Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
60c1dbab
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
60c1dbab
编写于
11月 15, 2022
作者:
W
wuyefeilin
提交者:
GitHub
11月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add PP-Matting (#5563)
上级
802222ae
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
475 addition
and
0 deletion
+475
-0
modelcenter/PP-HumanMatting/.gitkeep
modelcenter/PP-HumanMatting/.gitkeep
+0
-0
modelcenter/PP-HumanMattingV2/.gitkeep
modelcenter/PP-HumanMattingV2/.gitkeep
+0
-0
modelcenter/PP-Matting/APP/app.py
modelcenter/PP-Matting/APP/app.py
+182
-0
modelcenter/PP-Matting/APP/app.yml
modelcenter/PP-Matting/APP/app.yml
+11
-0
modelcenter/PP-Matting/APP/requirement.txt
modelcenter/PP-Matting/APP/requirement.txt
+4
-0
modelcenter/PP-Matting/benchmark_cn.md
modelcenter/PP-Matting/benchmark_cn.md
+38
-0
modelcenter/PP-Matting/download_cn.md
modelcenter/PP-Matting/download_cn.md
+12
-0
modelcenter/PP-Matting/info.yaml
modelcenter/PP-Matting/info.yaml
+23
-0
modelcenter/PP-Matting/introduction_cn.ipynb
modelcenter/PP-Matting/introduction_cn.ipynb
+205
-0
未找到文件。
modelcenter/PP-HumanMatting/.gitkeep
已删除
100644 → 0
浏览文件 @
802222ae
modelcenter/PP-HumanMattingV2/.gitkeep
已删除
100644 → 0
浏览文件 @
802222ae
modelcenter/PP-Matting/APP/app.py
0 → 100644
浏览文件 @
60c1dbab
import
codecs
import
os
import
sys
import
time
import
zipfile
import
gradio
as
gr
import
numpy
as
np
import
cv2
import
requests
import
yaml
from
paddle.inference
import
Config
as
PredictConfig
from
paddle.inference
import
create_predictor
lasttime
=
time
.
time
()
FLUSH_INTERVAL
=
0.1
def
progress
(
str
,
end
=
False
):
global
lasttime
if
end
:
str
+=
"
\n
"
lasttime
=
0
if
time
.
time
()
-
lasttime
>=
FLUSH_INTERVAL
:
sys
.
stdout
.
write
(
"
\r
%s"
%
str
)
lasttime
=
time
.
time
()
sys
.
stdout
.
flush
()
def
_download_file
(
url
,
savepath
,
print_progress
=
True
):
if
print_progress
:
print
(
"Connecting to {}"
.
format
(
url
))
r
=
requests
.
get
(
url
,
stream
=
True
,
timeout
=
15
)
total_length
=
r
.
headers
.
get
(
'content-length'
)
if
total_length
is
None
:
with
open
(
savepath
,
'wb'
)
as
f
:
shutil
.
copyfileobj
(
r
.
raw
,
f
)
else
:
with
open
(
savepath
,
'wb'
)
as
f
:
dl
=
0
total_length
=
int
(
total_length
)
starttime
=
time
.
time
()
if
print_progress
:
print
(
"Downloading %s"
%
os
.
path
.
basename
(
savepath
))
for
data
in
r
.
iter_content
(
chunk_size
=
4096
):
dl
+=
len
(
data
)
f
.
write
(
data
)
if
print_progress
:
done
=
int
(
50
*
dl
/
total_length
)
progress
(
"[%-50s] %.2f%%"
%
(
'='
*
done
,
float
(
100
*
dl
)
/
total_length
))
if
print_progress
:
progress
(
"[%-50s] %.2f%%"
%
(
'='
*
50
,
100
),
end
=
True
)
def
uncompress
(
path
):
files
=
zipfile
.
ZipFile
(
path
,
'r'
)
filelist
=
files
.
namelist
()
rootpath
=
filelist
[
0
]
for
file
in
filelist
:
files
.
extract
(
file
,
'./'
)
class
DeployConfig
:
def
__init__
(
self
,
path
):
with
codecs
.
open
(
path
,
'r'
,
'utf-8'
)
as
file
:
self
.
dic
=
yaml
.
load
(
file
,
Loader
=
yaml
.
FullLoader
)
self
.
_dir
=
os
.
path
.
dirname
(
path
)
@
property
def
model
(
self
):
return
os
.
path
.
join
(
self
.
_dir
,
self
.
dic
[
'Deploy'
][
'model'
])
@
property
def
params
(
self
):
return
os
.
path
.
join
(
self
.
_dir
,
self
.
dic
[
'Deploy'
][
'params'
])
class
Predictor
:
def
__init__
(
self
,
cfg
):
"""
Prepare for prediction.
The usage and docs of paddle inference, please refer to
https://paddleinference.paddlepaddle.org.cn/product_introduction/summary.html
"""
self
.
cfg
=
DeployConfig
(
cfg
)
self
.
_init_base_config
()
self
.
_init_cpu_config
()
self
.
predictor
=
create_predictor
(
self
.
pred_cfg
)
def
_init_base_config
(
self
):
self
.
pred_cfg
=
PredictConfig
(
self
.
cfg
.
model
,
self
.
cfg
.
params
)
self
.
pred_cfg
.
enable_memory_optim
()
self
.
pred_cfg
.
switch_ir_optim
(
True
)
def
_init_cpu_config
(
self
):
"""
Init the config for x86 cpu.
"""
self
.
pred_cfg
.
disable_gpu
()
self
.
pred_cfg
.
set_cpu_math_library_num_threads
(
10
)
def
_preprocess
(
self
,
img
):
# resize short edge to 512.
h
,
w
=
img
.
shape
[:
2
]
short_edge
=
min
(
h
,
w
)
scale
=
512
/
short_edge
h_resize
=
int
(
round
(
h
*
scale
))
//
32
*
32
w_resize
=
int
(
round
(
w
*
scale
))
//
32
*
32
img
=
cv2
.
resize
(
img
,
(
w_resize
,
h_resize
))
img
=
(
img
/
255
-
0.5
)
/
0.5
img
=
np
.
transpose
(
img
,
[
2
,
0
,
1
])[
np
.
newaxis
,
:]
return
img
def
run
(
self
,
img
):
input_names
=
self
.
predictor
.
get_input_names
()
input_handle
=
{}
for
i
in
range
(
len
(
input_names
)):
input_handle
[
input_names
[
i
]]
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
output_names
=
self
.
predictor
.
get_output_names
()
output_handle
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
img_inputs
=
img
.
astype
(
'float32'
)
ori_h
,
ori_w
=
img_inputs
.
shape
[:
2
]
img_inputs
=
self
.
_preprocess
(
img
=
img_inputs
)
input_handle
[
'img'
].
copy_from_cpu
(
img_inputs
)
self
.
predictor
.
run
()
results
=
output_handle
.
copy_to_cpu
()
alpha
=
results
.
squeeze
()
alpha
=
cv2
.
resize
(
alpha
,
(
ori_w
,
ori_h
))
alpha
=
(
alpha
*
255
).
astype
(
'uint8'
)
return
alpha
def
model_inference
(
image
):
# Download inference model
url
=
'https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w18-human_512.zip'
savepath
=
'./ppmatting-hrnet_w18-human_512.zip'
if
not
os
.
path
.
exists
(
'./ppmatting-hrnet_w18-human_512'
):
_download_file
(
url
=
url
,
savepath
=
savepath
)
uncompress
(
savepath
)
# Inference
predictor
=
Predictor
(
cfg
=
'./ppmatting-hrnet_w18-human_512/deploy.yaml'
)
alpha
=
predictor
.
run
(
image
)
return
alpha
def
clear_all
():
return
None
,
None
with
gr
.
Blocks
()
as
demo
:
gr
.
Markdown
(
"Objective Detection"
)
with
gr
.
Column
(
scale
=
1
,
min_width
=
100
):
img_in
=
gr
.
Image
(
value
=
"https://paddleseg.bj.bcebos.com/matting/demo/human.jpg"
,
label
=
"Input"
)
with
gr
.
Row
():
btn1
=
gr
.
Button
(
"Clear"
)
btn2
=
gr
.
Button
(
"Submit"
)
img_out
=
gr
.
Image
(
label
=
"Output"
).
style
(
height
=
200
)
btn2
.
click
(
fn
=
model_inference
,
inputs
=
img_in
,
outputs
=
[
img_out
])
btn1
.
click
(
fn
=
clear_all
,
inputs
=
None
,
outputs
=
[
img_in
,
img_out
])
gr
.
Button
.
style
(
1
)
demo
.
launch
(
share
=
True
)
modelcenter/PP-Matting/APP/app.yml
0 → 100644
浏览文件 @
60c1dbab
【PP-Matting-App-YAML】
APP_Info
:
title
:
PP-Matting-App
colorFrom
:
blue
colorTo
:
yellow
sdk
:
gradio
sdk_version
:
3.4.1
app_file
:
app.py
license
:
apache-2.0
device
:
cpu
\ No newline at end of file
modelcenter/PP-Matting/APP/requirement.txt
0 → 100644
浏览文件 @
60c1dbab
gradio
paddlepaddle
opencv-python
pyyaml >= 5.1
\ No newline at end of file
modelcenter/PP-Matting/benchmark_cn.md
0 → 100644
浏览文件 @
60c1dbab
# 模型列表
## 1. 训练Benchmark
### 1.1 软硬件环境
*
PP-Matting训练过程中使用单卡GPU,batch size为4。
### 1.2 数据集
*
通用目标抠图数据集为Compositon-1k或Distinctions-646(使用该两者数据集需向作者进行申请),使用COCO2017和Pascal VOC 2012作为背景数据集。
*
人像抠图使用内部数据。
### 1.3 指标
|模型名称 | 模型简介 | 输入尺寸 |
|---|---|---|
|ppmatting_hrnet_w48 | 通用目标抠图 | 512 |
|ppmatting_hrnet_w18 | 人像抠图 | 512 |
## 2. 推理Benchmark
### 2.1 软硬件环境
*
模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.6.5, PaddlePaddle-gpu 2.3.2。
### 2.2 数据集
*
通用目标抠图:Compositon-1k或Distinctions-646中的测试集部分。
*
人像抠图:PPM-100和AIM-500中的人像部分,共195张, 记为PPM-AIM-195。
### 2.3 指标
| 模型 | 数据集 | SAD | MSE | Grad | Conn |Params(M) | FLOPs(G) | FPS |
| - | - | -| - | - | - | - | -| - | - |
| ppmatting_hrnet_w48 | Composition-1k | 46.22 | 0.005 | 22.69 | 45.40 | 86.3 | 165.4 | 24.4 |
| ppmatting_hrnet_w48 | Distinctions-646 | 40.69 | 0.009 | 43.91 |40.56 | 86.3 | 165.4 | 24.4 |
| ppmatting_hrnet_w18 | PPM-AIM-195 | 31.56|0.0022|31.80|30.13| 24.5 | 91.28 | 28.9 |
## 3. 相关使用说明
1.
https://github.com/PaddlePaddle/PaddleSeg/tree/develop/Matting
modelcenter/PP-Matting/download_cn.md
0 → 100644
浏览文件 @
60c1dbab
# 模型列表
## 通用目标抠图
|模型名称 | 数据集 | 模型简介 | 推理模型大小 | 下载地址 |
|---|---|---|---|---|
|ppmatting_hrnet_w48 | Composition-1k | 通用目标抠图 | 305M |
[
推理模型
](
https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w48-composition.zip
)
/
[
预训练模型
](
https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w48-composition.pdparams
)
|
|ppmatting_hrnet_w48 | Distinctions-646 | 通用目标抠图 | 305M |
[
推理模型
](
https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w48-distinctions.zip
)
/
[
预训练模型
](
https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w48-distinctions.pdparams
)
|
## 人像抠图
|模型名称 | 模型简介 | 推理模型大小 | 下载地址 |
|---|---|---|---|
|ppmatting_hrnet_w18 | 人像抠图 | 87M |
[
推理模型
](
https://paddleseg.bj.bcebos.com/matting/models/deploy/ppmatting-hrnet_w18-human_512.zip
)
/
[
预训练模型
](
https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_512.pdparams
)
|
modelcenter/PP-Matting/info.yaml
0 → 100644
浏览文件 @
60c1dbab
---
Model_Info
:
name
:
"
PP-Matting"
description
:
"
PP-Matting图像抠图模型"
description_en
:
"
PP-Matting
image
matting
model"
icon
:
"
@后续UE统一设计之后,会存到bos上某个位置"
from_repo
:
"
PaddleSeg"
Task
:
-
tag_en
:
"
Computer
Vision"
tag
:
"
计算机视觉"
sub_tag_en
:
"
Image
Matting,
Figure
Cutout"
sub_tag
:
"
图像抠图,
人像抠图"
Example
:
-
title
:
"
【PaddleSeg-Matting实践范例】PP-Matting图像抠图"
url
:
"
https://aistudio.baidu.com/aistudio/projectdetail/5002963"
Datasets
:
"
Composition-1k,
Distinctions-646"
Pulisher
:
"
Baidu"
License
:
"
apache.2.0"
Paper
:
-
title
:
"
PP-Matting:
High-Accuracy
Natural
Image
Matting"
url
:
"
https://arxiv.org/abs/2204.09433"
IfTraining
:
1
IfOnlineDemo
:
1
modelcenter/PP-Matting/introduction_cn.ipynb
0 → 100644
浏览文件 @
60c1dbab
{
"cells": [
{
"cell_type": "markdown",
"id": "03cfffa3-2398-4d55-bf1e-fe3e01f10d68",
"metadata": {},
"source": [
"## 1. PP-Matting 模型简介\n",
"\n",
"在众多图像抠图算法中,为了追求精度,往往需要输入trimap作为辅助信息,但这极大限制了算法的使用性。PP-Matting作为一种trimap-free的抠图方法,有效克服了辅助信息带来的弊端,在Composition-1k和Distinctions-646数据集中取得了SOTA的效果。PP-Matting利用语义分支(SCB)提取图片高级语义信息并通过引导流设计(Guidance Flow)逐步引导高分辨率细节分支(HRBP)对过度区域的细节提取,最后通过融合模块实现语义和细节的融合得到最终的alpha matte。\n",
"\n",
"更多细节可参考技术报告:https://arxiv.org/abs/2204.09433 。\n",
"\n",
"更多关于PaddleMatting的内容,可以点击 https://github.com/PaddlePaddle/PaddleSeg/tree/develop/Matting 进行了解。\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "8cbcf510-dc56-43f9-9864-5e1de3c7b272",
"metadata": {},
"source": [
"## 2. 模型效果及应用场景\n",
"PP-Matting在人像上的抠图效果如下:\n",
"<p align=\"center\">\n",
"<img src=\"https://user-images.githubusercontent.com/30919197/179751613-d26f2261-7bcf-4066-a0a4-4c818e7065f0.gif\" width=\"100%\" height=\"100%\">\n",
"</p>\n"
]
},
{
"cell_type": "markdown",
"id": "8d9da224-edd4-4c9e-ab2d-cba7ee5a92a4",
"metadata": {},
"source": [
"## 3. 模型如何使用"
]
},
{
"cell_type": "markdown",
"id": "2ac57be7-c00f-441e-ad82-635f6268b6bd",
"metadata": {},
"source": [
"### 3.1 模型推理\n",
"* 下载"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3ea22cb4-5bed-4ce0-858b-3bbb342e8ccf",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"%cd ~/work\n",
"!git clone --depth 1 https://gitee.com/paddlepaddle/PaddleSeg"
]
},
{
"cell_type": "markdown",
"id": "fd7142e9-5202-4a4d-8a03-36fcc5ea0259",
"metadata": {},
"source": [
"* 安装"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a7fd9575-4116-4fa7-86ee-0b2db7417300",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"%cd ~/work/PaddleSeg/Matting\n",
"!pip install -r requirements.txt"
]
},
{
"cell_type": "markdown",
"id": "a0dd2390-e635-432b-9e0b-d7c9323f81a9",
"metadata": {},
"source": [
"* 快速体验\n",
"恭喜! 您已经成功安装了PaddleSeg,接下来快速体验图像抠图效果"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "81736dd2-e90d-4dac-b3c0-58424e2e8dc4",
"metadata": {
"scrolled": true,
"tags": []
},
"outputs": [],
"source": [
"# 下载预训练模型\n",
"!wget https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_512.pdparams\n",
"# 下载图片\n",
"!wget https://user-images.githubusercontent.com/30919197/200645066-6898ec5a-f1c5-4bf7-aa41-473a29977a86.jpeg\n",
"# 在GPU上预测一张图片\n",
"!export CUDA_VISIBLE_DEVICES=0\n",
"!python tools/predict.py \\\n",
" --config configs/ppmatting/ppmatting-hrnet_w18-human_512.yml \\\n",
" --model_path ppmatting-hrnet_w18-human_512.pdparams \\\n",
" --image_path 200645066-6898ec5a-f1c5-4bf7-aa41-473a29977a86.jpeg \\\n",
" --save_dir ./output/results \\\n",
" --fg_estimate True"
]
},
{
"cell_type": "markdown",
"id": "3ab60ad4-2908-40e2-9c08-34ac7978ef16",
"metadata": {},
"source": [
"会在output/results文件夹下生成一个alpha图像和一个rgba图像。\n",
"\n",
"结果如下图:\n",
"<div align=\"center\">\n",
"<img src=\"https://user-images.githubusercontent.com/30919197/200647513-e744118a-bd2b-4de2-b740-6eaeaccf47b6.png\" width = \"40%\" /> \n",
"<img src=\"https://user-images.githubusercontent.com/30919197/200647492-7fd5fd80-2c2a-4775-ad9e-fd1d476cba48.png\" width = \"40%\" />\n",
"* </div>\n"
]
},
{
"cell_type": "markdown",
"id": "98c083d9-acd1-4e0a-855b-0a048983f251",
"metadata": {},
"source": [
"### 3.2 模型训练\n",
" * 克隆PaddleSeg仓库(详见3.1)。\n",
" \n",
" 具体训练参考PaddleSeg仓库Matting子目录相关教程\n",
"https://github.com/PaddlePaddle/PaddleSeg/tree/develop/Matting 。"
]
},
{
"cell_type": "markdown",
"id": "e9b05c1e-cb59-4dd7-83c0-cb30dfefba60",
"metadata": {},
"source": [
"## 4. 原理\n",
"\n",
"<div align=\"center\">\n",
"<img src=\"https://user-images.githubusercontent.com/30919197/200649929-3fa07082-7980-49f8-9f7f-38c31c46de20.png\" width = \"80%\" />\n",
"* </div>\n",
"\n",
"* 分支设计,明确语义预测和细节预测任务。\n",
"* SCB(Semantic Context Branch)分支进行语义预测,保证图像整体预测正确性,其将图像粗略的分为三个部分,即前景、背景和过度区域。\n",
"* HRDB(High-Resolution Detail Branch)维持高分辨率特征提取过程,保证细节不受损失。\n",
"* 引导流结构设计(Guidance Flow)使HRBD分支获取SCB分支提取的语义信息,使HRDB分支能专注与过度区域的细节预测。\n"
]
},
{
"cell_type": "markdown",
"id": "ae7e1030-9044-44f5-a0d3-5148e59d4753",
"metadata": {},
"source": [
"## 5. 注意事项\n",
"* 基于公开数据集Composition-1K和Distinctions-646的训练和预测需发邮件向作者申请。\n",
"* PP-Matting开源了人像预训练模型,可根据具体的人像抠图场景,标注少量的数据进行finetune。"
]
},
{
"cell_type": "markdown",
"id": "7e238357-2f19-48c3-902e-9ba3c93f7818",
"metadata": {},
"source": [
"## 6. 相关论文以及引用信息\n",
"@article{chen2022pp,\n",
" title={PP-Matting: High-Accuracy Natural Image Matting},\n",
" author={Chen, Guowei and Liu, Yi and Wang, Jian and Peng, Juncai and Hao, Yuying and Chu, Lutao and Tang, Shiyu and Wu, Zewu and Chen, Zeyu and Yu, Zhiliang and others},\n",
" journal={arXiv preprint arXiv:2204.09433},\n",
" year={2022}\n",
"}"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "py35-paddle1.2.0"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录