diff --git a/fluid/text_classification/train.py b/fluid/text_classification/train.py index ea3e43f5b5bfe1744205b273b992c5f71e4ef855..9078f4788319dbf76677c86eef53445fa1e85c1a 100644 --- a/fluid/text_classification/train.py +++ b/fluid/text_classification/train.py @@ -55,7 +55,7 @@ def train(train_reader, feeder = fluid.DataFeeder(feed_list=[data, label], place=place) # For internal continuous evaluation - if 'CE_MODE_X' in os.environ: + if "CE_MODE_X" in os.environ: fluid.default_startup_program().random_seed = 110 exe.run(fluid.default_startup_program()) for pass_id in xrange(pass_num): @@ -80,7 +80,7 @@ def train(train_reader, pass_end = time.time() # For internal continuous evaluation - if 'CE_MODE_X' in os.environ: + if "CE_MODE_X" in os.environ: print("kpis train_acc %f" % avg_acc) print("kpis train_cost %f" % avg_cost) print("kpis train_duration %f" % (pass_end - pass_start)) diff --git a/fluid/text_classification/utils.py b/fluid/text_classification/utils.py index 874679c3e2f9fe0c640d6da4f25d503023adcb65..3c2fc559e7b257731c1dcfcb239a04b4846d1097 100644 --- a/fluid/text_classification/utils.py +++ b/fluid/text_classification/utils.py @@ -65,7 +65,7 @@ def prepare_data(data_type="imdb", raise RuntimeError("No such dataset") if data_type == "imdb": - if 'CE_MODE_X' in os.environ: + if "CE_MODE_X" in os.environ: train_reader = paddle.batch( paddle.dataset.imdb.train(word_dict), batch_size=batch_size)