diff --git a/PaddleRec/ctr/deepfm/cluster_train.py b/PaddleRec/ctr/deepfm/cluster_train.py index c0509d460b48184b6c4e0727a5f82d225d5a7a54..da565172c16be7bd3aa0533d4bdd5053cf79f937 100644 --- a/PaddleRec/ctr/deepfm/cluster_train.py +++ b/PaddleRec/ctr/deepfm/cluster_train.py @@ -162,8 +162,7 @@ def train(): (epoch_id + 1), time.time() - start)) if args.trainer_id == 0: # only trainer 0 save model print("save model in {}".format(model_dir)) - fluid.io.save_persistables( - executor=exe, dirname=model_dir, main_program=main_program) + fluid.save(main_program, model_dir) print("train time cost {:.4f}".format(time.time() - start_time)) print("finish training") diff --git a/PaddleRec/ctr/deepfm/infer.py b/PaddleRec/ctr/deepfm/infer.py index 2b7e29a77013e2bdbfd865cffe89ac926dd1486e..9ff58af7dc80cec637d590638b62ca4d300939ea 100644 --- a/PaddleRec/ctr/deepfm/infer.py +++ b/PaddleRec/ctr/deepfm/infer.py @@ -46,11 +46,8 @@ def infer(): exe = fluid.Executor(place) feeder = fluid.DataFeeder(feed_list=data_list, place=place) - fluid.io.load_persistables( - executor=exe, - dirname=cur_model_path, - main_program=fluid.default_main_program()) - + main_program = fluid.default_main_program() + fluid.load(main_program, cur_model_path, exe) for var in auc_states: # reset auc states set_zero(var.name, scope=inference_scope, place=place) diff --git a/PaddleRec/ctr/deepfm/local_train.py b/PaddleRec/ctr/deepfm/local_train.py index 001f625eb21dd6587266b5338910274e5d4fc7b0..a0894c9b48e54fb69d31f2f899b24f99d4f03357 100644 --- a/PaddleRec/ctr/deepfm/local_train.py +++ b/PaddleRec/ctr/deepfm/local_train.py @@ -61,10 +61,8 @@ def train(): 'epoch_' + str(epoch_id + 1)) sys.stderr.write('epoch%d is finished and takes %f s\n' % ( (epoch_id + 1), time.time() - start)) - fluid.io.save_persistables( - executor=exe, - dirname=model_dir, - main_program=fluid.default_main_program()) + main_program = fluid.default_main_program() + fluid.io.save(main_program, model_dir) if __name__ == '__main__':