Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
53b2c7d8
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53b2c7d8
编写于
3月 28, 2019
作者:
R
Renwb1991
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
caffe2fluid: modify README.md
上级
7e8aa63f
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
0 addition
and
85 deletion
+0
-85
fluid/PaddleCV/caffe2fluid/README.md
fluid/PaddleCV/caffe2fluid/README.md
+0
-85
未找到文件。
fluid/PaddleCV/caffe2fluid/README.md
浏览文件 @
53b2c7d8
...
...
@@ -3,88 +3,3 @@ This tool is used to convert a Caffe model to a Fluid model
### Statement
This module is migrated to
[
X2Paddle
](
https://github.com/PaddlePaddle/X2Paddle
)
### Key Features
1.
Convert caffe model to fluid model with codes of defining a network(useful for re-training)
2.
Pycaffe is not necessary when just want convert model without do caffe-inference
3.
Caffe's customized layers convertion also be supported by extending this tool
4.
A bunch of tools in
`examples/imagenet/tools`
are provided to compare the difference
### HowTo
1.
Prepare
`caffepb.py`
in
`./proto`
if your python has no
`pycaffe`
module, two options provided here:
-
Generate pycaffe from caffe.proto
```
bash ./proto/compile.sh
```
- Download one from github directly
```
cd proto/ && wget https://raw.githubusercontent.com/ethereon/caffe-tensorflow/master/kaffe/caffe/caffepb.py
```
2.
Convert the Caffe model to Fluid model
-
Generate fluid code and weight file
```
python convert.py alexnet.prototxt \
--caffemodel alexnet.caffemodel \
--data-output-path alexnet.npy \
--code-output-path alexnet.py
```
-
Save weights as fluid model file
```
# only infer the last layer's result
python alexnet.py alexnet.npy ./fluid
# infer these 2 layer's result
python alexnet.py alexnet.npy ./fluid fc8,prob
```
3.
Use the converted model to infer
-
See more details in
`examples/imagenet/tools/run.sh`
4.
Compare the inference results with caffe
-
See more details in
`examples/imagenet/tools/diff.sh`
### How to convert custom layer
1.
Implement your custom layer in a file under
`kaffe/custom_layers`
, eg: mylayer.py
-
Implement
```shape_func(input_shape, [other_caffe_params])```
to calculate the output shape
-
Implement
```layer_func(inputs, name, [other_caffe_params])```
to construct a fluid layer
-
Register these two functions
```register(kind='MyType', shape=shape_func, layer=layer_func)```
-
Notes: more examples can be found in
`kaffe/custom_layers`
2.
Add
```import mylayer```
to
`kaffe/custom_layers/\_\_init__.py`
3.
Prepare your pycaffe as your customized version(same as previous env prepare)
-
(option1) replace
`proto/caffe.proto`
with your own caffe.proto and compile it
-
(option2) change your
`pycaffe`
to the customized version
4.
Convert the Caffe model to Fluid model
5.
Set env $CAFFE2FLUID_CUSTOM_LAYERS to the parent directory of 'custom_layers'
```
export CAFFE2FLUID_CUSTOM_LAYERS=/path/to/caffe2fluid/kaffe
```
6.
Use the converted model when loading model in
`xxxnet.py`
and
`xxxnet.npy`
(no need if model is already in
`fluid/model`
and
`fluid/params`
)
### Tested models
-
Lenet:
[
model addr
](
https://github.com/ethereon/caffe-tensorflow/blob/master/examples/mnist
)
-
ResNets:(ResNet-50, ResNet-101, ResNet-152)
[
model addr
](
https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777
)
-
GoogleNet:
[
model addr
](
https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034
)
-
VGG:
[
model addr
](
https://gist.github.com/ksimonyan/211839e770f7b538e2d8
)
-
AlexNet:
[
model addr
](
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
)
### Notes
Some of this code come from here:
[
caffe-tensorflow
](
https://github.com/ethereon/caffe-tensorflow
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录