diff --git a/drn/.idea/drn.iml b/drn/.idea/drn.iml
new file mode 100644
index 0000000000000000000000000000000000000000..6f63a63ccb633131fa1e523f4743d2a8b5da7155
--- /dev/null
+++ b/drn/.idea/drn.iml
@@ -0,0 +1,12 @@
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/drn/.idea/misc.xml b/drn/.idea/misc.xml
new file mode 100644
index 0000000000000000000000000000000000000000..7cc5bb41838003b547f5951e50d31c293dacd351
--- /dev/null
+++ b/drn/.idea/misc.xml
@@ -0,0 +1,4 @@
+
+
+
+
\ No newline at end of file
diff --git a/drn/.idea/modules.xml b/drn/.idea/modules.xml
new file mode 100644
index 0000000000000000000000000000000000000000..a6dd0b0a5ce998aa51a05cdab95a52970ee0955d
--- /dev/null
+++ b/drn/.idea/modules.xml
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/drn/.idea/workspace.xml b/drn/.idea/workspace.xml
new file mode 100644
index 0000000000000000000000000000000000000000..1092683ead3c4b5192deaa2bc51f96b9c818aa01
--- /dev/null
+++ b/drn/.idea/workspace.xml
@@ -0,0 +1,319 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ lower
+ reader
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1520735743667
+
+
+ 1520735743667
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/drn/README.md b/drn/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..54cb2506518d10dcb35025eb4f96dc3639d5f0b0
--- /dev/null
+++ b/drn/README.md
@@ -0,0 +1,146 @@
+The minimum PaddlePaddle version needed for the code sample in this directory is v0.10.0. If you are on a version of PaddlePaddle earlier than v0.10.0, please [update your installation](http://www.paddlepaddle.org/docs/develop/documentation/en/build_and_install/pip_install_en.html).
+-----------------------
+# Deep Residual Networks(DRN)
+## 简介
+在论文[1]中提到了,1202层的ResNet出现了过拟合的问题,有待进一步改进。第二年,何的团队就发表了“Identity Mappings in Deep Residual Networks”这篇文章[2],分析了ResNet成功的关键因素——residual block背后的算法,并对residual block以及after-addition activation进行改进,通过一系列的ablation experiments验证了,在residual block和after-addition activation上都使用identity mapping(恒等映射)时,能对模型训练产生很好的效果,通过这项改进,也成功的训练出了具有很好效果的ResNet-1001。
+## DRN 网络结构
+在原始的ResNet中,对于每一个residual building block:
+![pic1](./img/pic1.png)
+
+可以表现为以下形式:
+
+$$
+y_l = h(x_l) + f(x_l, w_l)
+x_{l+1} = f(y_l)
+$$
+
+其中$h(x_1)$为一个恒等映射,$f(y_l)$代表ReLU激活函数,在[2]中提出了,如果如果$h(x)$和$f(y)$都是恒等映射,即$h(x_l)=x_l、f(y_l)=y_l$,那么在训练的前向和反向传播阶段,信号可以直接从一个单元传递到另外一个单元,使得训练变得更加简单。
+在DNN16中,具有以下优良特性:
+
+(1)对于任意深的单元**L**的特征 $x_L$ 可以表达为浅层单元**l**的特征 $x_l$加上一个形如 $\sum_{i=l}^{L−1}F$的残差函数,这表明了任意单元**L** 和 **l**之间都具有残差特性。
+
+(2)对于任意深的单元 **L**,它的特征 $x_L = x_0 + \sum_{i=0}^{L−1}F(x_i,W_i)$,即为之前所有残差函数输出的总和(加上$x_0$)。而正好相反的是,“plain network”中的特征xL是一系列矩阵向量的乘积,也就是$\prod_{i=0}^{L−1}W_i x_0$,而求和的计算量远远小于求积的计算量。
+
+实验发现,$h(x_l) = x_l$的误差衰减最快,误差也最低(下图a子图所示):
+
+![pic2](./img/pic2.png)
+
+
+对于激活函数,验发现,将ReLU和BN都放在预激活中,即full pre-activation(下图子图e所示)在ResNet-110和ResNet-164上的效果都最好。
+
+![pic3](./img/pic3.png)
+
+## 复现文件一览
+在复现文件中,包含以下文件:
+
+
+
+ 文件 |
+ 描述 |
+
+
+ train.py |
+ DRN模型训练脚本 |
+
+
+ infer.py |
+ 利用训练好的DRN模型做预测 |
+
+ drn.py |
+ 定义DRN的网络结构 |
+
+
+
+## 基于flower数据集的模型复现
+### 数据准备
+所使用的的数据集是paddle中自带的flowers数据集进行训练,直接import即可:
+
+```
+import paddle.v2.dataset.flowers as flowers
+```
+
+### 网络定义
+网络的定义在文件```drn.py```中完整实现,其中最主要的是残差网络的部分:
+```
+def conv_bn_layer(input,
+ ch_out,
+ filter_size,
+ stride,
+ padding,
+ active_type=paddle.activation.Relu(),
+ ch_in=None):
+ tmp = paddle.layer.img_conv(
+ input=input,
+ filter_size=filter_size,
+ num_channels=ch_in,
+ num_filters=ch_out,
+ stride=stride,
+ padding=padding,
+ act=paddle.activation.Linear(),
+ bias_attr=False)
+ return paddle.layer.batch_norm(input=tmp, act=active_type)
+
+```
+### 训练
+接下来,执行``` python train.py -model drn``` 即可训练过程,在训练过程中,建议使CUDA GPU进行训练,如果使用CPU训练耗时可长达90小时以上,关键代码为:
+
+```
+paddle.init(use_gpu=True, trainer_count=1)
+
+image = paddle.layer.data(name="image", type=paddle.data_type.dense_vector(DATA_DIM))
+
+lbl = paddle.layer.data(name="label", type=paddle.data_type.integer_value(CLASS_DIM))
+
+(省略部分代码)
+
+trainer = paddle.trainer.SGD(cost=cost,
+ parameters=parameters,
+ update_equation=optimizer,
+ extra_layers=extra_layers)
+(省略部分代码)
+
+trainer.train(
+ reader=train_reader, num_passes=200, event_handler=event_handler)
+
+```
+
+下面是关于上述代码的解释:
+
+1. 进行``` paddle.init ```以1个GPU的方式初始化
+
+2. 定义```img```图像名 和 ```lbl``` 图像标签
+
+3. 定义```trainer```,包含损失函数、参数、优化器和层数信息
+
+4. 在```train```函数中进行实际训练,共执行200趟
+
+执行过程中,控制台将打印如下所示的信息:
+```
+Pass 0, Batch 0, Cost 2.2512, ...
+Pass 0, Batch 1, Cost 2.1532, ...
+```
+
+同时在```train.py```目录下,每趟训练完成时,将生成```params_pass_0.tar,gz```,最后一趟的200.tar.gz文件生成时,训练完成。
+
+### 应用模型
+应用训练好的模型,执行``` python infer.py -data_list <文件目录> =model drn```即可:
+
+```
+
+\# load parameters
+with gzip.open('params_pass_200.tar.gz', 'r') as f:
+ parameters = paddle.parameters.Parameters.from_tar(f)
+
+file_list = [line.strip() for line in open(image_list_file)]
+test_data = [(paddle.image.load_and_transform(image_file, 256, 224, False)
+ .flatten().astype('float32'), )
+ for image_file in file_list]
+probs = paddle.infer(
+ output_layer=out, parameters=parameters, input=test_data)
+lab = np.argsort(-probs)
+for file_name, result in zip(file_list, lab):
+ print "Label of %s is: %d" % (file_name, result[0])
+
+```
+
+代码将从图片文件夹中读取对应的图片文件,同时给出预测的标签结果,并进行输出。
diff --git a/drn/drn.py b/drn/drn.py
new file mode 100644
index 0000000000000000000000000000000000000000..386de76a6c39955668422d556985ed287f1d3809
--- /dev/null
+++ b/drn/drn.py
@@ -0,0 +1,70 @@
+import paddle.v2 as paddle
+
+__all__ = ['drn16']
+
+def conv_bn_layer(input,
+ ch_out,
+ filter_size,
+ stride,
+ padding,
+ active_type=paddle.activation.Relu(),
+ ch_in=None):
+ tmp = paddle.layer.img_conv(
+ input=input,
+ filter_size=filter_size,
+ num_channels=ch_in,
+ num_filters=ch_out,
+ stride=stride,
+ padding=padding,
+ act=paddle.activation.Linear(),
+ bias_attr=False)
+ return paddle.layer.batch_norm(input=tmp, act=active_type)
+
+
+def shortcut(input, ch_out, stride):
+ if input.num_filters != ch_out:
+ return conv_bn_layer(input, ch_out, 1, stride, 0,
+ paddle.activation.Linear())
+ else:
+ return input
+
+
+def basicblock(input, ch_out, stride):
+ short = shortcut(input, ch_out, stride)
+ conv1 = conv_bn_layer(input, ch_out, 3, stride, 1)
+ conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, paddle.activation.Linear())
+ return paddle.layer.addto(
+ input=[short, conv2], act=paddle.activation.Relu())
+
+
+def bottleneck(input, ch_out, stride):
+ short = shortcut(input, ch_out * 4, stride)
+ conv1 = conv_bn_layer(input, ch_out, 1, stride, 0)
+ conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1)
+ conv3 = conv_bn_layer(conv2, ch_out * 4, 1, 1, 0,
+ paddle.activation.Linear())
+ return paddle.layer.addto(
+ input=[short, conv3], act=paddle.activation.Relu())
+
+
+def layer_warp(block_func, input, ch_out, count, stride):
+ conv = block_func(input, ch_out, stride)
+ for i in range(1, count):
+ conv = block_func(conv, ch_out, 1)
+ return conv
+
+
+def drn16(input, class_dim, depth=32):
+ assert (depth - 2) % 6 == 0
+ n = (depth - 2) / 6
+ conv1 = conv_bn_layer(
+ input, ch_in=3, ch_out=16, filter_size=3, stride=1, padding=1)
+ res1 = layer_warp(basicblock, conv1, 16, n, 1)
+ res2 = layer_warp(basicblock, res1, 32, n, 2)
+ res3 = layer_warp(basicblock, res2, 64, n, 2)
+ pool = paddle.layer.img_pool(
+ input=res3, pool_size=8, stride=1, pool_type=paddle.pooling.Avg())
+ out = paddle.layer.fc(input=pool,
+ size=class_dim,
+ act=paddle.activation.Softmax())
+ return out
\ No newline at end of file
diff --git a/drn/img/pic1.png b/drn/img/pic1.png
new file mode 100644
index 0000000000000000000000000000000000000000..71d9a13c893ddab9948ced42339c5dd1dc3cf4a1
Binary files /dev/null and b/drn/img/pic1.png differ
diff --git a/drn/img/pic2.png b/drn/img/pic2.png
new file mode 100644
index 0000000000000000000000000000000000000000..45dfd2aa8db972d8beeb0813e8495e8483231fcf
Binary files /dev/null and b/drn/img/pic2.png differ
diff --git a/drn/img/pic3.png b/drn/img/pic3.png
new file mode 100644
index 0000000000000000000000000000000000000000..04de6e65a27f95af089ad923596ef4c41e37bceb
Binary files /dev/null and b/drn/img/pic3.png differ
diff --git a/drn/infer.py b/drn/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..95551dad12cf40c23a47bff46c03dde3f71cacb1
--- /dev/null
+++ b/drn/infer.py
@@ -0,0 +1,56 @@
+import os
+import gzip
+import argparse
+import numpy as np
+from PIL import Image
+
+import paddle.v2 as paddle
+import drn
+
+
+DATA_DIM = 3 * 224 * 224
+CLASS_DIM = 102
+
+
+def main():
+ # parse the argument
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ 'data_list',
+ help='The path of data list file, which consists of one image path per line'
+ )
+ parser.add_argument(
+ 'model',
+ help='The model for image classification',
+ choices=[
+ 'drn'
+ ])
+ parser.add_argument(
+ 'params_path', help='The file which stores the parameters')
+ args = parser.parse_args()
+
+ # PaddlePaddle init
+ paddle.init(use_gpu=True, trainer_count=1)
+
+ image = paddle.layer.data(
+ name="image", type=paddle.data_type.dense_vector(DATA_DIM))
+
+ if args.model == 'drn':
+ out = drn.drn16(image, class_dim=CLASS_DIM)
+
+ # load parameters
+ with gzip.open(args.params_path, 'r') as f:
+ parameters = paddle.parameters.Parameters.from_tar(f)
+
+ file_list = [line.strip() for line in open(args.data_list)]
+ test_data = [(paddle.image.load_and_transform(image_file, 256, 224, False)
+ .flatten().astype('float32'), ) for image_file in file_list]
+ probs = paddle.infer(
+ output_layer=out, parameters=parameters, input=test_data)
+ lab = np.argsort(-probs)
+ for file_name, result in zip(file_list, lab):
+ print "Label of %s is: %d" % (file_name, result[0])
+
+
+if __name__ == '__main__':
+ main()
\ No newline at end of file
diff --git a/drn/train.py b/drn/train.py
new file mode 100644
index 0000000000000000000000000000000000000000..cb00aa5e24a3b80e4cb4a47c29f80e14f28284ab
--- /dev/null
+++ b/drn/train.py
@@ -0,0 +1,89 @@
+import gzip
+import argparse
+
+import paddle.v2.dataset.flowers as flowers
+import paddle.v2 as paddle
+import drn
+
+DATA_DIM = 3 * 224 * 224
+CLASS_DIM = 102
+BATCH_SIZE = 128
+
+
+def main():
+ # parse the argument
+ parser = argparse.ArgumentParser()
+ parser.add_argument(
+ 'model',
+ help='The model for image classification',
+ choices=[
+ 'drn'
+ ])
+ args = parser.parse_args()
+
+ # PaddlePaddle init
+ paddle.init(use_gpu=True, trainer_count=1)
+
+ image = paddle.layer.data(
+ name="image", type=paddle.data_type.dense_vector(DATA_DIM))
+ lbl = paddle.layer.data(
+ name="label", type=paddle.data_type.integer_value(CLASS_DIM))
+
+ extra_layers = None
+ learning_rate = 0.01
+ if args.model == 'drn':
+ out = drn.drn16(image, class_dim=CLASS_DIM)
+
+ cost = paddle.layer.classification_cost(input=out, label=lbl)
+
+ # Create parameters
+ parameters = paddle.parameters.create(cost)
+
+ # Create optimizer
+ optimizer = paddle.optimizer.Momentum(
+ momentum=0.9,
+ regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
+ BATCH_SIZE),
+ learning_rate=learning_rate / BATCH_SIZE,
+ learning_rate_decay_a=0.1,
+ learning_rate_decay_b=128000 * 35,
+ learning_rate_schedule="discexp", )
+
+ train_reader = paddle.batch(
+ paddle.reader.shuffle(
+ flowers.train(),
+ # To use other data, replace the above line with:
+ # reader.train_reader('train.list'),
+ buf_size=1000),
+ batch_size=BATCH_SIZE)
+ test_reader = paddle.batch(
+ flowers.valid(),
+ # To use other data, replace the above line with:
+ # reader.test_reader('val.list'),
+ batch_size=BATCH_SIZE)
+
+ # Create trainer
+ trainer = paddle.trainer.SGD(cost=cost,
+ parameters=parameters,
+ update_equation=optimizer,
+ extra_layers=extra_layers)
+
+ # End batch and end pass event handler
+ def event_handler(event):
+ if isinstance(event, paddle.event.EndIteration):
+ if event.batch_id % 1 == 0:
+ print "\nPass %d, Batch %d, Cost %f, %s" % (
+ event.pass_id, event.batch_id, event.cost, event.metrics)
+ if isinstance(event, paddle.event.EndPass):
+ with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
+ trainer.save_parameter_to_tar(f)
+
+ result = trainer.test(reader=test_reader)
+ print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
+
+ trainer.train(
+ reader=train_reader, num_passes=200, event_handler=event_handler)
+
+
+if __name__ == '__main__':
+ main()
\ No newline at end of file
diff --git a/fluid/DeepASR/examples/aishell/profile.sh b/fluid/DeepASR/examples/aishell/profile.sh
new file mode 100644
index 0000000000000000000000000000000000000000..231ebf07abe398e10909f30234bfcb3d6fed090b
--- /dev/null
+++ b/fluid/DeepASR/examples/aishell/profile.sh
@@ -0,0 +1,7 @@
+export CUDA_VISIBLE_DEVICES=2,3,4,5
+python -u ../../tools/profile.py --feature_lst data/train_feature.lst \
+ --label_lst data/train_label.lst \
+ --mean_var data/aishell/global_mean_var \
+ --parallel \
+ --frame_dim 2640 \
+ --class_num 101 \
diff --git a/fluid/DeepQNetwork/DQN.py b/fluid/DeepQNetwork/DQN.py
new file mode 100644
index 0000000000000000000000000000000000000000..b4dcae6fbdb7a5df03ed6ca50a4d8183e26ee288
--- /dev/null
+++ b/fluid/DeepQNetwork/DQN.py
@@ -0,0 +1,88 @@
+#-*- coding: utf-8 -*-
+#File: DQN.py
+
+from agent import Model
+import gym
+import argparse
+from tqdm import tqdm
+from expreplay import ReplayMemory, Experience
+import numpy as np
+import os
+
+UPDATE_FREQ = 4
+
+MEMORY_WARMUP_SIZE = 1000
+
+
+def run_episode(agent, env, exp, train_or_test):
+ assert train_or_test in ['train', 'test'], train_or_test
+ total_reward = 0
+ state = env.reset()
+ for step in range(200):
+ action = agent.act(state, train_or_test)
+ next_state, reward, isOver, _ = env.step(action)
+ if train_or_test == 'train':
+ exp.append(Experience(state, action, reward, isOver))
+ # train model
+ # start training
+ if len(exp) > MEMORY_WARMUP_SIZE:
+ batch_idx = np.random.randint(
+ len(exp) - 1, size=(args.batch_size))
+ if step % UPDATE_FREQ == 0:
+ batch_state, batch_action, batch_reward, \
+ batch_next_state, batch_isOver = exp.sample(batch_idx)
+ agent.train(batch_state, batch_action, batch_reward, \
+ batch_next_state, batch_isOver)
+ total_reward += reward
+ state = next_state
+ if isOver:
+ break
+ return total_reward
+
+
+def train_agent():
+ env = gym.make(args.env)
+ state_shape = env.observation_space.shape
+ exp = ReplayMemory(args.mem_size, state_shape)
+ action_dim = env.action_space.n
+ agent = Model(state_shape[0], action_dim, gamma=0.99)
+
+ while len(exp) < MEMORY_WARMUP_SIZE:
+ run_episode(agent, env, exp, train_or_test='train')
+
+ max_episode = 4000
+
+ # train
+ total_episode = 0
+ pbar = tqdm(total=max_episode)
+ recent_100_reward = []
+ for episode in xrange(max_episode):
+ # start epoch
+ total_reward = run_episode(agent, env, exp, train_or_test='train')
+ pbar.set_description('[train]exploration:{}'.format(agent.exploration))
+ pbar.update()
+
+ # recent 100 reward
+ total_reward = run_episode(agent, env, exp, train_or_test='test')
+ recent_100_reward.append(total_reward)
+ if len(recent_100_reward) > 100:
+ recent_100_reward = recent_100_reward[1:]
+ pbar.write("episode:{} test_reward:{}".format(\
+ episode, np.mean(recent_100_reward)))
+
+ pbar.close()
+
+
+if __name__ == '__main__':
+ parser = argparse.ArgumentParser()
+ parser.add_argument('--env', type=str, default='MountainCar-v0', \
+ help='enviroment to train DQN model, e.g CartPole-v0')
+ parser.add_argument('--gamma', type=float, default=0.99, \
+ help='discount factor for accumulated reward computation')
+ parser.add_argument('--mem_size', type=int, default=500000, \
+ help='memory size for experience replay')
+ parser.add_argument('--batch_size', type=int, default=192, \
+ help='batch size for training')
+ args = parser.parse_args()
+
+ train_agent()
diff --git a/fluid/DeepQNetwork/README.md b/fluid/DeepQNetwork/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a69835271675a0fa5087b279e30643dd1cd5adc0
--- /dev/null
+++ b/fluid/DeepQNetwork/README.md
@@ -0,0 +1,31 @@
+
+
+# Reproduce DQN model
+ + DQN in:
+[Human-level Control Through Deep Reinforcement Learning](http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html)
+
+# Mountain-CAR benchmark & performance
+[MountainCar-v0](https://gym.openai.com/envs/MountainCar-v0/)
+
+A car is on a one-dimensional track, positioned between two "mountains". The goal is to drive up the mountain on the right; however, the car's engine is not strong enough to scale the mountain in a single pass. Therefore, the only way to succeed is to drive back and forth to build up momentum.
+
+
+
+
+
+
+
+# How to use
++ Dependencies:
+ + python2.7
+ + gym
+ + tqdm
+ + paddle-fluid
++ Start Training:
+ ```
+ # use mountain-car enviroment as default
+ python DQN.py
+
+ # use other enviorment
+ python DQN.py --env CartPole-v0
+ ```
diff --git a/fluid/DeepQNetwork/agent.py b/fluid/DeepQNetwork/agent.py
new file mode 100644
index 0000000000000000000000000000000000000000..928ce86e573ed1f042d1b8a85d5443405ea109e1
--- /dev/null
+++ b/fluid/DeepQNetwork/agent.py
@@ -0,0 +1,148 @@
+#-*- coding: utf-8 -*-
+#File: agent.py
+
+import paddle.fluid as fluid
+from paddle.fluid.param_attr import ParamAttr
+import numpy as np
+from tqdm import tqdm
+import math
+
+UPDATE_TARGET_STEPS = 200
+
+
+class Model(object):
+ def __init__(self, state_dim, action_dim, gamma):
+ self.global_step = 0
+ self.state_dim = state_dim
+ self.action_dim = action_dim
+ self.gamma = gamma
+ self.exploration = 1.0
+
+ self._build_net()
+
+ def _get_inputs(self):
+ return [fluid.layers.data(\
+ name='state', shape=[self.state_dim], dtype='float32'),
+ fluid.layers.data(\
+ name='action', shape=[1], dtype='int32'),
+ fluid.layers.data(\
+ name='reward', shape=[], dtype='float32'),
+ fluid.layers.data(\
+ name='next_s', shape=[self.state_dim], dtype='float32'),
+ fluid.layers.data(\
+ name='isOver', shape=[], dtype='bool')]
+
+ def _build_net(self):
+ state, action, reward, next_s, isOver = self._get_inputs()
+ self.pred_value = self.get_DQN_prediction(state)
+ self.predict_program = fluid.default_main_program().clone()
+
+ action_onehot = fluid.layers.one_hot(action, self.action_dim)
+ action_onehot = fluid.layers.cast(action_onehot, dtype='float32')
+
+ pred_action_value = fluid.layers.reduce_sum(\
+ fluid.layers.elementwise_mul(action_onehot, self.pred_value), dim=1)
+
+ targetQ_predict_value = self.get_DQN_prediction(next_s, target=True)
+ best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
+ best_v.stop_gradient = True
+
+ target = reward + (1.0 - fluid.layers.cast(\
+ isOver, dtype='float32')) * self.gamma * best_v
+ cost = fluid.layers.square_error_cost(\
+ input=pred_action_value, label=target)
+ cost = fluid.layers.reduce_mean(cost)
+
+ self._sync_program = self._build_sync_target_network()
+
+ optimizer = fluid.optimizer.Adam(1e-3)
+ optimizer.minimize(cost)
+
+ # define program
+ self.train_program = fluid.default_main_program()
+
+ # fluid exe
+ place = fluid.CUDAPlace(0)
+ self.exe = fluid.Executor(place)
+ self.exe.run(fluid.default_startup_program())
+
+ def get_DQN_prediction(self, state, target=False):
+ variable_field = 'target' if target else 'policy'
+ # layer fc1
+ param_attr = ParamAttr(name='{}_fc1'.format(variable_field))
+ bias_attr = ParamAttr(name='{}_fc1_b'.format(variable_field))
+ fc1 = fluid.layers.fc(input=state,
+ size=256,
+ act='relu',
+ param_attr=param_attr,
+ bias_attr=bias_attr)
+
+ param_attr = ParamAttr(name='{}_fc2'.format(variable_field))
+ bias_attr = ParamAttr(name='{}_fc2_b'.format(variable_field))
+ fc2 = fluid.layers.fc(input=fc1,
+ size=128,
+ act='tanh',
+ param_attr=param_attr,
+ bias_attr=bias_attr)
+
+ param_attr = ParamAttr(name='{}_fc3'.format(variable_field))
+ bias_attr = ParamAttr(name='{}_fc3_b'.format(variable_field))
+ value = fluid.layers.fc(input=fc2,
+ size=self.action_dim,
+ param_attr=param_attr,
+ bias_attr=bias_attr)
+
+ return value
+
+ def _build_sync_target_network(self):
+ vars = fluid.default_main_program().list_vars()
+ policy_vars = []
+ target_vars = []
+ for var in vars:
+ if 'GRAD' in var.name: continue
+ if 'policy' in var.name:
+ policy_vars.append(var)
+ elif 'target' in var.name:
+ target_vars.append(var)
+
+ policy_vars.sort(key=lambda x: x.name.split('policy_')[1])
+ target_vars.sort(key=lambda x: x.name.split('target_')[1])
+
+ sync_program = fluid.default_main_program().clone()
+ with fluid.program_guard(sync_program):
+ sync_ops = []
+ for i, var in enumerate(policy_vars):
+ sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
+ sync_ops.append(sync_op)
+ sync_program = sync_program.prune(sync_ops)
+ return sync_program
+
+ def act(self, state, train_or_test):
+ sample = np.random.random()
+ if train_or_test == 'train' and sample < self.exploration:
+ act = np.random.randint(self.action_dim)
+ else:
+ state = np.expand_dims(state, axis=0)
+ pred_Q = self.exe.run(self.predict_program,
+ feed={'state': state.astype('float32')},
+ fetch_list=[self.pred_value])[0]
+ pred_Q = np.squeeze(pred_Q, axis=0)
+ act = np.argmax(pred_Q)
+ self.exploration = max(0.1, self.exploration - 1e-6)
+ return act
+
+ def train(self, state, action, reward, next_state, isOver):
+ if self.global_step % UPDATE_TARGET_STEPS == 0:
+ self.sync_target_network()
+ self.global_step += 1
+
+ action = np.expand_dims(action, -1)
+ self.exe.run(self.train_program, \
+ feed={'state': state, \
+ 'action': action, \
+ 'reward': reward, \
+ 'next_s': next_state, \
+ 'isOver': isOver})
+
+ def sync_target_network(self):
+ self.exe.run(self._sync_program)
diff --git a/fluid/DeepQNetwork/curve.png b/fluid/DeepQNetwork/curve.png
new file mode 100644
index 0000000000000000000000000000000000000000..a283413797c96350f399ea0236750525d2dba1f3
Binary files /dev/null and b/fluid/DeepQNetwork/curve.png differ
diff --git a/fluid/DeepQNetwork/expreplay.py b/fluid/DeepQNetwork/expreplay.py
new file mode 100644
index 0000000000000000000000000000000000000000..06599226418ffa7ec04905e5f538d272ef986bf0
--- /dev/null
+++ b/fluid/DeepQNetwork/expreplay.py
@@ -0,0 +1,50 @@
+#-*- coding: utf-8 -*-
+#File: expreplay.py
+
+from collections import namedtuple
+import numpy as np
+
+Experience = namedtuple('Experience', ['state', 'action', 'reward', 'isOver'])
+
+
+class ReplayMemory(object):
+ def __init__(self, max_size, state_shape):
+ self.max_size = int(max_size)
+ self.state_shape = state_shape
+
+ self.state = np.zeros((self.max_size, ) + state_shape, dtype='float32')
+ self.action = np.zeros((self.max_size, ), dtype='int32')
+ self.reward = np.zeros((self.max_size, ), dtype='float32')
+ self.isOver = np.zeros((self.max_size, ), dtype='bool')
+
+ self._curr_size = 0
+ self._curr_pos = 0
+
+ def append(self, exp):
+ if self._curr_size < self.max_size:
+ self._assign(self._curr_pos, exp)
+ self._curr_size += 1
+ else:
+ self._assign(self._curr_pos, exp)
+ self._curr_pos = (self._curr_pos + 1) % self.max_size
+
+ def _assign(self, pos, exp):
+ self.state[pos] = exp.state
+ self.action[pos] = exp.action
+ self.reward[pos] = exp.reward
+ self.isOver[pos] = exp.isOver
+
+ def __len__(self):
+ return self._curr_size
+
+ def sample(self, batch_idx):
+ # index mapping to avoid sampling lastest state
+ batch_idx = (self._curr_pos + batch_idx) % self._curr_size
+ next_idx = (batch_idx + 1) % self._curr_size
+
+ state = self.state[batch_idx]
+ reward = self.reward[batch_idx]
+ action = self.action[batch_idx]
+ next_state = self.state[next_idx]
+ isOver = self.isOver[batch_idx]
+ return (state, action, reward, next_state, isOver)
diff --git a/fluid/DeepQNetwork/mountain_car.gif b/fluid/DeepQNetwork/mountain_car.gif
new file mode 100644
index 0000000000000000000000000000000000000000..5665d67d2cddbfb9c30dc588a085748e056bb16a
Binary files /dev/null and b/fluid/DeepQNetwork/mountain_car.gif differ
diff --git a/fluid/ocr_recognition/ctc_reader.py b/fluid/ocr_recognition/ctc_reader.py
index aa7c4eddd559d320a387285881fdd241e2c03558..ae8912b36933f6165babb8fb866bee5e074da850 100644
--- a/fluid/ocr_recognition/ctc_reader.py
+++ b/fluid/ocr_recognition/ctc_reader.py
@@ -136,6 +136,7 @@ class DataGenerator(object):
img = Image.open(img_path).convert('L')
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
+ label = [int(c) for c in line.split(' ')[3].split(',')]
yield img, label
else:
while True:
diff --git a/generate_sequence_by_rnn_lm/README.md b/generate_sequence_by_rnn_lm/README.md
index afa543334f19088fbf8840483397e659408b6af0..756c60d67ec6d27d3f90e1783e300190a0010154 100644
--- a/generate_sequence_by_rnn_lm/README.md
+++ b/generate_sequence_by_rnn_lm/README.md
@@ -99,7 +99,7 @@ RNN是一个序列模型,基本思路是:在时刻$t$,将前一时刻$t-1$
```
1. `max_word_num`:指定字典中含有多少个词。
2. `cutoff_word_fre`:字典中词语在训练语料中出现的最低频率。
-- 加入指定了 `max_word_num = 5000`,并且 `cutoff_word_fre = 10`,词频统计发现训练语料中出现频率高于10次的词语仅有3000个,那么最终会取3000个词构成词典。
+- 假如指定了 `max_word_num = 5000`,并且 `cutoff_word_fre = 10`,词频统计发现训练语料中出现频率高于10次的词语仅有3000个,那么最终会取3000个词构成词典。
- 构建词典时,会自动加入两个特殊符号:
1. ``:不出现在字典中的词
2. ``:句子的结束符