == 'infer':
label = None
else:
label = fluid.layers.data(
name='train_label' if self.is_training else 'test_label',
shape=label_shape,
dtype='float32')
self.feature_input = [rgb, audio]
self.label_input = label
def create_model_args(self):
model_args = {}
model_args['class_dim'] = self.num_classes
model_args['cluster_size'] = self.cluster_size
model_args['hidden_size'] = self.hidden_size
model_args['groups'] = self.groups
model_args['expansion'] = self.expansion
model_args['drop_rate'] = self.drop_rate
model_args['gating_reduction'] = self.gating_reduction
model_args['l2_penalty'] = self.l2_penalty
return model_args
def build_model(self):
model_args = self.create_model_args()
videomodel = nextvlad_model.NeXtVLADModel()
rgb = self.feature_input[0]
audio = self.feature_input[1]
out = videomodel.create_model(
rgb, audio, is_training=(self.mode == 'train'), **model_args)
self.logits = out['logits']
self.predictions = out['predictions']
self.network_outputs = [out['predictions']]
def optimizer(self):
assert self.mode == 'train', "optimizer only can be get in train mode"
im_per_batch = self.batch_size
lr_bounds, lr_values = get_learning_rate_decay_list(
self.base_learning_rate, self.learning_rate_decay, self.max_iter,
self.lr_boundary_examples, im_per_batch)
return fluid.optimizer.AdamOptimizer(
learning_rate=fluid.layers.piecewise_decay(
boundaries=lr_bounds, values=lr_values))
def loss(self):
assert self.mode != 'infer', "invalid loss calculationg in infer mode"
cost = fluid.layers.sigmoid_cross_entropy_with_logits(
x=self.logits, label=self.label_input)
cost = fluid.layers.reduce_sum(cost, dim=-1)
self.loss_ = fluid.layers.mean(x=cost)
return self.loss_
def outputs(self):
return self.network_outputs
def feeds(self):
return self.feature_input if self.mode == 'infer' else self.feature_input + [
self.label_input
]
def weights_info(self):
return ('nextvlad_youtube8m',
'https://paddlemodels.bj.bcebos.com/video_classification/nextvlad_youtube8m.tar.gz')
def get_learning_rate_decay_list(base_learning_rate, decay, max_iter,
decay_examples, total_batch_size):
decay_step = decay_examples // total_batch_size
lr_bounds = []
lr_values = [base_learning_rate]
i = 1
while True:
if i * decay_step >= max_iter:
break
lr_bounds.append(i * decay_step)
lr_values.append(base_learning_rate * (decay**i))
i += 1
return lr_bounds, lr_values
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
from . import clf_model
class NeXtVLAD(object):
"""
This is a paddlepaddle implementation of the NeXtVLAD model. For more
information, please refer to the paper,
https://static.googleusercontent.com/media/research.google.com/zh-CN//youtube8m/workshop2018/p_c03.pdf
"""
def __init__(self,
feature_size,
cluster_size,
is_training=True,
expansion=2,
groups=None,
inputname='video'):
self.feature_size = feature_size
self.cluster_size = cluster_size
self.is_training = is_training
self.expansion = expansion
self.groups = groups
self.name = inputname + '_'
def forward(self, input):
input = fluid.layers.fc(
input=input,
size=self.expansion * self.feature_size,
act=None,
name=self.name + 'fc_expansion',
param_attr=fluid.ParamAttr(
name=self.name + 'fc_expansion_w',
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=fluid.ParamAttr(
name=self.name + 'fc_expansion_b',
initializer=fluid.initializer.Constant(value=0.)))
# attention factor of per group
attention = fluid.layers.fc(
input=input,
size=self.groups,
act='sigmoid',
name=self.name + 'fc_group_attention',
param_attr=fluid.ParamAttr(
name=self.name + 'fc_group_attention_w',
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=fluid.ParamAttr(
name=self.name + 'fc_group_attention_b',
initializer=fluid.initializer.Constant(value=0.)))
# calculate activation factor of per group per cluster
feature_size = self.feature_size * self.expansion // self.groups
cluster_weights = fluid.layers.create_parameter(
shape=[
self.expansion * self.feature_size,
self.groups * self.cluster_size
],
dtype=input.dtype,
attr=fluid.ParamAttr(name=self.name + 'cluster_weights'),
default_initializer=fluid.initializer.MSRA(uniform=False))
activation = fluid.layers.matmul(input, cluster_weights)
activation = fluid.layers.batch_norm(
activation, is_test=(not self.is_training))
# reshape of activation
activation = fluid.layers.reshape(activation,
[-1, self.groups, self.cluster_size])
# softmax on per cluster
activation = fluid.layers.softmax(activation)
activation = fluid.layers.elementwise_mul(activation, attention, axis=0)
a_sum = fluid.layers.sequence_pool(activation, 'sum')
a_sum = fluid.layers.reduce_sum(a_sum, dim=1)
# create cluster_weights2
cluster_weights2 = fluid.layers.create_parameter(
shape=[self.cluster_size, feature_size],
dtype=input.dtype,
attr=fluid.ParamAttr(name=self.name + 'cluster_weights2'),
default_initializer=fluid.initializer.MSRA(uniform=False))
# expand a_sum dimension from [-1, self.cluster_size] to be [-1, self.cluster_size, feature_size]
a_sum = fluid.layers.reshape(a_sum, [-1, self.cluster_size, 1])
a_sum = fluid.layers.expand(a_sum, [1, 1, feature_size])
# element wise multiply a_sum and cluster_weights2
a = fluid.layers.elementwise_mul(
a_sum, cluster_weights2,
axis=1) # output shape [-1, self.cluster_size, feature_size]
# transpose activation from [-1, self.groups, self.cluster_size] to [-1, self.cluster_size, self.groups]
activation2 = fluid.layers.transpose(activation, perm=[0, 2, 1])
# transpose op will clear the lod infomation, so it should be reset
activation = fluid.layers.lod_reset(activation2, activation)
# reshape input from [-1, self.expansion * self.feature_size] to [-1, self.groups, feature_size]
reshaped_input = fluid.layers.reshape(input,
[-1, self.groups, feature_size])
# mat multiply activation and reshaped_input
vlad = fluid.layers.matmul(
activation,
reshaped_input) # output shape [-1, self.cluster_size, feature_size]
vlad = fluid.layers.sequence_pool(vlad, 'sum')
vlad = fluid.layers.elementwise_sub(vlad, a)
# l2_normalization
vlad = fluid.layers.transpose(vlad, [0, 2, 1])
vlad = fluid.layers.l2_normalize(vlad, axis=1)
# reshape and batch norm
vlad = fluid.layers.reshape(vlad,
[-1, self.cluster_size * feature_size])
vlad = fluid.layers.batch_norm(vlad, is_test=(not self.is_training))
return vlad
class NeXtVLADModel(object):
"""
Creates a NeXtVLAD based model.
Args:
model_input: A LoDTensor of [-1, N] for the input video frames.
vocab_size: The number of classes in the dataset.
"""
def __init__(self):
pass
def create_model(self,
video_input,
audio_input,
is_training=True,
class_dim=None,
cluster_size=None,
hidden_size=None,
groups=None,
expansion=None,
drop_rate=None,
gating_reduction=None,
l2_penalty=None,
**unused_params):
# calcluate vlad of video and audio
video_nextvlad = NeXtVLAD(
1024,
cluster_size,
is_training,
expansion=expansion,
groups=groups,
inputname='video')
audio_nextvlad = NeXtVLAD(
128,
cluster_size,
is_training,
expansion=expansion,
groups=groups,
inputname='audio')
vlad_video = video_nextvlad.forward(video_input)
vlad_audio = audio_nextvlad.forward(audio_input)
# concat video and audio
vlad = fluid.layers.concat([vlad_video, vlad_audio], axis=1)
# drop out
if drop_rate > 0.:
vlad = fluid.layers.dropout(
vlad, drop_rate, is_test=(not is_training))
# add fc
activation = fluid.layers.fc(
input=vlad,
size=hidden_size,
act=None,
name='hidden1_fc',
param_attr=fluid.ParamAttr(
name='hidden1_fc_weights',
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=False)
activation = fluid.layers.batch_norm(
activation, is_test=(not is_training))
# add fc, gate 1
gates = fluid.layers.fc(
input=activation,
size=hidden_size // gating_reduction,
act=None,
name='gating_fc1',
param_attr=fluid.ParamAttr(
name='gating_fc1_weights',
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=False)
gates = fluid.layers.batch_norm(
gates, is_test=(not is_training), act='relu')
# add fc, gate 2
gates = fluid.layers.fc(
input=gates,
size=hidden_size,
act='sigmoid',
name='gating_fc2',
param_attr=fluid.ParamAttr(
name='gating_fc2_weights',
initializer=fluid.initializer.MSRA(uniform=False)),
bias_attr=False)
activation = fluid.layers.elementwise_mul(activation, gates)
aggregate_model = clf_model.LogisticModel # set classification model
return aggregate_model().create_model(
model_input=activation,
vocab_size=class_dim,
l2_penalty=l2_penalty,
is_training=is_training,
**unused_params)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import numpy as np
import paddle.fluid as fluid
from ..model import ModelBase
from .stnet_res_model import StNet_ResNet
import logging
logger = logging.getLogger(__name__)
__all__ = ["STNET"]
class STNET(ModelBase):
def __init__(self, name, cfg, mode='train'):
super(STNET, self).__init__(name, cfg, mode=mode)
self.get_config()
def get_config(self):
self.num_classes = self.get_config_from_sec('model', 'num_classes')
self.seg_num = self.get_config_from_sec('model', 'seg_num')
self.seglen = self.get_config_from_sec('model', 'seglen')
self.image_mean = self.get_config_from_sec('model', 'image_mean')
self.image_std = self.get_config_from_sec('model', 'image_std')
self.num_layers = self.get_config_from_sec('model', 'num_layers')
self.num_epochs = self.get_config_from_sec('train', 'epoch')
self.total_videos = self.get_config_from_sec('train', 'total_videos')
self.base_learning_rate = self.get_config_from_sec('train',
'learning_rate')
self.learning_rate_decay = self.get_config_from_sec(
'train', 'learning_rate_decay')
self.l2_weight_decay = self.get_config_from_sec('train',
'l2_weight_decay')
self.momentum = self.get_config_from_sec('train', 'momentum')
self.target_size = self.get_config_from_sec(self.mode, 'target_size')
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_pyreader=True):
image_shape = [3, self.target_size, self.target_size]
image_shape[0] = image_shape[0] * self.seglen
image_shape = [self.seg_num] + image_shape
self.use_pyreader = use_pyreader
if use_pyreader:
assert self.mode != 'infer', \
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
py_reader = fluid.layers.py_reader(
capacity=100,
shapes=[[-1] + image_shape, [-1] + [1]],
dtypes=['float32', 'int64'],
name='train_py_reader'
if self.is_training else 'test_py_reader',
use_double_buffer=True)
image, label = fluid.layers.read_file(py_reader)
self.py_reader = py_reader
else:
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if self.mode != 'infer':
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
else:
label = None
self.feature_input = [image]
self.label_input = label
def create_model_args(self):
cfg = {}
cfg['layers'] = self.num_layers
cfg['class_dim'] = self.num_classes
cfg['seg_num'] = self.seg_num
cfg['seglen'] = self.seglen
return cfg
def build_model(self):
cfg = self.create_model_args()
videomodel = StNet_ResNet(layers = cfg['layers'], seg_num = cfg['seg_num'], \
seglen = cfg['seglen'], is_training = (self.mode == 'train'))
out = videomodel.net(input=self.feature_input[0],
class_dim=cfg['class_dim'])
self.network_outputs = [out]
def optimizer(self):
epoch_points = [self.num_epochs / 3, self.num_epochs * 2 / 3]
total_videos = self.total_videos
step = int(total_videos / self.batch_size + 1)
bd = [e * step for e in epoch_points]
base_lr = self.base_learning_rate
lr_decay = self.learning_rate_decay
lr = [base_lr, base_lr * lr_decay, base_lr * lr_decay * lr_decay]
l2_weight_decay = self.l2_weight_decay
momentum = self.momentum
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=momentum,
regularization=fluid.regularizer.L2Decay(l2_weight_decay))
return optimizer
def loss(self):
cost = fluid.layers.cross_entropy(input=self.network_outputs[0], \
label=self.label_input, ignore_index=-1)
self.loss_ = fluid.layers.mean(x=cost)
return self.loss_
def outputs(self):
return self.network_outputs
def feeds(self):
return self.feature_input if self.mode == 'infer' else self.feature_input + [
self.label_input
]
def pretrain_info(self):
return ('ResNet50_pretrained', 'https://paddlemodels.bj.bcebos.com/video_classification/ResNet50_pretrained.tar.gz')
def load_pretrain_params(self, exe, pretrain, prog, place):
def is_parameter(var):
if isinstance(var, fluid.framework.Parameter):
return isinstance(var, fluid.framework.Parameter) and (not ("fc_0" in var.name)) \
and (not ("batch_norm" in var.name)) and (not ("xception" in var.name)) and (not ("conv3d" in var.name))
logger.info("Load pretrain weights from {}, exclude fc, batch_norm, xception, conv3d layers.".format(pretrain))
vars = filter(is_parameter, prog.list_vars())
fluid.io.load_vars(exe, pretrain, vars=vars, main_program=prog)
param_tensor = fluid.global_scope().find_var(
"conv1_weights").get_tensor()
param_numpy = np.array(param_tensor)
param_numpy = np.mean(param_numpy, axis=1, keepdims=True) / self.seglen
param_numpy = np.repeat(param_numpy, 3 * self.seglen, axis=1)
param_tensor.set(param_numpy.astype(np.float32), place)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import time
import sys
import paddle.fluid as fluid
import math
class StNet_ResNet():
def __init__(self, layers=50, seg_num=7, seglen=5, is_training=True):
self.layers = layers
self.seglen = seglen
self.seg_num = seg_num
self.is_training = is_training
def temporal_conv_bn(
self,
input, #(B*seg_num, c, h, w)
num_filters,
filter_size=(3, 1, 1),
padding=(1, 0, 0)):
#(B, seg_num, c, h, w)
in_reshape = fluid.layers.reshape(
x=input,
shape=[
-1, self.seg_num, input.shape[-3], input.shape[-2],
input.shape[-1]
])
in_transpose = fluid.layers.transpose(in_reshape, perm=[0, 2, 1, 3, 4])
conv = fluid.layers.conv3d(
input=in_transpose,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
groups=1,
padding=padding,
act='relu',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.MSRAInitializer()),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0.0)))
out = fluid.layers.batch_norm(
input=conv,
act=None,
is_test=(not self.is_training),
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=1.0)),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0.0)))
out = out + in_transpose
out = fluid.layers.transpose(out, perm=[0, 2, 1, 3, 4])
out = fluid.layers.reshape(x=out, shape=input.shape)
return out
def xception(self, input): #(B, C, seg_num,1)
bn = fluid.layers.batch_norm(
input=input,
act=None,
name="xception_bn",
is_test=(not self.is_training),
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=1.0)),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0.0)))
att_conv = fluid.layers.conv2d(
input=bn,
num_filters=2048,
filter_size=[3, 1],
stride=[1, 1],
padding=[1, 0],
groups=2048,
name="xception_att_conv",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.MSRAInitializer()),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0)))
att_2 = fluid.layers.conv2d(
input=att_conv,
num_filters=1024,
filter_size=[1, 1],
stride=[1, 1],
name="xception_att_2",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.MSRAInitializer()),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0)))
bndw = fluid.layers.batch_norm(
input=att_2,
act="relu",
name="xception_bndw",
is_test=(not self.is_training),
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=1.0)),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0.0)))
att1 = fluid.layers.conv2d(
input=bndw,
num_filters=1024,
filter_size=[3, 1],
stride=[1, 1],
padding=[1, 0],
groups=1024,
name="xception_att1",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.MSRAInitializer()),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0)))
att1_2 = fluid.layers.conv2d(
input=att1,
num_filters=1024,
filter_size=[1, 1],
stride=[1, 1],
name="xception_att1_2",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.MSRAInitializer()),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0)))
dw = fluid.layers.conv2d(
input=bn,
num_filters=1024,
filter_size=[1, 1],
stride=[1, 1],
name="xception_dw",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.MSRAInitializer()),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0)))
add_to = dw + att1_2
bn2 = fluid.layers.batch_norm(
input=add_to,
act=None,
name='xception_bn2',
is_test=(not self.is_training),
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=1.0)),
bias_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.ConstantInitializer(value=0.0)))
return fluid.layers.relu(bn2)
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=fluid.param_attr.ParamAttr(name=name + "_weights"),
bias_attr=False,
#name = name+".conv2d.output.1"
)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
is_test=(not self.is_training),
#name=bn_name+'.output.1',
param_attr=fluid.param_attr.ParamAttr(name=bn_name + "_scale"),
bias_attr=fluid.param_attr.ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input, num_filters * 4, stride, name=name + "_branch1")
return fluid.layers.elementwise_add(
x=short,
y=conv2,
act='relu',
#name=".add.output.5"
)
def net(self, input, class_dim=101):
layers = self.layers
seg_num = self.seg_num
seglen = self.seglen
supported_layers = [50, 101, 152]
if layers not in supported_layers:
print("supported layers are", supported_layers, \
"but input layer is ", layers)
exit()
# reshape input
# [B, seg_num, seglen*c, H, W] --> [B*seg_num, seglen*c, H, W]
channels = input.shape[2]
short_size = input.shape[3]
input = fluid.layers.reshape(
x=input, shape=[-1, channels, short_size, short_size])
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name='conv1')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name)
if block == 1:
#insert the first temporal modeling block
conv = self.temporal_conv_bn(input=conv, num_filters=512)
if block == 2:
#insert the second temporal modeling block
conv = self.temporal_conv_bn(input=conv, num_filters=1024)
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
feature = fluid.layers.reshape(
x=pool, shape=[-1, seg_num, pool.shape[1], 1])
feature = fluid.layers.transpose(feature, perm=[0, 2, 1, 3])
#append the temporal Xception block
xfeat = self.xception(feature) #(B, 1024, seg_num, 1)
out = fluid.layers.pool2d(
input=xfeat,
pool_size=(seg_num, 1),
pool_type='max',
global_pooling=True)
out = fluid.layers.reshape(x=out, shape=[-1, 1024])
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(input=out,
size=class_dim,
act='softmax',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv,
stdv)))
return out
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import ParamAttr
from ..model import ModelBase
from .tsn_res_model import TSN_ResNet
import logging
logger = logging.getLogger(__name__)
__all__ = ["TSN"]
class TSN(ModelBase):
def __init__(self, name, cfg, mode='train'):
super(TSN, self).__init__(name, cfg, mode=mode)
self.get_config()
def get_config(self):
self.num_classes = self.get_config_from_sec('model', 'num_classes')
self.seg_num = self.get_config_from_sec('model', 'seg_num')
self.seglen = self.get_config_from_sec('model', 'seglen')
self.image_mean = self.get_config_from_sec('model', 'image_mean')
self.image_std = self.get_config_from_sec('model', 'image_std')
self.num_layers = self.get_config_from_sec('model', 'num_layers')
self.num_epochs = self.get_config_from_sec('train', 'epoch')
self.total_videos = self.get_config_from_sec('train', 'total_videos')
self.base_learning_rate = self.get_config_from_sec('train',
'learning_rate')
self.learning_rate_decay = self.get_config_from_sec(
'train', 'learning_rate_decay')
self.l2_weight_decay = self.get_config_from_sec('train',
'l2_weight_decay')
self.momentum = self.get_config_from_sec('train', 'momentum')
self.target_size = self.get_config_from_sec(self.mode, 'target_size')
self.batch_size = self.get_config_from_sec(self.mode, 'batch_size')
def build_input(self, use_pyreader=True):
image_shape = [3, self.target_size, self.target_size]
image_shape[0] = image_shape[0] * self.seglen
image_shape = [self.seg_num] + image_shape
self.use_pyreader = use_pyreader
if use_pyreader:
assert self.mode != 'infer', \
'pyreader is not recommendated when infer, please set use_pyreader to be false.'
py_reader = fluid.layers.py_reader(
capacity=100,
shapes=[[-1] + image_shape, [-1] + [1]],
dtypes=['float32', 'int64'],
name='train_py_reader'
if self.is_training else 'test_py_reader',
use_double_buffer=True)
image, label = fluid.layers.read_file(py_reader)
self.py_reader = py_reader
else:
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if self.mode != 'infer':
label = fluid.layers.data(
name='label', shape=[1], dtype='int64')
else:
label = None
self.feature_input = [image]
self.label_input = label
def create_model_args(self):
cfg = {}
cfg['layers'] = self.num_layers
cfg['class_dim'] = self.num_classes
cfg['seg_num'] = self.seg_num
return cfg
def build_model(self):
cfg = self.create_model_args()
videomodel = TSN_ResNet(
layers=cfg['layers'],
seg_num=cfg['seg_num'],
is_training=(self.mode == 'train'))
out = videomodel.net(input=self.feature_input[0],
class_dim=cfg['class_dim'])
self.network_outputs = [out]
def optimizer(self):
assert self.mode == 'train', "optimizer only can be get in train mode"
epoch_points = [self.num_epochs / 3, self.num_epochs * 2 / 3]
total_videos = self.total_videos
step = int(total_videos / self.batch_size + 1)
bd = [e * step for e in epoch_points]
base_lr = self.base_learning_rate
lr_decay = self.learning_rate_decay
lr = [base_lr, base_lr * lr_decay, base_lr * lr_decay * lr_decay]
l2_weight_decay = self.l2_weight_decay
momentum = self.momentum
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=momentum,
regularization=fluid.regularizer.L2Decay(l2_weight_decay))
return optimizer
def loss(self):
assert self.mode != 'infer', "invalid loss calculationg in infer mode"
cost = fluid.layers.cross_entropy(input=self.network_outputs[0], \
label=self.label_input, ignore_index=-1)
self.loss_ = fluid.layers.mean(x=cost)
return self.loss_
def outputs(self):
return self.network_outputs
def feeds(self):
return self.feature_input if self.mode == 'infer' else self.feature_input + [
self.label_input
]
def pretrain_info(self):
return ('ResNet50_pretrained', 'https://paddlemodels.bj.bcebos.com/video_classification/ResNet50_pretrained.tar.gz')
def load_pretrain_params(self, exe, pretrain, prog, place):
def is_parameter(var):
return isinstance(var, fluid.framework.Parameter) and (not ("fc_0" in var.name))
logger.info("Load pretrain weights from {}, exclude fc layer.".format(pretrain))
vars = filter(is_parameter, prog.list_vars())
fluid.io.load_vars(exe, pretrain, vars=vars, main_program=prog)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import time
import sys
import paddle.fluid as fluid
import math
class TSN_ResNet():
def __init__(self, layers=50, seg_num=7, is_training=True):
self.layers = layers
self.seg_num = seg_num
self.is_training = is_training
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=fluid.param_attr.ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
is_test=(not self.is_training),
param_attr=fluid.param_attr.ParamAttr(name=bn_name + "_scale"),
bias_attr=fluid.param_attr.ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input, num_filters * 4, stride, name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def net(self, input, class_dim=101):
layers = self.layers
seg_num = self.seg_num
supported_layers = [50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
# reshape input
channels = input.shape[2]
short_size = input.shape[3]
input = fluid.layers.reshape(
x=input, shape=[-1, channels, short_size, short_size])
if layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name='conv1')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name)
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
feature = fluid.layers.reshape(
x=pool, shape=[-1, seg_num, pool.shape[1]])
out = fluid.layers.reduce_mean(feature, dim=1)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(input=out,
size=class_dim,
act='softmax',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv,
stdv)))
return out
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import wget
import tarfile
__all__ = ['decompress', 'download', 'AttrDict']
def decompress(path):
t = tarfile.open(path)
t.extractall(path='/'.join(path.split('/')[:-1]))
t.close()
os.remove(path)
def download(url, path):
weight_dir = '/'.join(path.split('/')[:-1])
if not os.path.exists(weight_dir):
os.makedirs(weight_dir)
path = path + ".tar.gz"
wget.download(url, path)
decompress(path)
class AttrDict(dict):
def __getattr__(self, key):
return self[key]
def __setattr__(self, key, value):
if key in self.__dict__:
self.__dict__[key] = value
else:
self[key] = value
python infer.py --model-name="AttentionCluster" --config=./configs/attention_cluster.txt \
--filelist=./data/youtube8m/infer.list \
--weights=./checkpoints/AttentionCluster_epoch0 \
--save-dir="./save"
python infer.py --model-name="AttentionLSTM" --config=./configs/attention_lstm.txt \
--filelist=./data/youtube8m/infer.list \
--weights=./checkpoints/AttentionLSTM_epoch0 \
--save-dir="./save"
python infer.py --model-name="NEXTVLAD" --config=./configs/nextvlad.txt --filelist=./data/youtube8m/infer.list \
--weights=./checkpoints/NEXTVLAD_epoch0 \
--save-dir="./save"
python infer.py --model-name="STNET" --config=./configs/stnet.txt --filelist=./data/kinetics/infer.list \
--log-interval=10 --weights=./checkpoints/STNET_epoch0 --save-dir=./save
python infer.py --model-name="TSN" --config=./configs/tsn.txt --filelist=./data/kinetics/infer.list \
--log-interval=10 --weights=./checkpoints/TSN_epoch0 --save-dir=./save
python test.py --model-name="AttentionCluster" --config=./configs/attention_cluster.txt \
--log-interval=5 --weights=./checkpoints/AttentionCluster_epoch0
python test.py --model-name="AttentionLSTM" --config=./configs/attention_lstm.txt \
--log-interval=5 --weights=./checkpoints/AttentionLSTM_epoch0
python test.py --model-name="NEXTVLAD" --config=./configs/nextvlad.txt \
--log-interval=10 --weights=./checkpoints/NEXTVLAD_epoch0
python test.py --model-name="STNET" --config=./configs/stnet.txt \
--log-interval=10 --weights=./checkpoints/STNET_epoch0
python test.py --model-name="TSN" --config=./configs/tsn.txt \
--log-interval=10 --weights=./checkpoints/TSN_epoch0
python train.py --model-name="AttentionCluster" --config=./configs/attention_cluster.txt --epoch-num=5 \
--valid-interval=1 --log-interval=10
python train.py --model-name="AttentionLSTM" --config=./configs/attention_lstm.txt --epoch-num=10 \
--valid-interval=1 --log-interval=10
export CUDA_VISIBLE_DEVICES=0,1,2,3
python train.py --model-name="NEXTVLAD" --config=./configs/nextvlad.txt --epoch-num=6 \
--valid-interval=1 --log-interval=10
python train.py --model-name="STNET" --config=./configs/stnet.txt --epoch-num=60 \
--valid-interval=1 --log-interval=10
python train.py --model-name="TSN" --config=./configs/tsn.txt --epoch-num=45 \
--valid-interval=1 --log-interval=10
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import time
import logging
import argparse
import numpy as np
import paddle.fluid as fluid
from config import *
import models
from datareader import get_reader
from metrics import get_metrics
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-name',
type=str,
default='AttentionCluster',
help='name of model to train.')
parser.add_argument(
'--config',
type=str,
default='configs/attention_cluster.txt',
help='path to config file of model')
parser.add_argument(
'--batch-size',
type=int,
default=None,
help='traing batch size per GPU. None to use config file setting.')
parser.add_argument(
'--use-gpu', type=bool, default=True, help='default use gpu.')
parser.add_argument(
'--weights',
type=str,
default=None,
help='weight path, None to use weights from Paddle.')
parser.add_argument(
'--log-interval',
type=int,
default=1,
help='mini-batch interval to log.')
args = parser.parse_args()
return args
def test(args):
# parse config
config = parse_config(args.config)
test_config = merge_configs(config, 'test', vars(args))
# build model
test_model = models.get_model(args.model_name, test_config, mode='test')
test_model.build_input(use_pyreader=False)
test_model.build_model()
test_feeds = test_model.feeds()
test_outputs = test_model.outputs()
loss = test_model.loss()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
if args.weights:
assert os.path.exists(
args.weights), "Given weight dir {} not exist.".format(args.weights)
weights = args.weights or test_model.get_weights()
def if_exist(var):
return os.path.exists(os.path.join(weights, var.name))
fluid.io.load_vars(exe, weights, predicate=if_exist)
# get reader and metrics
test_reader = get_reader(args.model_name.upper(), 'test', test_config)
test_metrics = get_metrics(args.model_name.upper(), 'test', test_config)
test_feeder = fluid.DataFeeder(place=place, feed_list=test_feeds)
fetch_list = [loss.name] + [x.name
for x in test_outputs] + [test_feeds[-1].name]
epoch_period = []
for test_iter, data in enumerate(test_reader()):
cur_time = time.time()
test_outs = exe.run(fetch_list=fetch_list,
feed=test_feeder.feed(data))
period = time.time() - cur_time
epoch_period.append(period)
loss = np.array(test_outs[0])
pred = np.array(test_outs[1])
label = np.array(test_outs[-1])
test_metrics.accumulate(loss, pred, label)
# metric here
if args.log_interval > 0 and test_iter % args.log_interval == 0:
info_str = '[EVAL] Batch {}'.format(test_iter)
test_metrics.calculate_and_log_out(loss, pred, label, info_str)
test_metrics.finalize_and_log_out("[EVAL] eval finished. ")
if __name__ == "__main__":
args = parse_args()
logger.info(args)
test(args)
import os
import time
import numpy as np
import paddle
import paddle.fluid as fluid
import logging
import shutil
logger = logging.getLogger(__name__)
def test_without_pyreader(test_exe,
test_reader,
test_feeder,
test_fetch_list,
test_metrics,
log_interval=0):
test_metrics.reset()
for test_iter, data in enumerate(test_reader()):
test_outs = test_exe.run(test_fetch_list, feed=test_feeder.feed(data))
loss = np.array(test_outs[0])
pred = np.array(test_outs[1])
label = np.array(test_outs[-1])
test_metrics.accumulate(loss, pred, label)
if log_interval > 0 and test_iter % log_interval == 0:
test_metrics.calculate_and_log_out(loss, pred, label, \
info = '[TEST] test_iter {} '.format(test_iter))
test_metrics.finalize_and_log_out("[TEST] Finish")
def test_with_pyreader(test_exe,
test_pyreader,
test_fetch_list,
test_metrics,
log_interval=0):
if not test_pyreader:
logger.error("[TEST] get pyreader failed.")
test_pyreader.start()
test_metrics.reset()
test_iter = 0
try:
while True:
test_outs = test_exe.run(fetch_list=test_fetch_list)
loss = np.array(test_outs[0])
pred = np.array(test_outs[1])
label = np.array(test_outs[-1])
test_metrics.accumulate(loss, pred, label)
if log_interval > 0 and test_iter % log_interval == 0:
test_metrics.calculate_and_log_out(loss, pred, label, \
info = '[TEST] test_iter {} '.format(test_iter))
test_iter += 1
except fluid.core.EOFException:
test_metrics.finalize_and_log_out("[TEST] Finish")
finally:
test_pyreader.reset()
def train_without_pyreader(exe, train_prog, train_exe, train_reader, train_feeder, \
train_fetch_list, train_metrics, epochs = 10, \
log_interval = 0, valid_interval = 0, save_dir = './', \
save_model_name = 'model', test_exe = None, test_reader = None, \
test_feeder = None, test_fetch_list = None, test_metrics = None):
for epoch in range(epochs):
epoch_periods = []
for train_iter, data in enumerate(train_reader()):
cur_time = time.time()
train_outs = train_exe.run(train_fetch_list,
feed=train_feeder.feed(data))
period = time.time() - cur_time
epoch_periods.append(period)
loss = np.array(train_outs[0])
pred = np.array(train_outs[1])
label = np.array(train_outs[-1])
if log_interval > 0 and (train_iter % log_interval == 0):
# eval here
train_metrics.calculate_and_log_out(loss, pred, label, \
info = '[TRAIN] Epoch {}, iter {} '.format(epoch, train_iter))
train_iter += 1
logger.info('[TRAIN] Epoch {} training finished, average time: {}'.
format(epoch, np.mean(epoch_periods)))
save_model(exe, train_prog, save_dir, save_model_name,
"_epoch{}".format(epoch))
if test_exe and valid_interval > 0 and (epoch + 1) % valid_interval == 0:
test_without_pyreader(test_exe, test_reader, test_feeder,
test_fetch_list, test_metrics, log_interval)
def train_with_pyreader(exe, train_prog, train_exe, train_pyreader, \
train_fetch_list, train_metrics, epochs = 10, \
log_interval = 0, valid_interval = 0, \
save_dir = './', save_model_name = 'model', \
test_exe = None, test_pyreader = None, \
test_fetch_list = None, test_metrics = None):
if not train_pyreader:
logger.error("[TRAIN] get pyreader failed.")
for epoch in range(epochs):
train_pyreader.start()
train_metrics.reset()
try:
train_iter = 0
epoch_periods = []
while True:
cur_time = time.time()
train_outs = train_exe.run(fetch_list=train_fetch_list)
period = time.time() - cur_time
epoch_periods.append(period)
loss = np.array(train_outs[0])
pred = np.array(train_outs[1])
label = np.array(train_outs[-1])
if log_interval > 0 and (train_iter % log_interval == 0):
# eval here
train_metrics.calculate_and_log_out(loss, pred, label, \
info = '[TRAIN] Epoch {}, iter {} '.format(epoch, train_iter))
train_iter += 1
except fluid.core.EOFException:
# eval here
logger.info('[TRAIN] Epoch {} training finished, average time: {}'.
format(epoch, np.mean(epoch_periods)))
save_model(exe, train_prog, save_dir, save_model_name,
"_epoch{}".format(epoch))
if test_exe and valid_interval > 0 and (epoch + 1) % valid_interval == 0:
test_with_pyreader(test_exe, test_pyreader, test_fetch_list,
test_metrics, log_interval)
finally:
epoch_period = []
train_pyreader.reset()
def save_model(exe, program, save_dir, model_name, postfix=None):
model_path = os.path.join(save_dir, model_name + postfix)
if os.path.isdir(model_path):
shutil.rmtree(model_path)
fluid.io.save_persistables(exe, model_path, main_program=program)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import time
import argparse
import logging
import numpy as np
import paddle.fluid as fluid
from tools.train_utils import train_with_pyreader, train_without_pyreader
import models
from config import *
from datareader import get_reader
from metrics import get_metrics
logging.root.handlers = []
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser("Paddle Video train script")
parser.add_argument(
'--model-name',
type=str,
default='AttentionCluster',
help='name of model to train.')
parser.add_argument(
'--config',
type=str,
default='configs/attention_cluster.txt',
help='path to config file of model')
parser.add_argument(
'--batch-size',
type=int,
default=None,
help='training batch size. None to use config file setting.')
parser.add_argument(
'--learning-rate',
type=float,
default=None,
help='learning rate use for training. None to use config file setting.')
parser.add_argument(
'--pretrain',
type=str,
default=None,
help='path to pretrain weights. None to use default weights path in ~/.paddle/weights.'
)
parser.add_argument(
'--resume',
type=str,
default=None,
help='path to resume training based on previous checkpoints. '
'None for not resuming any checkpoints.'
)
parser.add_argument(
'--use-gpu', type=bool, default=True, help='default use gpu.')
parser.add_argument(
'--no-use-pyreader',
action='store_true',
default=False,
help='whether to use pyreader')
parser.add_argument(
'--no-memory-optimize',
action='store_true',
default=False,
help='whether to use memory optimize in train')
parser.add_argument(
'--epoch-num',
type=int,
default=0,
help='epoch number, 0 for read from config file')
parser.add_argument(
'--valid-interval',
type=int,
default=1,
help='validation epoch interval, 0 for no validation.')
parser.add_argument(
'--save-dir',
type=str,
default='checkpoints',
help='directory name to save train snapshoot')
parser.add_argument(
'--log-interval',
type=int,
default=10,
help='mini-batch interval to log.')
args = parser.parse_args()
return args
def train(args):
# parse config
config = parse_config(args.config)
train_config = merge_configs(config, 'train', vars(args))
valid_config = merge_configs(config, 'valid', vars(args))
train_model = models.get_model(args.model_name, train_config, mode='train')
valid_model = models.get_model(args.model_name, valid_config, mode='valid')
# build model
startup = fluid.Program()
train_prog = fluid.Program()
with fluid.program_guard(train_prog, startup):
with fluid.unique_name.guard():
train_model.build_input(not args.no_use_pyreader)
train_model.build_model()
# for the input, has the form [data1, data2,..., label], so train_feeds[-1] is label
train_feeds = train_model.feeds()
train_feeds[-1].persistable = True
# for the output of classification model, has the form [pred]
train_outputs = train_model.outputs()
for output in train_outputs:
output.persistable = True
train_loss = train_model.loss()
train_loss.persistable = True
# outputs, loss, label should be fetched, so set persistable to be true
optimizer = train_model.optimizer()
optimizer.minimize(train_loss)
train_pyreader = train_model.pyreader()
if not args.no_memory_optimize:
fluid.memory_optimize(train_prog)
valid_prog = fluid.Program()
with fluid.program_guard(valid_prog, startup):
with fluid.unique_name.guard():
valid_model.build_input(not args.no_use_pyreader)
valid_model.build_model()
valid_feeds = valid_model.feeds()
valid_outputs = valid_model.outputs()
valid_loss = valid_model.loss()
valid_pyreader = valid_model.pyreader()
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup)
if args.resume:
# if resume weights is given, load resume weights directly
assert os.path.exists(args.resume), \
"Given resume weight dir {} not exist.".format(args.resume)
def if_exist(var):
return os.path.exists(os.path.join(args.resume, var.name))
fluid.io.load_vars(exe, args.resume, predicate=if_exist, main_program=train_prog)
else:
# if not in resume mode, load pretrain weights
if args.pretrain:
assert os.path.exists(args.pretrain), \
"Given pretrain weight dir {} not exist.".format(args.pretrain)
pretrain = args.pretrain or train_model.get_pretrain_weights()
if pretrain:
train_model.load_pretrain_params(exe, pretrain, train_prog, place)
train_exe = fluid.ParallelExecutor(
use_cuda=args.use_gpu,
loss_name=train_loss.name,
main_program=train_prog)
valid_exe = fluid.ParallelExecutor(
use_cuda=args.use_gpu,
share_vars_from=train_exe,
main_program=valid_prog)
# get reader
bs_denominator = 1
if (not args.no_use_pyreader) and args.use_gpu:
bs_denominator = train_config.TRAIN.num_gpus
train_config.TRAIN.batch_size = int(train_config.TRAIN.batch_size /
bs_denominator)
valid_config.VALID.batch_size = int(valid_config.VALID.batch_size /
bs_denominator)
train_reader = get_reader(args.model_name.upper(), 'train', train_config)
valid_reader = get_reader(args.model_name.upper(), 'valid', valid_config)
# get metrics
train_metrics = get_metrics(args.model_name.upper(), 'train', train_config)
valid_metrics = get_metrics(args.model_name.upper(), 'valid', valid_config)
train_fetch_list = [train_loss.name] + [x.name for x in train_outputs
] + [train_feeds[-1].name]
valid_fetch_list = [valid_loss.name] + [x.name for x in valid_outputs
] + [valid_feeds[-1].name]
epochs = args.epoch_num or train_model.epoch_num()
if args.no_use_pyreader:
train_feeder = fluid.DataFeeder(place=place, feed_list=train_feeds)
valid_feeder = fluid.DataFeeder(place=place, feed_list=valid_feeds)
train_without_pyreader(exe, train_prog, train_exe, train_reader, train_feeder,
train_fetch_list, train_metrics, epochs = epochs,
log_interval = args.log_interval, valid_interval = args.valid_interval,
save_dir = args.save_dir, save_model_name = args.model_name,
test_exe = valid_exe, test_reader = valid_reader, test_feeder = valid_feeder,
test_fetch_list = valid_fetch_list, test_metrics = valid_metrics)
else:
train_pyreader.decorate_paddle_reader(train_reader)
valid_pyreader.decorate_paddle_reader(valid_reader)
train_with_pyreader(exe, train_prog, train_exe, train_pyreader, train_fetch_list, train_metrics,
epochs = epochs, log_interval = args.log_interval,
valid_interval = args.valid_interval,
save_dir = args.save_dir, save_model_name = args.model_name,
test_exe = valid_exe, test_pyreader = valid_pyreader,
test_fetch_list = valid_fetch_list, test_metrics = valid_metrics)
if __name__ == "__main__":
args = parse_args()
logger.info(args)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
train(args)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
__all__ = ['AttrDict']
class AttrDict(dict):
def __getattr__(self, key):
return self[key]
def __setattr__(self, key, value):
if key in self.__dict__:
self.__dict__[key] = value
else:
self[key] = value
Subproject commit d2fc9e0b45b4e6cfc93e73054026fc5a8abfbfb9
Subproject commit a4eb73b2fb64d8aab8499a1184edf4fc386f8268
Subproject commit 733c1d02085a3092dd262c4f396563962a514c3e
Subproject commit dc1af6a83dd1372055158ac6d17f6d14b3a0f0f8
Subproject commit 60b698a294c34420a7f0aab3112f27649aed1445
Subproject commit 57b93859aa070ae6d96f10a470b1bdf2cfaea052
......@@ -523,8 +523,8 @@ def evaluate(logger, args):
inference_program = main_program.clone(for_test=True)
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs, feed_order,
place, dev_count, vocab, brc_data, logger, args)
inference_program, avg_cost, s_probs, e_probs, match,
feed_order, place, dev_count, vocab, brc_data, logger, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
logger.info('Predicted answers are saved to {}'.format(
......
运行本目录下的范例模型需要安装PaddlePaddle Fluid 1.0版。如果您的 PaddlePaddle 安装版本低于此要求,请按照[安装文档](http://www.paddlepaddle.org/docs/develop/documentation/zh/build_and_install/pip_install_cn.html)中的说明更新 PaddlePaddle 安装版本。
运行本目录下的范例模型需要安装PaddlePaddle Fluid 1.0版。如果您的 PaddlePaddle 安装版本低于此要求,请按照[安装文档](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html)中的说明更新 PaddlePaddle 安装版本。
# 机器翻译:RNN Search
......@@ -24,7 +24,7 @@
本目录下此范例模型的实现,旨在展示如何用Paddle Fluid实现一个带有注意力机制(Attention)的RNN模型来解决Seq2Seq类问题,以及如何使用带有Beam Search算法的解码器。如果您仅仅只是需要在机器翻译方面有着较好翻译效果的模型,则建议您参考[Transformer的Paddle Fluid实现](https://github.com/PaddlePaddle/models/tree/develop/fluid/neural_machine_translation/transformer)
## 模型概览
RNN Search模型使用了经典的编码器-解码器(Encoder-Decoder)的框架结构来解决Seq2Seq类问题。这种方法先用编码器将源序列编码成vector,再用解码器将该vector解码为目标序列。这其实模拟了人类在进行翻译类任务时的行为:先解析源语言,理解其含义,再根据该含义来写出目标语言的语句。编码器和解码器往往都使用RNN来实现。关于此方法的具体原理和数学表达式,可以参考[深度学习101](http://www.paddlepaddle.org/documentation/docs/zh/0.15.0/beginners_guide/basics/machine_translation/index.html).
RNN Search模型使用了经典的编码器-解码器(Encoder-Decoder)的框架结构来解决Seq2Seq类问题。这种方法先用编码器将源序列编码成vector,再用解码器将该vector解码为目标序列。这其实模拟了人类在进行翻译类任务时的行为:先解析源语言,理解其含义,再根据该含义来写出目标语言的语句。编码器和解码器往往都使用RNN来实现。关于此方法的具体原理和数学表达式,可以参考[深度学习101](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/basics/machine_translation/index.html).
本模型中,在编码器方面,我们的实现使用了双向循环神经网络(Bi-directional Recurrent Neural Network);在解码器方面,我们使用了带注意力(Attention)机制的RNN解码器,并同时提供了一个不带注意力机制的解码器实现作为对比;而在预测方面我们使用柱搜索(beam search)算法来生成翻译的目标语句。以下将分别介绍用到的这些方法。
......@@ -45,7 +45,7 @@ RNN Search模型使用了经典的编码器-解码器(Encoder-Decoder)的框
### 注意力机制
如果编码阶段的输出是一个固定维度的向量,会带来以下两个问题:1)不论源语言序列的长度是5个词还是50个词,如果都用固定维度的向量去编码其中的语义和句法结构信息,对模型来说是一个非常高的要求,特别是对长句子序列而言;2)直觉上,当人类翻译一句话时,会对与当前译文更相关的源语言片段上给予更多关注,且关注点会随着翻译的进行而改变。而固定维度的向量则相当于,任何时刻都对源语言所有信息给予了同等程度的关注,这是不合理的。因此,Bahdanau等人\[[4](#参考文献)\]引入注意力(attention)机制,可以对编码后的上下文片段进行解码,以此来解决长句子的特征学习问题。下面介绍在注意力机制下的解码器结构。
与简单的解码器不同,这里$z_i$的计算公式为:
与简单的解码器不同,这里$z_i$的计算公式为 (由于Github原生不支持LaTeX公式,请您移步[这里](http://www.paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/basics/machine_translation/index.html)查看)
$$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$$
......@@ -131,4 +131,4 @@ python infer.py
5. Papineni K, Roukos S, Ward T, et al. [BLEU: a method for automatic evaluation of machine translation](http://dl.acm.org/citation.cfm?id=1073135)[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002: 311-318.
<br/>
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">本教程</span><a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a> 创作,采用 <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">知识共享 署名-相同方式共享 4.0 国际 许可协议</a>进行许可。
\ No newline at end of file
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">本教程</span><a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a> 创作,采用 <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">知识共享 署名-相同方式共享 4.0 国际 许可协议</a>进行许可。
......@@ -69,9 +69,9 @@ WMT 数据集是机器翻译领域公认的主流数据集,[WMT'16 EN-DE 数
└── subword-nmt # BPE 编码的代码
```
`gen_data/wmt16_ende_data_bpe` 中是我们最终使用的英德翻译数据,其中 `train.tok.clean.bpe.32000.en-de` 为训练数据,`newstest2016.tok.bpe.32000.en-de` 等为验证和测试数据,`vocab_all.bpe.32000` 为相应的词典文件(已加入 `<s>``<e>``<unk>` 这三个特殊符号,源语言和目标语言共享该词典文件)。
`gen_data/wmt16_ende_data_bpe` 中是我们最终使用的英德翻译数据,其中 `train.tok.clean.bpe.32000.en-de` 为训练数据,`newstest2016.tok.bpe.32000.en-de` 等为验证和测试数据,`vocab_all.bpe.32000` 为相应的词典文件(已加入 `<s>``<e>``<unk>` 这三个特殊符号,源语言和目标语言共享该词典文件)。另外我们也整理提供了一份处理好的 WMT'16 EN-DE 数据以供[下载](https://transformer-res.bj.bcebos.com/wmt16_ende_data_bpe_clean.tar.gz)使用(包含训练所需 BPE 数据和词典以及预测和评估所需的 BPE 数据和 tokenize 的数据)。
对于其他自定义数据,转换为类似 `train.tok.clean.bpe.32000.en-de` 的数据格式(`\t` 分隔的源语言和目标语言句子对,句子中的 token 之间使用空格分隔)即可;如需使用 BPE 编码,可参考,亦可以使用类似 WMT,使用 `gen_data.sh` 进行处理。
对于其他自定义数据,转换为类似 `train.tok.clean.bpe.32000.en-de` 的数据格式(`\t` 分隔的源语言和目标语言句子对,句子中的 token 之间使用空格分隔)即可;如需使用 BPE 编码,亦可以使用类似 WMT'16 EN-DE 原始数据的格式,参照 `gen_data.sh` 进行处理。
### 模型训练
......@@ -110,11 +110,9 @@ python -u train.py \
--batch_size 3200 \
--sort_type pool \
--pool_size 200000 \
n_layer 6 \
n_head 16 \
d_model 1024 \
d_inner_hid 4096 \
n_head 16 \
prepostprocess_dropout 0.3
```
有关这些参数更详细信息的请参考 `config.py` 中的注释说明。
......@@ -144,30 +142,53 @@ python -u infer.py \
--token_delimiter ' ' \
--batch_size 32 \
model_path trained_models/iter_100000.infer.model \
beam_size 4 \
beam_size 5 \
max_out_len 255
```
和模型训练时类似,预测时也需要设置数据和 reader 相关的参数,并可以执行 `python infer.py --help` 查看这些参数的说明(部分参数意义和训练时略有不同);同样可以在预测命令中设置模型超参数,但应与模型训练时的设置一致;此外相比于模型训练,预测时还有一些额外的参数,如需要设置 `model_path` 来给出模型所在目录,可以设置 `beam_size``max_out_len` 来指定 Beam Search 算法的搜索宽度和最大深度(翻译长度),这些参数也可以在 `config.py` 中的 `InferTaskConfig` 内查阅注释说明并进行更改设置。
和模型训练时类似,预测时也需要设置数据和 reader 相关的参数,并可以执行 `python infer.py --help` 查看这些参数的说明(部分参数意义和训练时略有不同);同样可以在预测命令中设置模型超参数,但应与模型训练时的设置一致,如训练时使用 big model 的参数设置,则预测时对应类似如下命令:
```sh
python -u infer.py \
--src_vocab_fpath gen_data/wmt16_ende_data_bpe/vocab_all.bpe.32000 \
--trg_vocab_fpath gen_data/wmt16_ende_data_bpe/vocab_all.bpe.32000 \
--special_token '<s>' '<e>' '<unk>' \
--test_file_pattern gen_data/wmt16_ende_data_bpe/newstest2016.tok.bpe.32000.en-de \
--token_delimiter ' ' \
--batch_size 32 \
model_path trained_models/iter_100000.infer.model \
n_head 16 \
d_model 1024 \
d_inner_hid 4096 \
prepostprocess_dropout 0.3 \
beam_size 5 \
max_out_len 255
```
此外相比于模型训练,预测时还有一些额外的参数,如需要设置 `model_path` 来给出模型所在目录,可以设置 `beam_size``max_out_len` 来指定 Beam Search 算法的搜索宽度和最大深度(翻译长度),这些参数也可以在 `config.py` 中的 `InferTaskConfig` 内查阅注释说明并进行更改设置。
执行以上预测命令会打印翻译结果到标准输出,每行输出是对应行输入的得分最高的翻译。对于使用 BPE 的英德数据,预测出的翻译结果也将是 BPE 表示的数据,要还原成原始的数据(这里指 tokenize 后的数据)才能进行正确的评估,可以使用以下命令来恢复 `predict.txt` 内的翻译结果到 `predict.tok.txt` 中(无需再次 tokenize 处理):
```sh
sed -r 's/(@@ )|(@@ ?$)//g' predict.txt > predict.tok.txt
```
接下来就可以使用参考翻译对翻译结果进行 BLEU 指标的评估了。以英德翻译 `newstest2016.tok.de` 数据为例,执行如下命令:
接下来就可以使用参考翻译对翻译结果进行 BLEU 指标的评估了,评估需要用到 mosesdecoder 中的脚本,可以通过以下命令获取:
```sh
git clone https://github.com/moses-smt/mosesdecoder.git
```
以英德翻译 `newstest2014.tok.de` 数据为例,获取 mosesdecoder 后使用 `multi-bleu.perl` 执行如下命令进行翻译结果评估:
```sh
perl gen_data/mosesdecoder/scripts/generic/multi-bleu.perl gen_data/wmt16_ende_data/newstest2016.tok.de < predict.tok.txt
perl gen_data/mosesdecoder/scripts/generic/multi-bleu.perl gen_data/wmt16_ende_data/newstest2014.tok.de < predict.tok.txt
```
可以看到类似如下的结果(为单机两卡训练 200K 个 iteration 后模型的预测结果)。
可以看到类似如下的结果
```
BLEU = 33.08, 64.2/39.2/26.4/18.5 (BP=0.994, ratio=0.994, hyp_len=61971, ref_len=62362)
BLEU = 26.35, 57.7/32.1/20.0/13.0 (BP=1.000, ratio=1.013, hyp_len=63903, ref_len=63078)
```
目前在未使用 model average 的情况下,英德翻译 base model 八卡训练 100K 个 iteration 后测试 BLEU 值如下:
目前在未使用 model average 的情况下,英德翻译 base model 和 big model 八卡训练 100K 个 iteration 后测试 BLEU 值如下:
| 测试集 | newstest2014 | newstest2015 | newstest2016 |
|-|-|-|-|
| BLEU | 26.25 | 29.15 | 33.64 |
| Base | 26.35 | 29.07 | 33.30 |
| Big | 27.07 | 30.09 | 34.38 |
我们这里也提供了以上 [base model](https://transformer-res.bj.bcebos.com/base_model.tar.gz)[big model](https://transformer-res.bj.bcebos.com/big_model.tar.gz) 模型的下载以供使用。
### 分布式训练
......
......@@ -164,7 +164,10 @@ input_descs = {
# [batch_size * max_trg_len_in_batch, 1]
"lbl_weight": [(batch_size * seq_len, 1), "float32"],
# This input is used in beam-search decoder.
"init_score": [(batch_size, 1), "float32"],
"init_score": [(batch_size, 1), "float32", 2],
# This input is used in beam-search decoder for the first gather
# (cell states updation)
"init_idx": [(batch_size, ), "int32"],
}
# Names of word embedding table which might be reused for weight sharing.
......@@ -194,4 +197,5 @@ label_data_input_fields = (
fast_decoder_data_input_fields = (
"trg_word",
"init_score",
"init_idx",
"trg_src_attn_bias", )
import argparse
import ast
import multiprocessing
import numpy as np
import os
from functools import partial
import paddle
import paddle.fluid as fluid
import model
import reader
from config import *
from model import wrap_encoder as encoder
from model import wrap_decoder as decoder
from model import fast_decode as fast_decoder
from config import *
from train import pad_batch_data
import reader
from train import pad_batch_data, prepare_data_generator
def parse_args():
......@@ -54,6 +56,21 @@ def parse_args():
default=" ",
help="The delimiter used to split tokens in source or target sentences. "
"For EN-DE BPE data we provided, use spaces as token delimiter. ")
parser.add_argument(
"--use_mem_opt",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to use memory optimization.")
parser.add_argument(
"--use_py_reader",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to use py_reader.")
parser.add_argument(
"--use_parallel_exe",
type=ast.literal_eval,
default=False,
help="The flag indicating whether to use ParallelExecutor.")
parser.add_argument(
'opts',
help='See config.py for all options',
......@@ -123,106 +140,185 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, bos_idx, n_head,
trg_word, dtype="float32").reshape(-1, 1),
place, [range(trg_word.shape[0] + 1)] * 2)
trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2)
init_idx = np.asarray(range(len(insts)), dtype="int32")
data_input_dict = dict(
zip(data_input_names, [
src_word, src_pos, src_slf_attn_bias, trg_word, init_score,
trg_src_attn_bias
init_idx, trg_src_attn_bias
]))
return data_input_dict
def prepare_feed_dict_list(data_generator, count, place):
"""
Prepare the list of feed dict for multi-devices.
"""
feed_dict_list = []
if data_generator is not None: # use_py_reader == False
data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
data = next(data_generator)
for idx, data_buffer in enumerate(data):
data_input_dict = prepare_batch_input(
data_buffer, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.bos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model, place)
feed_dict_list.append(data_input_dict)
return feed_dict_list if len(feed_dict_list) == count else None
def py_reader_provider_wrapper(data_reader, place):
"""
Data provider needed by fluid.layers.py_reader.
"""
input_dict = dict(data_input_dict.items())
return input_dict
def py_reader_provider():
data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
for batch_id, data in enumerate(data_reader()):
data_input_dict = prepare_batch_input(
data, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.bos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model, place)
yield [data_input_dict[item] for item in data_input_names]
return py_reader_provider
def fast_infer(test_data, trg_idx2word):
def fast_infer(args):
"""
Inference by beam search decoder based solely on Fluid operators.
"""
place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
out_ids, out_scores, pyreader = fast_decoder(
ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer,
ModelHyperParams.n_head,
ModelHyperParams.d_key,
ModelHyperParams.d_value,
ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid,
ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout,
ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd,
ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing,
InferTaskConfig.beam_size,
InferTaskConfig.max_out_len,
ModelHyperParams.eos_idx,
use_py_reader=args.use_py_reader)
# This is used here to set dropout to the test mode.
infer_program = fluid.default_main_program().clone(for_test=True)
out_ids, out_scores = fast_decoder(
ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
ModelHyperParams.n_head, ModelHyperParams.d_key,
ModelHyperParams.d_value, ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid, ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout, ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd, ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing, InferTaskConfig.beam_size,
InferTaskConfig.max_out_len, ModelHyperParams.eos_idx)
if args.use_mem_opt:
fluid.memory_optimize(infer_program)
if InferTaskConfig.use_gpu:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
fluid.io.load_vars(
exe,
InferTaskConfig.model_path,
vars=[
var for var in fluid.default_main_program().list_vars()
var for var in infer_program.list_vars()
if isinstance(var, fluid.framework.Parameter)
])
# This is used here to set dropout to the test mode.
infer_program = fluid.default_main_program().clone(for_test=True)
exec_strategy = fluid.ExecutionStrategy()
# For faster executor
exec_strategy.use_experimental_executor = True
exec_strategy.num_threads = 1
build_strategy = fluid.BuildStrategy()
infer_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
main_program=infer_program,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
for batch_id, data in enumerate(test_data.batch_generator()):
data_input = prepare_batch_input(
data, encoder_data_input_fields + fast_decoder_data_input_fields,
ModelHyperParams.eos_idx, ModelHyperParams.bos_idx,
ModelHyperParams.n_head, ModelHyperParams.d_model, place)
seq_ids, seq_scores = exe.run(infer_program,
feed=data_input,
fetch_list=[out_ids, out_scores],
return_numpy=False)
# How to parse the results:
# Suppose the lod of seq_ids is:
# [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
# then from lod[0]:
# there are 2 source sentences, beam width is 3.
# from lod[1]:
# the first source sentence has 3 hyps; the lengths are 12, 12, 16
# the second source sentence has 3 hyps; the lengths are 14, 13, 15
hyps = [[] for i in range(len(data))]
scores = [[] for i in range(len(data))]
for i in range(len(seq_ids.lod()[0]) - 1): # for each source sentence
start = seq_ids.lod()[0][i]
end = seq_ids.lod()[0][i + 1]
for j in range(end - start): # for each candidate
sub_start = seq_ids.lod()[1][start + j]
sub_end = seq_ids.lod()[1][start + j + 1]
hyps[i].append(" ".join([
trg_idx2word[idx]
for idx in post_process_seq(
np.array(seq_ids)[sub_start:sub_end])
]))
scores[i].append(np.array(seq_scores)[sub_end - 1])
print(hyps[i][-1])
if len(hyps[i]) >= InferTaskConfig.n_best:
break
def infer(args, inferencer=fast_infer):
place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
test_data = reader.DataReader(
src_vocab_fpath=args.src_vocab_fpath,
trg_vocab_fpath=args.trg_vocab_fpath,
fpattern=args.test_file_pattern,
token_delimiter=args.token_delimiter,
use_token_batch=False,
batch_size=args.batch_size,
pool_size=args.pool_size,
sort_type=reader.SortType.NONE,
shuffle=False,
shuffle_batch=False,
start_mark=args.special_token[0],
end_mark=args.special_token[1],
unk_mark=args.special_token[2],
# count start and end tokens out
max_length=ModelHyperParams.max_length - 2,
clip_last_batch=False)
trg_idx2word = test_data.load_dict(
# data reader settings for inference
args.train_file_pattern = args.test_file_pattern
args.use_token_batch = False
args.sort_type = reader.SortType.NONE
args.shuffle = False
args.shuffle_batch = False
test_data = prepare_data_generator(
args,
is_test=False,
count=dev_count,
pyreader=pyreader,
py_reader_provider_wrapper=py_reader_provider_wrapper,
place=place)
if args.use_py_reader:
pyreader.start()
data_generator = None
else:
data_generator = test_data()
trg_idx2word = reader.DataReader.load_dict(
dict_path=args.trg_vocab_fpath, reverse=True)
inferencer(test_data, trg_idx2word)
while True:
try:
feed_dict_list = prepare_feed_dict_list(data_generator, dev_count,
place)
if args.use_parallel_exe:
seq_ids, seq_scores = infer_exe.run(
fetch_list=[out_ids.name, out_scores.name],
feed=feed_dict_list,
return_numpy=False)
else:
seq_ids, seq_scores = exe.run(
program=infer_program,
fetch_list=[out_ids.name, out_scores.name],
feed=feed_dict_list[0]
if feed_dict_list is not None else None,
return_numpy=False,
use_program_cache=True)
seq_ids_list, seq_scores_list = [seq_ids], [
seq_scores
] if isinstance(
seq_ids, paddle.fluid.core.LoDTensor) else (seq_ids, seq_scores)
for seq_ids, seq_scores in zip(seq_ids_list, seq_scores_list):
# How to parse the results:
# Suppose the lod of seq_ids is:
# [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
# then from lod[0]:
# there are 2 source sentences, beam width is 3.
# from lod[1]:
# the first source sentence has 3 hyps; the lengths are 12, 12, 16
# the second source sentence has 3 hyps; the lengths are 14, 13, 15
hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)]
scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)]
for i in range(len(seq_ids.lod()[0]) -
1): # for each source sentence
start = seq_ids.lod()[0][i]
end = seq_ids.lod()[0][i + 1]
for j in range(end - start): # for each candidate
sub_start = seq_ids.lod()[1][start + j]
sub_end = seq_ids.lod()[1][start + j + 1]
hyps[i].append(" ".join([
trg_idx2word[idx]
for idx in post_process_seq(
np.array(seq_ids)[sub_start:sub_end])
]))
scores[i].append(np.array(seq_scores)[sub_end - 1])
print(hyps[i][-1])
if len(hyps[i]) >= InferTaskConfig.n_best:
break
except (StopIteration, fluid.core.EOFException):
# The data pass is over.
if args.use_py_reader:
pyreader.reset()
break
if __name__ == "__main__":
args = parse_args()
infer(args)
fast_infer(args)
......@@ -7,6 +7,43 @@ import paddle.fluid.layers as layers
from config import *
def wrap_layer_with_block(layer, block_idx):
"""
Make layer define support indicating block, by which we can add layers
to other blocks within current block. This will make it easy to define
cache among while loop.
"""
class BlockGuard(object):
"""
BlockGuard class.
BlockGuard class is used to switch to the given block in a program by
using the Python `with` keyword.
"""
def __init__(self, block_idx=None, main_program=None):
self.main_program = fluid.default_main_program(
) if main_program is None else main_program
self.old_block_idx = self.main_program.current_block().idx
self.new_block_idx = block_idx
def __enter__(self):
self.main_program.current_block_idx = self.new_block_idx
def __exit__(self, exc_type, exc_val, exc_tb):
self.main_program.current_block_idx = self.old_block_idx
if exc_type is not None:
return False # re-raise exception
return True
def layer_wrapper(*args, **kwargs):
with BlockGuard(block_idx):
return layer(*args, **kwargs)
return layer_wrapper
def position_encoding_init(n_position, d_pos_vec):
"""
Generate the initial values for the sinusoid position encoding table.
......@@ -35,7 +72,9 @@ def multi_head_attention(queries,
d_model,
n_head=1,
dropout_rate=0.,
cache=None):
cache=None,
gather_idx=None,
static_kv=False):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
......@@ -56,42 +95,86 @@ def multi_head_attention(queries,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
k = layers.fc(input=keys,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
v = layers.fc(input=values,
size=d_value * n_head,
bias_attr=False,
num_flatten_dims=2)
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
fc_layer = wrap_layer_with_block(
layers.fc, fluid.default_main_program().current_block()
.parent_idx) if cache is not None and static_kv else layers.fc
k = fc_layer(
input=keys,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
v = fc_layer(
input=values,
size=d_value * n_head,
bias_attr=False,
num_flatten_dims=2)
return q, k, v
def __split_heads(x, n_head):
def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
Reshape input tensors at the last dimension to split multi-heads
and then transpose. Specifically, transform the input tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] to the output tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
if n_head == 1:
return x
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(
x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
reshaped_q = layers.reshape(
x=queries, shape=[0, 0, n_head, d_key], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
q = layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
reshape_layer = wrap_layer_with_block(
layers.reshape,
fluid.default_main_program().current_block()
.parent_idx) if cache is not None and static_kv else layers.reshape
transpose_layer = wrap_layer_with_block(
layers.transpose,
fluid.default_main_program().current_block().
parent_idx) if cache is not None and static_kv else layers.transpose
reshaped_k = reshape_layer(
x=keys, shape=[0, 0, n_head, d_key], inplace=True)
k = transpose_layer(x=reshaped_k, perm=[0, 2, 1, 3])
reshaped_v = reshape_layer(
x=values, shape=[0, 0, n_head, d_value], inplace=True)
v = transpose_layer(x=reshaped_v, perm=[0, 2, 1, 3])
if cache is not None: # only for faster inference
if static_kv: # For encoder-decoder attention in inference
cache_k, cache_v = cache["static_k"], cache["static_v"]
# To init the static_k and static_v in cache.
# Maybe we can use condition_op(if_else) to do these at the first
# step in while loop to replace these, however it might be less
# efficient.
static_cache_init = wrap_layer_with_block(
layers.assign,
fluid.default_main_program().current_block().parent_idx)
static_cache_init(k, cache_k)
static_cache_init(v, cache_v)
else: # For decoder self-attention in inference
cache_k, cache_v = cache["k"], cache["v"]
# gather cell states corresponding to selected parent
select_k = layers.gather(cache_k, index=gather_idx)
select_v = layers.gather(cache_v, index=gather_idx)
if not static_kv:
# For self attention in inference, use cache and concat time steps.
select_k = layers.concat([select_k, k], axis=2)
select_v = layers.concat([select_v, v], axis=2)
# update cell states(caches) cached in global block
layers.assign(select_k, cache_k)
layers.assign(select_v, cache_v)
return q, select_k, select_v
return q, k, v
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
......@@ -107,8 +190,7 @@ def multi_head_attention(queries,
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
product = layers.matmul(x=q, y=k, transpose_y=True, alpha=d_key**-0.5)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
......@@ -122,23 +204,7 @@ def multi_head_attention(queries,
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat(
[layers.reshape(
cache["k"], shape=[0, 0, d_key * n_head]), k],
axis=1)
v = cache["v"] = layers.concat(
[layers.reshape(
cache["v"], shape=[0, 0, d_value * n_head]), v],
axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
dropout_rate)
......@@ -327,7 +393,8 @@ def decoder_layer(dec_input,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
cache=None):
cache=None,
gather_idx=None):
""" The layer to be stacked in decoder part.
The structure of this module is similar to that in the encoder part except
a multi-head attention is added to implement encoder-decoder attention.
......@@ -342,7 +409,8 @@ def decoder_layer(dec_input,
d_model,
n_head,
attention_dropout,
cache, )
cache=cache,
gather_idx=gather_idx)
slf_attn_output = post_process_layer(
dec_input,
slf_attn_output,
......@@ -358,7 +426,10 @@ def decoder_layer(dec_input,
d_value,
d_model,
n_head,
attention_dropout, )
attention_dropout,
cache=cache,
gather_idx=gather_idx,
static_kv=True)
enc_attn_output = post_process_layer(
slf_attn_output,
enc_attn_output,
......@@ -393,7 +464,8 @@ def decoder(dec_input,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
caches=None):
caches=None,
gather_idx=None):
"""
The decoder is composed of a stack of identical decoder_layer layers.
"""
......@@ -413,7 +485,8 @@ def decoder(dec_input,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
cache=None if caches is None else caches[i])
cache=None if caches is None else caches[i],
gather_idx=gather_idx)
dec_input = dec_output
dec_output = pre_process_layer(dec_output, preprocess_cmd,
prepostprocess_dropout)
......@@ -610,7 +683,8 @@ def wrap_decoder(trg_vocab_size,
weight_sharing,
dec_inputs=None,
enc_output=None,
caches=None):
caches=None,
gather_idx=None):
"""
The wrapper assembles together all needed layers for the decoder.
"""
......@@ -646,7 +720,8 @@ def wrap_decoder(trg_vocab_size,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
caches=caches)
caches=caches,
gather_idx=gather_idx)
# Reshape to 2D tensor to use GEMM instead of BatchedGEMM
dec_output = layers.reshape(
dec_output, shape=[-1, dec_output.shape[-1]], inplace=True)
......@@ -666,9 +741,43 @@ def wrap_decoder(trg_vocab_size,
return predict
def fast_decode(
def fast_decode(src_vocab_size,
trg_vocab_size,
max_in_len,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
beam_size,
max_out_len,
eos_idx,
use_py_reader=False):
"""
Use beam search to decode. Caches will be used to store states of history
steps which can make the decoding faster.
"""
data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
if use_py_reader:
all_inputs, reader = make_all_py_reader_inputs(data_input_names)
else:
all_inputs = make_all_inputs(data_input_names)
enc_inputs_len = len(encoder_data_input_fields)
dec_inputs_len = len(fast_decoder_data_input_fields)
enc_inputs = all_inputs[0:enc_inputs_len]
dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]
enc_output = wrap_encoder(
src_vocab_size,
trg_vocab_size,
max_in_len,
n_layer,
n_head,
......@@ -682,64 +791,60 @@ def fast_decode(
preprocess_cmd,
postprocess_cmd,
weight_sharing,
beam_size,
max_out_len,
eos_idx, ):
"""
Use beam search to decode. Caches will be used to store states of history
steps which can make the decoding faster.
"""
enc_output = wrap_encoder(
src_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model,
d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout,
preprocess_cmd, postprocess_cmd, weight_sharing)
start_tokens, init_scores, trg_src_attn_bias = make_all_inputs(
fast_decoder_data_input_fields)
enc_inputs, )
start_tokens, init_scores, parent_idx, trg_src_attn_bias = dec_inputs
def beam_search():
max_len = layers.fill_constant(
shape=[1], dtype=start_tokens.dtype, value=max_out_len)
shape=[1],
dtype=start_tokens.dtype,
value=max_out_len,
force_cpu=True)
step_idx = layers.fill_constant(
shape=[1], dtype=start_tokens.dtype, value=0)
cond = layers.less_than(x=step_idx, y=max_len)
shape=[1], dtype=start_tokens.dtype, value=0, force_cpu=True)
cond = layers.less_than(x=step_idx, y=max_len) # default force_cpu=True
while_op = layers.While(cond)
# array states will be stored for each step.
ids = layers.array_write(
layers.reshape(start_tokens, (-1, 1)), step_idx)
scores = layers.array_write(init_scores, step_idx)
# cell states will be overwrited at each step.
# caches contains states of history steps to reduce redundant
# computation in decoder.
caches = [{
"k": layers.fill_constant_batch_size_like(
input=start_tokens,
shape=[-1, 0, d_model],
dtype=enc_output.dtype,
value=0),
"v": layers.fill_constant_batch_size_like(
input=start_tokens,
shape=[-1, 0, d_model],
dtype=enc_output.dtype,
value=0)
} for i in range(n_layer)]
# caches contains states of history steps in decoder self-attention
# and static encoder output projections in encoder-decoder attention
# to reduce redundant computation.
caches = [
{
"k": # for self attention
layers.fill_constant_batch_size_like(
input=start_tokens,
shape=[-1, n_head, 0, d_key],
dtype=enc_output.dtype,
value=0),
"v": # for self attention
layers.fill_constant_batch_size_like(
input=start_tokens,
shape=[-1, n_head, 0, d_value],
dtype=enc_output.dtype,
value=0),
"static_k": # for encoder-decoder attention
layers.create_tensor(dtype=enc_output.dtype),
"static_v": # for encoder-decoder attention
layers.create_tensor(dtype=enc_output.dtype)
} for i in range(n_layer)
]
with while_op.block():
pre_ids = layers.array_read(array=ids, i=step_idx)
pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
# Since beam_search_op dosen't enforce pre_ids' shape, we can do
# inplace reshape here which actually change the shape of pre_ids.
pre_ids = layers.reshape(pre_ids, (-1, 1, 1), inplace=True)
pre_scores = layers.array_read(array=scores, i=step_idx)
# sequence_expand can gather sequences according to lod thus can be
# used in beam search to sift states corresponding to selected ids.
pre_src_attn_bias = layers.sequence_expand(
x=trg_src_attn_bias, y=pre_scores)
pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
pre_caches = [{
"k": layers.sequence_expand(
x=cache["k"], y=pre_scores),
"v": layers.sequence_expand(
x=cache["v"], y=pre_scores),
} for cache in caches]
# gather cell states corresponding to selected parent
pre_src_attn_bias = layers.gather(
trg_src_attn_bias, index=parent_idx)
pre_pos = layers.elementwise_mul(
x=layers.fill_constant_batch_size_like(
input=pre_enc_output, # cann't use pre_ids here since it has lod
input=pre_src_attn_bias, # cann't use lod tensor here
value=1,
shape=[-1, 1, 1],
dtype=pre_ids.dtype),
......@@ -761,35 +866,33 @@ def fast_decode(
postprocess_cmd,
weight_sharing,
dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
enc_output=pre_enc_output,
caches=pre_caches)
enc_output=enc_output,
caches=caches,
gather_idx=parent_idx)
# intra-beam topK
topk_scores, topk_indices = layers.topk(
input=layers.softmax(logits), k=beam_size)
accu_scores = layers.elementwise_add(
x=layers.log(topk_scores),
y=layers.reshape(
pre_scores, shape=[-1]),
axis=0)
# beam_search op uses lod to distinguish branches.
x=layers.log(topk_scores), y=pre_scores, axis=0)
# beam_search op uses lod to differentiate branches.
topk_indices = layers.lod_reset(topk_indices, pre_ids)
selected_ids, selected_scores = layers.beam_search(
# topK reduction across beams, also contain special handle of
# end beams and end sentences(batch reduction)
selected_ids, selected_scores, gather_idx = layers.beam_search(
pre_ids=pre_ids,
pre_scores=pre_scores,
ids=topk_indices,
scores=accu_scores,
beam_size=beam_size,
end_id=eos_idx)
end_id=eos_idx,
return_parent_idx=True)
layers.increment(x=step_idx, value=1.0, in_place=True)
# update states
# cell states(caches) have been updated in wrap_decoder,
# only need to update beam search states here.
layers.array_write(selected_ids, i=step_idx, array=ids)
layers.array_write(selected_scores, i=step_idx, array=scores)
layers.assign(gather_idx, parent_idx)
layers.assign(pre_src_attn_bias, trg_src_attn_bias)
layers.assign(pre_enc_output, enc_output)
for i in range(n_layer):
layers.assign(pre_caches[i]["k"], caches[i]["k"])
layers.assign(pre_caches[i]["v"], caches[i]["v"])
length_cond = layers.less_than(x=step_idx, y=max_len)
finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
layers.logical_and(x=length_cond, y=finish_cond, out=cond)
......@@ -799,4 +902,4 @@ def fast_decode(
return finished_ids, finished_scores
finished_ids, finished_scores = beam_search()
return finished_ids, finished_scores
return finished_ids, finished_scores, reader if use_py_reader else None
......@@ -186,7 +186,7 @@ def main(args):
# Since the token number differs among devices, customize gradient scale to
# use token average cost among multi-devices. and the gradient scale is
# `1 / token_number` for average cost.
build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
# build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
train_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu,
loss_name=avg_cost.name,
......
......@@ -10,7 +10,6 @@ import time
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.transpiler.details import program_to_code
import reader
from config import *
......@@ -258,7 +257,12 @@ def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx,
return data_input_dict, np.asarray([num_token], dtype="float32")
def prepare_data_generator(args, is_test, count, pyreader):
def prepare_data_generator(args,
is_test,
count,
pyreader,
py_reader_provider_wrapper,
place=None):
"""
Data generator wrapper for DataReader. If use py_reader, set the data
provider for py_reader
......@@ -319,7 +323,7 @@ def prepare_data_generator(args, is_test, count, pyreader):
data_reader = split(data_reader, count)
if args.use_py_reader:
pyreader.decorate_tensor_provider(
py_reader_provider_wrapper(data_reader))
py_reader_provider_wrapper(data_reader, place))
data_reader = None
else: # Data generator for multi-devices
data_reader = stack(data_reader, count)
......@@ -357,7 +361,7 @@ def prepare_feed_dict_list(data_generator, init_flag, count):
return feed_dict_list if len(feed_dict_list) == count else None
def py_reader_provider_wrapper(data_reader):
def py_reader_provider_wrapper(data_reader, place):
"""
Data provider needed by fluid.layers.py_reader.
"""
......@@ -370,8 +374,7 @@ def py_reader_provider_wrapper(data_reader):
data, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.eos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model)
total_dict = dict(data_input_dict.items())
yield [total_dict[item] for item in data_input_names]
yield [data_input_dict[item] for item in data_input_names]
return py_reader_provider
......@@ -406,7 +409,11 @@ def test_context(exe, train_exe, dev_count):
is_test=True)
test_prog = test_prog.clone(for_test=True)
test_data = prepare_data_generator(
args, is_test=True, count=dev_count, pyreader=pyreader)
args,
is_test=True,
count=dev_count,
pyreader=pyreader,
py_reader_provider_wrapper=py_reader_provider_wrapper)
exe.run(startup_prog) # to init pyreader for testing
if TrainTaskConfig.ckpt_path:
......@@ -477,7 +484,11 @@ def train_loop(exe,
logging.info("begin reader")
train_data = prepare_data_generator(
args, is_test=False, count=dev_count, pyreader=pyreader)
args,
is_test=False,
count=dev_count,
pyreader=pyreader,
py_reader_provider_wrapper=py_reader_provider_wrapper)
# For faster executor
exec_strategy = fluid.ExecutionStrategy()
......
......@@ -136,8 +136,9 @@ def main(train_data_file,
" pass_f1_score:" + str(test_pass_f1_score))
save_dirname = os.path.join(model_save_dir, "params_pass_%d" % pass_id)
fluid.io.save_inference_model(save_dirname, ['word', 'mark'],
crf_decode, exe)
if "CE_MODE_X" not in os.environ:
fluid.io.save_inference_model(save_dirname, ['word', 'mark'],
crf_decode, exe)
if "CE_MODE_X" in os.environ:
print("kpis train_precision %f" % pass_precision)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Build raw data
"""
from __future__ import print_function
import sys
import os
import random
import re
data_type = sys.argv[1]
if not (data_type == "train" or data_type == "test"):
print("python %s [test/train]" % sys.argv[0], file=sys.stderr)
sys.exit(-1)
pos_folder = "aclImdb/" + data_type + "/pos/"
neg_folder = "aclImdb/" + data_type + "/neg/"
pos_train_list = [(pos_folder + x, "1") for x in os.listdir(pos_folder)]
neg_train_list = [(neg_folder + x, "0") for x in os.listdir(neg_folder)]
all_train_list = pos_train_list + neg_train_list
random.shuffle(all_train_list)
def load_dict(dictfile):
"""
Load word id dict
"""
vocab = {}
wid = 0
with open(dictfile) as f:
for line in f:
vocab[line.strip()] = str(wid)
wid += 1
return vocab
vocab = load_dict("aclImdb/imdb.vocab")
unk_id = str(len(vocab))
print("vocab size: ", len(vocab), file=sys.stderr)
pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
for fitem in all_train_list:
label = str(fitem[1])
fname = fitem[0]
with open(fname) as f:
sent = f.readline().lower().replace("<br />", " ").strip()
out_s = "%s | %s" % (sent, label)
print(out_s, file=sys.stdout)
......@@ -79,7 +79,7 @@ SessionId ItemId Time
2 214757407 1396850438.247
```
数据格式需要转换 运行脚本
数据格式需要转换, 运行脚本如下
```
python convert_format.py
```
......@@ -101,7 +101,7 @@ python convert_format.py
根据训练和测试文件生成字典和对应的paddle输入文件
注意需要将训练文件放到一个目录下面,测试文件放到一个目录下面,同时支持多训练文件
需要将训练文件放到目录raw_train_data下,测试文件放到目录raw_test_data下,并生成对应的train_data,test_data和vocab.txt文件
```
python text2paddle.py raw_train_data/ raw_test_data/ train_data test_data vocab.txt
```
......
......@@ -171,7 +171,8 @@ def train_cross_entropy_network(vocab_size, neg_size, hid_size, drop_out=0.2):
ele_mul = fluid.layers.elementwise_mul(emb_label_drop, gru)
red_sum = fluid.layers.reduce_sum(input=ele_mul, dim=1, keep_dim=True)
pre = fluid.layers.sequence_reshape(input=red_sum, new_dim=(neg_size + 1))
pre_ = fluid.layers.sequence_reshape(input=red_sum, new_dim=(neg_size + 1))
pre = fluid.layers.softmax(input=pre_)
cost = fluid.layers.cross_entropy(input=pre, label=pos_label)
cost_sum = fluid.layers.reduce_sum(input=cost)
......
......@@ -68,9 +68,11 @@ def train():
# Train program
if args.loss == 'bpr':
print('bpr loss')
src, pos_label, label, avg_cost = net.train_bpr_network(
neg_size=args.neg_size, vocab_size=vocab_size, hid_size=hid_size)
else:
print('cross-entory loss')
src, pos_label, label, avg_cost = net.train_cross_entropy_network(
neg_size=args.neg_size, vocab_size=vocab_size, hid_size=hid_size)
......
......@@ -45,8 +45,8 @@ def to_lodtensor_bpr(raw_data, neg_size, vocab_size, place):
neg_data = np.tile(pos_data, neg_size)
np.random.shuffle(neg_data)
for ii in range(length * neg_size):
if neg_data[ii] == pos_data[ii / neg_size]:
neg_data[ii] = pos_data[length - 1 - ii / neg_size]
if neg_data[ii] == pos_data[ii // neg_size]:
neg_data[ii] = pos_data[length - 1 - ii // neg_size]
label_data = np.column_stack(
(pos_data.reshape(length, 1), neg_data.reshape(length, neg_size)))
......
......@@ -81,7 +81,7 @@ def infer(args, vocab_size, test_reader):
start_up_program = fluid.Program()
with fluid.program_guard(main_program, start_up_program):
acc = model(vocab_size, emb_size, hid_size)
for epoch in xrange(start_index, last_index + 1):
for epoch in range(start_index, last_index + 1):
copy_program = main_program.clone()
model_path = model_dir + "/epoch_" + str(epoch)
fluid.io.load_params(
......
......@@ -33,11 +33,14 @@ Fluid模型配置和参数文件的工具。
VOC <http://host.robots.ox.ac.uk/pascal/VOC/>`__\ 、\ `MS
COCO <http://cocodataset.org/#home>`__\ 数据训练通用物体检测模型,当前介绍了SSD算法,SSD全称Single Shot MultiBox Detector,是目标检测领域较新且效果较好的检测算法之一,具有检测速度快且检测精度高的特点。
开放环境中的检测人脸,尤其是小的、模糊的和部分遮挡的人脸也是一个具有挑战的任务。我们也介绍了如何基于 `WIDER FACE <http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/>`_ 数据训练百度自研的人脸检测PyramidBox模型,该算法于2018年3月份在WIDER FACE的多项评测中均获得 `第一名 <http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html>`_。
开放环境中的检测人脸,尤其是小的、模糊的和部分遮挡的人脸也是一个具有挑战的任务。我们也介绍了如何基于 `WIDER FACE <http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/>`_ 数据训练百度自研的人脸检测PyramidBox模型,该算法于2018年3月份在WIDER FACE的多项评测中均获得 `第一名 <http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html>`_ 。
RCNN系列模型是典型的两阶段目标检测器,相较于传统提取区域的方法,RCNN中RPN网络通过共享卷积层参数大幅提高提取区域的效率,并提出高质量的候选区域。其中典型模型包括Faster RCNN和Mask RCNN。
- `Single Shot MultiBox
Detector <https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/object_detection/README_cn.md>`__
- `Face Detector: PyramidBox <https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/face_detection/README_cn.md>`_
- `RCNN <https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn/README_cn.md>`_
图像语义分割
------------
......
......@@ -28,11 +28,14 @@ Fluid模型配置和参数文件的工具。
开放环境中的检测人脸,尤其是小的、模糊的和部分遮挡的人脸也是一个具有挑战的任务。我们也介绍了如何基于 [WIDER FACE](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace) 数据训练百度自研的人脸检测PyramidBox模型,该算法于2018年3月份在WIDER FACE的多项评测中均获得 [第一名](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/WiderFace_Results.html)
Faster RCNN 是典型的两阶段目标检测器,相较于传统提取区域的方法,Faster RCNN中RPN网络通过共享卷积层参数大幅提高提取区域的效率,并提出高质量的候选区域。
Faster RCNN模型是典型的两阶段目标检测器,相较于传统提取区域的方法,通过RPN网络共享卷积层参数大幅提高提取区域的效率,并提出高质量的候选区域。
Mask RCNN模型是基于Faster RCNN模型的经典实例分割模型,在原有Faster RCNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕。
- [Single Shot MultiBox Detector](https://github.com/PaddlePaddle/models/blob/develop/fluid/PaddleCV/object_detection/README_cn.md)
- [Face Detector: PyramidBox](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/face_detection/README_cn.md)
- [Faster RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/faster_rcnn/README_cn.md)
- [Faster RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn/README_cn.md)
- [Mask RCNN](https://github.com/PaddlePaddle/models/tree/develop/fluid/PaddleCV/rcnn/README_cn.md)
图像语义分割
------------
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册