提交 52c076c7 编写于 作者: X xuezhong

change download.sh

上级 1cf25cdb
......@@ -22,6 +22,10 @@ import distutils.util
def parse_args():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--prepare',
action='store_true',
help='create the directories, prepare the vocabulary and embeddings')
parser.add_argument(
'--train',
action='store_true',
......
因为 它太大了无法显示 source diff 。你可以改为 查看blob
......@@ -20,12 +20,10 @@ if [[ -d preprocessed ]] && [[ -d raw ]]; then
echo "data exist"
exit 0
else
wget -c https://aipedataset.cdn.bcebos.com/dureader/dureader_raw.zip
wget -c https://aipedataset.cdn.bcebos.com/dureader/dureader_preprocessed.zip
wget -c --no-check-certificate http://dureader.gz.bcebos.com/dureader_preprocessed.zip
fi
if md5sum --status -c md5sum.txt; then
unzip dureader_raw.zip
unzip dureader_preprocessed.zip
else
echo "download data error!" >> /dev/stderr
......
50633b5e5fda12d86e825a5c738d0ca8 dureader_raw.zip
7a4c28026f7dc94e8135d17203c63664 dureader_preprocessed.zip
......@@ -41,7 +41,7 @@ import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
from vocab import Vocab
def prepare_batch_input(insts, args):
doc_num = args.doc_num
......@@ -437,6 +437,39 @@ def predict(logger, args):
inference_program, avg_cost, s_probs, e_probs,
feed_order, place, vocab, brc_data, logger, args)
def prepare(logger, args):
"""
checks data, creates the directories, prepare the vocabulary and embeddings
"""
logger.info('Checking the data files...')
for data_path in args.trainset + args.devset + args.testset:
assert os.path.exists(data_path), '{} file does not exist.'.format(data_path)
logger.info('Preparing the directories...')
for dir_path in [args.vocab_dir, args.save_dir, args.result_dir]:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
logger.info('Building vocabulary...')
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
args.trainset, args.devset, args.testset)
vocab = Vocab(lower=True)
for word in brc_data.word_iter('train'):
vocab.add(word)
unfiltered_vocab_size = vocab.size()
vocab.filter_tokens_by_cnt(min_cnt=2)
filtered_num = unfiltered_vocab_size - vocab.size()
logger.info('After filter {} tokens, the final vocab size is {}'.format(filtered_num,
vocab.size()))
logger.info('Assigning embeddings...')
vocab.randomly_init_embeddings(args.embed_size)
logger.info('Saving vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'wb') as fout:
pickle.dump(vocab, fout)
logger.info('Done with preparing!')
if __name__ == '__main__':
args = parse_args()
......@@ -460,6 +493,8 @@ if __name__ == '__main__':
logger.addHandler(console_handler)
args = parse_args()
logger.info('Running with args : {}'.format(args))
if args.prepare:
prepare(logger, args)
if args.train:
train(logger, args)
if args.evaluate:
......
export CUDA_VISIBLE_DEVICES=1
python run.py \
--trainset 'data/preprocessed/trainset/search.train.json' \
'data/preprocessed/trainset/zhidao.train.json' \
......
python run.py \
--trainset 'data/demo/trainset/search.train.json' \
--devset 'data/demo/devset/search.dev.json' \
--testset 'data/demo/testset/search.test.json' \
--vocab_dir 'data/demo/vocab' \
--use_gpu true \
--save_dir ./models \
--pass_num 10 \
--learning_rate 0.001 \
--batch_size 8 \
--embed_size 300 \
--hidden_size 150 \
--max_p_num 5 \
--max_p_len 500 \
--max_q_len 60 \
--max_a_len 200 \
--drop_rate 0.2 \
--log_interval 1 $@\
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import time
import os
import random
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
from paddle.fluid.executor import Executor
import sys
if sys.version[0] == '2':
reload(sys)
sys.setdefaultencoding("utf-8")
sys.path.append('..')
from args import *
import rc_model
from dataset import BRCDataset
import logging
import pickle
from utils import normalize
from utils import compute_bleu_rouge
def prepare_batch_input(insts, args):
doc_num = args.doc_num
batch_size = len(insts['raw_data'])
new_insts = []
for i in range(batch_size):
p_id = []
q_id = []
p_ids = []
q_ids = []
p_len = 0
for j in range(i * doc_num, (i + 1) * doc_num):
p_ids.append(insts['passage_token_ids'][j])
p_id = p_id + insts['passage_token_ids'][j]
q_ids.append(insts['question_token_ids'][j])
q_id = q_id + insts['question_token_ids'][j]
p_len = len(p_id)
def _get_label(idx, ref_len):
ret = [0.0] * ref_len
if idx >= 0 and idx < ref_len:
ret[idx] = 1.0
return [[x] for x in ret]
start_label = _get_label(insts['start_id'][i], p_len)
end_label = _get_label(insts['end_id'][i], p_len)
new_inst = q_ids + [start_label, end_label] + p_ids
new_insts.append(new_inst)
return new_insts
def LodTensor_Array(lod_tensor):
lod = lod_tensor.lod()
array = np.array(lod_tensor)
new_array = []
for i in range(len(lod[0]) - 1):
new_array.append(array[lod[0][i]:lod[0][i + 1]])
return new_array
def print_para(train_prog, train_exe, logger, args):
if args.para_print:
param_list = train_prog.block(0).all_parameters()
param_name_list = [p.name for p in param_list]
num_sum = 0
for p_name in param_name_list:
p_array = np.array(train_exe.scope.find_var(p_name).get_tensor())
param_num = np.prod(p_array.shape)
num_sum = num_sum + param_num
print("param: {0}, mean={1} max={2} min={3} num={4} {5}".format(
p_name,
p_array.mean(),
p_array.max(), p_array.min(), p_array.shape, param_num))
print("total param num: {0}".format(num_sum))
def find_best_answer_for_passage(start_probs, end_probs, passage_len, args):
"""
Finds the best answer with the maximum start_prob * end_prob from a single passage
"""
if passage_len is None:
passage_len = len(start_probs)
else:
passage_len = min(len(start_probs), passage_len)
best_start, best_end, max_prob = -1, -1, 0
for start_idx in range(passage_len):
for ans_len in range(args.max_a_len):
end_idx = start_idx + ans_len
if end_idx >= passage_len:
continue
prob = start_probs[start_idx] * end_probs[end_idx]
if prob > max_prob:
best_start = start_idx
best_end = end_idx
max_prob = prob
return (best_start, best_end), max_prob
def find_best_answer(sample, start_prob, end_prob, padded_p_len, args):
"""
Finds the best answer for a sample given start_prob and end_prob for each position.
This will call find_best_answer_for_passage because there are multiple passages in a sample
"""
best_p_idx, best_span, best_score = None, None, 0
for p_idx, passage in enumerate(sample['passages']):
if p_idx >= args.max_p_num:
continue
passage_len = min(args.max_p_len, len(passage['passage_tokens']))
answer_span, score = find_best_answer_for_passage(
start_prob[p_idx * padded_p_len:(p_idx + 1) * padded_p_len],
end_prob[p_idx * padded_p_len:(p_idx + 1) * padded_p_len],
passage_len, args)
if score > best_score:
best_score = score
best_p_idx = p_idx
best_span = answer_span
if best_p_idx is None or best_span is None:
best_answer = ''
else:
best_answer = ''.join(sample['passages'][best_p_idx]['passage_tokens'][
best_span[0]:best_span[1] + 1])
return best_answer
def validation(exe, inference_program, avg_cost, s_probs, e_probs, feed_order,
place, vocab, brc_data, args):
"""
"""
# Use test set as validation each pass
total_loss = 0.0
count = 0
pred_answers, ref_answers = [], []
val_feed_list = [
inference_program.global_block().var(var_name)
for var_name in feed_order
]
val_feeder = fluid.DataFeeder(val_feed_list, place)
pad_id = vocab.get_id(vocab.pad_token)
dev_batches = brc_data.gen_mini_batches(
'dev', args.batch_size, pad_id, shuffle=False)
for batch_id, batch in enumerate(dev_batches, 1):
feed_data = prepare_batch_input(batch, args)
val_fetch_outs = exe.run(inference_program,
feed=val_feeder.feed(feed_data),
fetch_list=[avg_cost, s_probs, e_probs],
return_numpy=False)
total_loss += np.array(val_fetch_outs[0])[0]
start_probs = LodTensor_Array(val_fetch_outs[1])
end_probs = LodTensor_Array(val_fetch_outs[2])
count += len(batch['raw_data'])
padded_p_len = len(batch['passage_token_ids'][0])
for sample, start_prob, end_prob in zip(batch['raw_data'], start_probs,
end_probs):
best_answer = find_best_answer(sample, start_prob, end_prob,
padded_p_len, args)
pred_answers.append({
'question_id': sample['question_id'],
'question_type': sample['question_type'],
'answers': [best_answer],
'entity_answers': [[]],
'yesno_answers': []
})
if 'answers' in sample:
ref_answers.append({
'question_id': sample['question_id'],
'question_type': sample['question_type'],
'answers': sample['answers'],
'entity_answers': [[]],
'yesno_answers': []
})
ave_loss = 1.0 * total_loss / count
# compute the bleu and rouge scores if reference answers is provided
if len(ref_answers) > 0:
pred_dict, ref_dict = {}, {}
for pred, ref in zip(pred_answers, ref_answers):
question_id = ref['question_id']
if len(ref['answers']) > 0:
pred_dict[question_id] = normalize(pred['answers'])
ref_dict[question_id] = normalize(ref['answers'])
bleu_rouge = compute_bleu_rouge(pred_dict, ref_dict)
else:
bleu_rouge = None
return ave_loss, bleu_rouge
def train():
args = parse_args()
random.seed(args.random_seed)
np.random.seed(args.random_seed)
fluid.framework.default_startup_program().random_seed = args.random_seed
fluid.default_main_program().random_seed = args.random_seed
logger = logging.getLogger("brc")
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s')
if args.log_path:
file_handler = logging.FileHandler(args.log_path)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
else:
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
logger.info('Running with args : {}'.format(args))
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(args.max_p_num, args.max_p_len, args.max_q_len,
args.trainset, args.devset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
avg_cost, s_probs, e_probs, feed_order = rc_model.rc_model(args.hidden_size,
vocab, args)
# clone from default main program and use it as the validation program
main_program = fluid.default_main_program()
inference_program = fluid.default_main_program().clone(for_test=True)
# build optimizer
if args.optim == 'sgd':
optimizer = fluid.optimizer.SGD(learning_rate=args.learning_rate)
elif args.optim == 'adam':
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
elif args.optim == 'rprop':
optimizer = fluid.optimizer.RMSPropOptimizer(
learning_rate=args.learning_rate)
else:
logger.error('Unsupported optimizer: {}'.format(args.optim))
exit(-1)
optimizer.minimize(avg_cost)
# initialize parameters
place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(exe, args.load_dir)
else:
exe.run(framework.default_startup_program())
embedding_para = fluid.global_scope().find_var(
'embedding_para').get_tensor()
embedding_para.set(vocab.embeddings.astype(np.float32), place)
# prepare data
feed_list = [
main_program.global_block().var(var_name) for var_name in feed_order
]
feeder = fluid.DataFeeder(feed_list, place)
logger.info('Training the model...')
parallel_executor = fluid.ParallelExecutor(
use_cuda=bool(args.use_gpu), loss_name=avg_cost.name)
print_para(fluid.framework.default_main_program(), parallel_executor,
logger, args)
for pass_id in range(1, args.pass_num + 1):
pass_start_time = time.time()
pad_id = vocab.get_id(vocab.pad_token)
train_batches = brc_data.gen_mini_batches(
'train', args.batch_size, pad_id, shuffle=True)
log_every_n_batch, n_batch_loss = args.log_interval, 0
total_num, total_loss = 0, 0
for batch_id, batch in enumerate(train_batches, 1):
input_data_dict = prepare_batch_input(batch, args)
fetch_outs = parallel_executor.run(
feed=feeder.feed(input_data_dict),
fetch_list=[avg_cost.name],
return_numpy=False)
cost_train = np.array(fetch_outs[0])[0]
total_num += len(batch['raw_data'])
n_batch_loss += cost_train
total_loss += cost_train * len(batch['raw_data'])
if log_every_n_batch > 0 and batch_id % log_every_n_batch == 0:
print_para(fluid.framework.default_main_program(),
parallel_executor, logger, args)
logger.info('Average loss from batch {} to {} is {}'.format(
batch_id - log_every_n_batch + 1, batch_id, "%.10f" % (
n_batch_loss / log_every_n_batch)))
n_batch_loss = 0
if args.dev_interval > 0 and batch_id % args.dev_interval == 0:
eval_loss, bleu_rouge = validation(
exe, inference_program, avg_cost, s_probs, e_probs,
feed_order, place, vocab, brc_data, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
pass_end_time = time.time()
logger.info('Evaluating the model after epoch {}'.format(pass_id))
if brc_data.dev_set is not None:
eval_loss, bleu_rouge = validation(exe, inference_program, avg_cost,
s_probs, e_probs, feed_order,
place, vocab, brc_data, args)
logger.info('Dev eval loss {}'.format(eval_loss))
logger.info('Dev eval result: {}'.format(bleu_rouge))
else:
logger.warning(
'No dev set is loaded for evaluation in the dataset!')
time_consumed = pass_end_time - pass_start_time
logger.info('Average train loss for epoch {} is {}'.format(
pass_id, "%.10f" % (1.0 * total_loss / total_num)))
if pass_id % args.save_interval == 0:
model_path = os.path.join(args.save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(
executor=exe, dirname=model_path, main_program=main_program)
if __name__ == '__main__':
train()
# -*- coding:utf8 -*-
# ==============================================================================
# Copyright 2017 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This module implements the Vocab class for converting string to id and back
"""
import numpy as np
class Vocab(object):
"""
Implements a vocabulary to store the tokens in the data, with their corresponding embeddings.
"""
def __init__(self, filename=None, initial_tokens=None, lower=False):
self.id2token = {}
self.token2id = {}
self.token_cnt = {}
self.lower = lower
self.embed_dim = None
self.embeddings = None
self.pad_token = '<blank>'
self.unk_token = '<unk>'
self.initial_tokens = initial_tokens if initial_tokens is not None else []
self.initial_tokens.extend([self.pad_token, self.unk_token])
for token in self.initial_tokens:
self.add(token)
if filename is not None:
self.load_from_file(filename)
def size(self):
"""
get the size of vocabulary
Returns:
an integer indicating the size
"""
return len(self.id2token)
def load_from_file(self, file_path):
"""
loads the vocab from file_path
Args:
file_path: a file with a word in each line
"""
for line in open(file_path, 'r'):
token = line.rstrip('\n')
self.add(token)
def get_id(self, token):
"""
gets the id of a token, returns the id of unk token if token is not in vocab
Args:
key: a string indicating the word
Returns:
an integer
"""
token = token.lower() if self.lower else token
try:
return self.token2id[token]
except KeyError:
return self.token2id[self.unk_token]
def get_token(self, idx):
"""
gets the token corresponding to idx, returns unk token if idx is not in vocab
Args:
idx: an integer
returns:
a token string
"""
try:
return self.id2token[idx]
except KeyError:
return self.unk_token
def add(self, token, cnt=1):
"""
adds the token to vocab
Args:
token: a string
cnt: a num indicating the count of the token to add, default is 1
"""
token = token.lower() if self.lower else token
if token in self.token2id:
idx = self.token2id[token]
else:
idx = len(self.id2token)
self.id2token[idx] = token
self.token2id[token] = idx
if cnt > 0:
if token in self.token_cnt:
self.token_cnt[token] += cnt
else:
self.token_cnt[token] = cnt
return idx
def filter_tokens_by_cnt(self, min_cnt):
"""
filter the tokens in vocab by their count
Args:
min_cnt: tokens with frequency less than min_cnt is filtered
"""
filtered_tokens = [token for token in self.token2id if self.token_cnt[token] >= min_cnt]
# rebuild the token x id map
self.token2id = {}
self.id2token = {}
for token in self.initial_tokens:
self.add(token, cnt=0)
for token in filtered_tokens:
self.add(token, cnt=0)
def randomly_init_embeddings(self, embed_dim):
"""
randomly initializes the embeddings for each token
Args:
embed_dim: the size of the embedding for each token
"""
self.embed_dim = embed_dim
self.embeddings = np.random.rand(self.size(), embed_dim)
for token in [self.pad_token, self.unk_token]:
self.embeddings[self.get_id(token)] = np.zeros([self.embed_dim])
def load_pretrained_embeddings(self, embedding_path):
"""
loads the pretrained embeddings from embedding_path,
tokens not in pretrained embeddings will be filtered
Args:
embedding_path: the path of the pretrained embedding file
"""
trained_embeddings = {}
with open(embedding_path, 'r') as fin:
for line in fin:
contents = line.strip().split()
token = contents[0].decode('utf8')
if token not in self.token2id:
continue
trained_embeddings[token] = list(map(float, contents[1:]))
if self.embed_dim is None:
self.embed_dim = len(contents) - 1
filtered_tokens = trained_embeddings.keys()
# rebuild the token x id map
self.token2id = {}
self.id2token = {}
for token in self.initial_tokens:
self.add(token, cnt=0)
for token in filtered_tokens:
self.add(token, cnt=0)
# load embeddings
self.embeddings = np.zeros([self.size(), self.embed_dim])
for token in self.token2id.keys():
if token in trained_embeddings:
self.embeddings[self.get_id(token)] = trained_embeddings[token]
def convert_to_ids(self, tokens):
"""
Convert a list of tokens to ids, use unk_token if the token is not in vocab.
Args:
tokens: a list of token
Returns:
a list of ids
"""
vec = [self.get_id(label) for label in tokens]
return vec
def recover_from_ids(self, ids, stop_id=None):
"""
Convert a list of ids to tokens, stop converting if the stop_id is encountered
Args:
ids: a list of ids to convert
stop_id: the stop id, default is None
Returns:
a list of tokens
"""
tokens = []
for i in ids:
tokens += [self.get_token(i)]
if stop_id is not None and i == stop_id:
break
return tokens
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册