提交 4f422f02 编写于 作者: G Guo Sheng 提交者: gongweibao

Support pyreader and data feeding in Transformer (#1239)

上级 d1e78e57
#!/bin/bash #!/bin/bash
DATA_PATH=$HOME/.cache/paddle/dataset/wmt16 DATA_PATH=$HOME/.cache/paddle/dataset/wmt16
if [ ! -d $DATA_PATH/en_10000.dict ] ; then if [ ! -e $DATA_PATH/en_10000.dict ] ; then
python -c 'import paddle;paddle.dataset.wmt16.train(10000, 10000, "en")().next()' python -c 'import paddle;paddle.dataset.wmt16.train(10000, 10000, "en")().next()'
tar -zxf $DATA_PATH/wmt16.tar.gz -C $DATA_PATH tar -zxf $DATA_PATH/wmt16.tar.gz -C $DATA_PATH
fi fi
......
...@@ -63,7 +63,7 @@ WMT 数据集是机器翻译领域公认的主流数据集;WMT 英德和英法 ...@@ -63,7 +63,7 @@ WMT 数据集是机器翻译领域公认的主流数据集;WMT 英德和英法
#### WMT 英德翻译数据 #### WMT 英德翻译数据
[WMT'16 EN-DE 数据集](http://www.statmt.org/wmt16/translation-task.html)是一个中等规模的数据集。参照论文,英德数据集我们使用 BPE 编码的数据,这能够更好的解决未登录词(out-of-vocabulary,OOV)的问题[4]。用到的 BPE 数据可以参照[这里](https://github.com/google/seq2seq/blob/master/docs/data.md)进行下载(如果希望在自定义数据中使用 BPE 编码,可以参照[这里](https://github.com/rsennrich/subword-nmt)进行预处理),下载后解压,其中 `train.tok.clean.bpe.32000.en``train.tok.clean.bpe.32000.de` 为使用 BPE 的训练数据(平行语料,分别对应了英语和德语,经过了 tokenize 和 BPE 的处理),`newstest2013.tok.bpe.32000.en``newstest2013.tok.bpe.32000.de` 等为测试数据(`newstest2013.tok.en``newstest2013.tok.de` 等则为对应的未使用 BPE 的测试数据),`vocab.bpe.32000` 为相应的词典文件(源语言和目标语言共享该词典文件)。 [WMT'16 EN-DE 数据集](http://www.statmt.org/wmt16/translation-task.html)是一个中等规模的数据集。参照论文,英德数据集我们使用 BPE 编码的数据,这能够更好的解决未登录词(out-of-vocabulary,OOV)的问题[4]。用到的 BPE 数据可以参照[这里](https://github.com/google/seq2seq/blob/master/docs/data.md)进行下载(如果希望在自定义数据中使用 BPE 编码,可以参照[这里](https://github.com/rsennrich/subword-nmt)进行预处理),下载后解压,其中 `train.tok.clean.bpe.32000.en``train.tok.clean.bpe.32000.de` 为使用 BPE 的训练数据(平行语料,分别对应了英语和德语,经过了 tokenize 和 BPE 的处理),`newstest2016.tok.bpe.32000.en``newstest2016.tok.bpe.32000.de` 等为测试数据(`newstest2016.tok.en``newstest2016.tok.de` 等则为对应的未使用 BPE 的测试数据),`vocab.bpe.32000` 为相应的词典文件(源语言和目标语言共享该词典文件)。
由于本示例中的数据读取脚本 `reader.py` 默认使用的样本数据的格式为 `\t` 分隔的的源语言和目标语言句子对(默认句子中的词之间使用空格分隔),因此需要将源语言到目标语言的平行语料库文件合并为一个文件,可以执行以下命令进行合并: 由于本示例中的数据读取脚本 `reader.py` 默认使用的样本数据的格式为 `\t` 分隔的的源语言和目标语言句子对(默认句子中的词之间使用空格分隔),因此需要将源语言到目标语言的平行语料库文件合并为一个文件,可以执行以下命令进行合并:
```sh ```sh
...@@ -91,7 +91,7 @@ python -u train.py \ ...@@ -91,7 +91,7 @@ python -u train.py \
--train_file_pattern data/train.tok.clean.bpe.32000.en-de \ --train_file_pattern data/train.tok.clean.bpe.32000.en-de \
--token_delimiter ' ' \ --token_delimiter ' ' \
--use_token_batch True \ --use_token_batch True \
--batch_size 3200 \ --batch_size 4096 \
--sort_type pool \ --sort_type pool \
--pool_size 200000 --pool_size 200000
``` ```
...@@ -100,7 +100,7 @@ python -u train.py \ ...@@ -100,7 +100,7 @@ python -u train.py \
python train.py --help python train.py --help
``` ```
更多模型训练相关的参数则在 `config.py` 中的 `ModelHyperParams``TrainTaskConfig` 内定义;`ModelHyperParams` 定义了 embedding 维度等模型超参数,`TrainTaskConfig` 定义了 warmup 步数等训练需要的参数。这些参数默认使用了 Transformer 论文中 base model 的配置,如需调整可以在该脚本中进行修改。另外这些参数同样可在执行训练脚本的命令行中设置,传入的配置会合并并覆盖 `config.py` 中的配置,如可以通过以下命令来训练 Transformer 论文中的 big model : 更多模型训练相关的参数则在 `config.py` 中的 `ModelHyperParams``TrainTaskConfig` 内定义;`ModelHyperParams` 定义了 embedding 维度等模型超参数,`TrainTaskConfig` 定义了 warmup 步数等训练需要的参数。这些参数默认使用了 Transformer 论文中 base model 的配置,如需调整可以在该脚本中进行修改。另外这些参数同样可在执行训练脚本的命令行中设置,传入的配置会合并并覆盖 `config.py` 中的配置,如可以通过以下命令来训练 Transformer 论文中的 big model (如显存不够可适当减小 batch size 的值)
```sh ```sh
python -u train.py \ python -u train.py \
...@@ -117,22 +117,23 @@ python -u train.py \ ...@@ -117,22 +117,23 @@ python -u train.py \
n_head 16 \ n_head 16 \
d_model 1024 \ d_model 1024 \
d_inner_hid 4096 \ d_inner_hid 4096 \
dropout 0.3 n_head 16 \
prepostprocess_dropout 0.3
``` ```
有关这些参数更详细信息的请参考 `config.py` 中的注释说明。对于英法翻译数据,执行训练和英德翻译训练类似,修改命令中的词典和数据文件为英法数据相应文件的路径,另外要注意的是由于英法翻译数据 token 间不是使用空格进行分隔,需要修改 `token_delimiter` 参数的设置为 `--token_delimiter '\x01'` 有关这些参数更详细信息的请参考 `config.py` 中的注释说明。对于英法翻译数据,执行训练和英德翻译训练类似,修改命令中的词典和数据文件为英法数据相应文件的路径,另外要注意的是由于英法翻译数据 token 间不是使用空格进行分隔,需要修改 `token_delimiter` 参数的设置为 `--token_delimiter '\x01'`
训练时默认使用所有 GPU,可以通过 `CUDA_VISIBLE_DEVICES` 环境变量来设置使用的 GPU 数目。也可以只使用 CPU 训练(通过参数 `--divice CPU` 设置),训练速度相对较慢。在训练过程中,每个 epoch 结束后将保存模型到参数 `model_dir` 指定的目录,每个 epoch 内也会每隔1000个 iteration 进行一次保存,每个 iteration 将打印如下的日志到标准输出: 训练时默认使用所有 GPU,可以通过 `CUDA_VISIBLE_DEVICES` 环境变量来设置使用的 GPU 数目。也可以只使用 CPU 训练(通过参数 `--divice CPU` 设置),训练速度相对较慢。在训练过程中,每隔一定 iteration 后(通过参数 `save_freq` 设置,默认为10000)保存模型到参数 `model_dir` 指定的目录,每个 epoch 结束后也会保存 checkpiont 到 `ckpt_dir` 指定的目录,每个 iteration 将打印如下的日志到标准输出:
```txt ```txt
epoch: 0, batch: 0, sum loss: 258793.343750, avg loss: 11.069005, ppl: 64151.644531 step_idx: 0, epoch: 0, batch: 0, avg loss: 11.059394, normalized loss: 9.682427, ppl: 63538.027344
epoch: 0, batch: 1, sum loss: 256140.718750, avg loss: 11.059616, ppl: 63552.148438 step_idx: 1, epoch: 0, batch: 1, avg loss: 11.053112, normalized loss: 9.676146, ppl: 63140.144531
epoch: 0, batch: 2, sum loss: 258931.093750, avg loss: 11.064013, ppl: 63832.167969 step_idx: 2, epoch: 0, batch: 2, avg loss: 11.054576, normalized loss: 9.677609, ppl: 63232.640625
epoch: 0, batch: 3, sum loss: 256837.875000, avg loss: 11.058206, ppl: 63462.574219 step_idx: 3, epoch: 0, batch: 3, avg loss: 11.046638, normalized loss: 9.669671, ppl: 62732.664062
epoch: 0, batch: 4, sum loss: 256461.000000, avg loss: 11.053401, ppl: 63158.390625 step_idx: 4, epoch: 0, batch: 4, avg loss: 11.030095, normalized loss: 9.653129, ppl: 61703.449219
epoch: 0, batch: 5, sum loss: 257064.562500, avg loss: 11.019099, ppl: 61028.683594 step_idx: 5, epoch: 0, batch: 5, avg loss: 11.047491, normalized loss: 9.670525, ppl: 62786.230469
epoch: 0, batch: 6, sum loss: 256180.125000, avg loss: 11.008556, ppl: 60388.644531 step_idx: 6, epoch: 0, batch: 6, avg loss: 11.044509, normalized loss: 9.667542, ppl: 62599.273438
epoch: 0, batch: 7, sum loss: 256619.671875, avg loss: 11.007106, ppl: 60301.113281 step_idx: 7, epoch: 0, batch: 7, avg loss: 11.011090, normalized loss: 9.634124, ppl: 60541.859375
epoch: 0, batch: 8, sum loss: 255716.734375, avg loss: 10.966025, ppl: 57874.105469 step_idx: 8, epoch: 0, batch: 8, avg loss: 10.985243, normalized loss: 9.608276, ppl: 58997.058594
epoch: 0, batch: 9, sum loss: 245157.500000, avg loss: 10.966562, ppl: 57905.187500 step_idx: 9, epoch: 0, batch: 9, avg loss: 10.993434, normalized loss: 9.616467, ppl: 59482.292969
``` ```
### 模型预测 ### 模型预测
...@@ -143,19 +144,19 @@ python -u infer.py \ ...@@ -143,19 +144,19 @@ python -u infer.py \
--src_vocab_fpath data/vocab.bpe.32000 \ --src_vocab_fpath data/vocab.bpe.32000 \
--trg_vocab_fpath data/vocab.bpe.32000 \ --trg_vocab_fpath data/vocab.bpe.32000 \
--special_token '<s>' '<e>' '<unk>' \ --special_token '<s>' '<e>' '<unk>' \
--test_file_pattern data/newstest2013.tok.bpe.32000.en-de \ --test_file_pattern data/newstest2016.tok.bpe.32000.en-de \
--use_wordpiece False \ --use_wordpiece False \
--token_delimiter ' ' \ --token_delimiter ' ' \
--batch_size 4 \ --batch_size 32 \
model_path trained_models/pass_20.infer.model \ model_path trained_models/iter_199999.infer.model \
beam_size 5 \ beam_size 4 \
max_out_len 256 max_out_len 255
``` ```
和模型训练时类似,预测时也需要设置数据和 reader 相关的参数,并可以执行 `python infer.py --help` 查看这些参数的说明(部分参数意义和训练时略有不同);同样可以在预测命令中设置模型超参数,但应与模型训练时的设置一致;此外相比于模型训练,预测时还有一些额外的参数,如需要设置 `model_path` 来给出模型所在目录,可以设置 `beam_size``max_out_len` 来指定 Beam Search 算法的搜索宽度和最大深度(翻译长度),这些参数也可以在 `config.py` 中的 `InferTaskConfig` 内查阅注释说明并进行更改设置。 和模型训练时类似,预测时也需要设置数据和 reader 相关的参数,并可以执行 `python infer.py --help` 查看这些参数的说明(部分参数意义和训练时略有不同);同样可以在预测命令中设置模型超参数,但应与模型训练时的设置一致;此外相比于模型训练,预测时还有一些额外的参数,如需要设置 `model_path` 来给出模型所在目录,可以设置 `beam_size``max_out_len` 来指定 Beam Search 算法的搜索宽度和最大深度(翻译长度),这些参数也可以在 `config.py` 中的 `InferTaskConfig` 内查阅注释说明并进行更改设置。
执行以上预测命令会打印翻译结果到标准输出,每行输出是对应行输入的得分最高的翻译。对于使用 BPE 的英德数据,预测出的翻译结果也将是 BPE 表示的数据,要还原成原始的数据(这里指 tokenize 后的数据)才能进行正确的评估,可以使用以下命令来恢复 `predict.txt` 内的翻译结果到 `predict.tok.txt` 中(无需再次 tokenize 处理): 执行以上预测命令会打印翻译结果到标准输出,每行输出是对应行输入的得分最高的翻译。对于使用 BPE 的英德数据,预测出的翻译结果也将是 BPE 表示的数据,要还原成原始的数据(这里指 tokenize 后的数据)才能进行正确的评估,可以使用以下命令来恢复 `predict.txt` 内的翻译结果到 `predict.tok.txt` 中(无需再次 tokenize 处理):
```sh ```sh
sed 's/@@ //g' predict.txt > predict.tok.txt sed -r 's/(@@ )|(@@ ?$)//g' predict.txt > predict.tok.txt
``` ```
对于英法翻译的 wordpiece 数据,执行预测和英德翻译预测类似,修改命令中的词典和数据文件为英法数据相应文件的路径,另外需要注意修改 `token_delimiter` 参数的设置为 `--token_delimiter '\x01'`;同时要修改 `use_wordpiece` 参数的设置为 `--use_wordpiece True`,这会在预测时将翻译得到的 wordpiece 数据还原为原始数据输出。为了使用 tokenize 的数据进行评估,还需要对翻译结果进行 tokenize 的处理,[Moses](https://github.com/moses-smt/mosesdecoder) 提供了一系列机器翻译相关的脚本。执行 `git clone https://github.com/moses-smt/mosesdecoder.git` 克隆 mosesdecoder 仓库后,可以使用其中的 `tokenizer.perl` 脚本对 `predict.txt` 内的翻译结果进行 tokenize 处理并输出到 `predict.tok.txt` 中,如下: 对于英法翻译的 wordpiece 数据,执行预测和英德翻译预测类似,修改命令中的词典和数据文件为英法数据相应文件的路径,另外需要注意修改 `token_delimiter` 参数的设置为 `--token_delimiter '\x01'`;同时要修改 `use_wordpiece` 参数的设置为 `--use_wordpiece True`,这会在预测时将翻译得到的 wordpiece 数据还原为原始数据输出。为了使用 tokenize 的数据进行评估,还需要对翻译结果进行 tokenize 的处理,[Moses](https://github.com/moses-smt/mosesdecoder) 提供了一系列机器翻译相关的脚本。执行 `git clone https://github.com/moses-smt/mosesdecoder.git` 克隆 mosesdecoder 仓库后,可以使用其中的 `tokenizer.perl` 脚本对 `predict.txt` 内的翻译结果进行 tokenize 处理并输出到 `predict.tok.txt` 中,如下:
...@@ -163,15 +164,21 @@ sed 's/@@ //g' predict.txt > predict.tok.txt ...@@ -163,15 +164,21 @@ sed 's/@@ //g' predict.txt > predict.tok.txt
perl mosesdecoder/scripts/tokenizer/tokenizer.perl -l fr < predict.txt > predict.tok.txt perl mosesdecoder/scripts/tokenizer/tokenizer.perl -l fr < predict.txt > predict.tok.txt
``` ```
接下来就可以使用参考翻译对翻译结果进行 BLEU 指标的评估了。计算 BLEU 值的脚本也在 Moses 中包含,以英德翻译 `newstest2013.tok.de` 数据为例,执行如下命令: 接下来就可以使用参考翻译对翻译结果进行 BLEU 指标的评估了。计算 BLEU 值的脚本也在 Moses 中包含,以英德翻译 `newstest2016.tok.de` 数据为例,执行如下命令:
```sh ```sh
perl mosesdecoder/scripts/generic/multi-bleu.perl data/newstest2013.tok.de < predict.tok.txt perl mosesdecoder/scripts/generic/multi-bleu.perl data/newstest2016.tok.de < predict.tok.txt
``` ```
可以看到类似如下的结果。 可以看到类似如下的结果(为单机两卡训练 200K 个 iteration 后模型的预测结果)
``` ```
BLEU = 25.08, 58.3/31.5/19.6/12.6 (BP=0.966, ratio=0.967, hyp_len=61321, ref_len=63412) BLEU = 33.08, 64.2/39.2/26.4/18.5 (BP=0.994, ratio=0.994, hyp_len=61971, ref_len=62362)
``` ```
目前在未使用 model average 的情况下,使用默认配置单机八卡(同论文中 base model 的配置)进行训练,英德翻译在 `newstest2013` 上测试 BLEU 值为25.,在 `newstest2014` 上测试 BLEU 值为26.;英法翻译在 `newstest2014` 上测试 BLEU 值为36.。 目前在未使用 model average 的情况下,英德翻译 base model 八卡训练 100K 个 iteration 后测试 BLEU 值如下:
| 测试集 | newstest2013 | newstest2014 | newstest2015 | newstest2016 |
|-|-|-|-|-|
| BLEU | 25.27 | 26.05 | 28.75 | 33.27 |
英法翻译 base model 八卡训练 100K 个 iteration 后在 `newstest2014` 上测试 BLEU 值为36.。
### 分布式训练 ### 分布式训练
......
...@@ -9,12 +9,12 @@ class TrainTaskConfig(object): ...@@ -9,12 +9,12 @@ class TrainTaskConfig(object):
# the hyper parameters for Adam optimizer. # the hyper parameters for Adam optimizer.
# This static learning_rate will be multiplied to the LearningRateScheduler # This static learning_rate will be multiplied to the LearningRateScheduler
# derived learning rate the to get the final learning rate. # derived learning rate the to get the final learning rate.
learning_rate = 1 learning_rate = 2.0
beta1 = 0.9 beta1 = 0.9
beta2 = 0.98 beta2 = 0.997
eps = 1e-9 eps = 1e-9
# the parameters for learning rate scheduling. # the parameters for learning rate scheduling.
warmup_steps = 4000 warmup_steps = 8000
# the weight used to mix up the ground-truth distribution and the fixed # the weight used to mix up the ground-truth distribution and the fixed
# uniform distribution in label smoothing when training. # uniform distribution in label smoothing when training.
# Set this as zero if label smoothing is not wanted. # Set this as zero if label smoothing is not wanted.
...@@ -30,6 +30,8 @@ class TrainTaskConfig(object): ...@@ -30,6 +30,8 @@ class TrainTaskConfig(object):
# It should be provided if use checkpoints, since the checkpoint doesn't # It should be provided if use checkpoints, since the checkpoint doesn't
# include the training step counter currently. # include the training step counter currently.
start_step = 0 start_step = 0
# the frequency to save trained models.
save_freq = 10000
class InferTaskConfig(object): class InferTaskConfig(object):
...@@ -63,7 +65,6 @@ class ModelHyperParams(object): ...@@ -63,7 +65,6 @@ class ModelHyperParams(object):
# index for <unk> token # index for <unk> token
unk_idx = 2 unk_idx = 2
# max length of sequences deciding the size of position encoding table. # max length of sequences deciding the size of position encoding table.
# Start from 1 and count start and end tokens in.
max_length = 256 max_length = 256
# the dimension for word embeddings, which is also the last dimension of # the dimension for word embeddings, which is also the last dimension of
# the input and output of multi-head attention, position-wise feed-forward # the input and output of multi-head attention, position-wise feed-forward
...@@ -79,8 +80,14 @@ class ModelHyperParams(object): ...@@ -79,8 +80,14 @@ class ModelHyperParams(object):
n_head = 8 n_head = 8
# number of sub-layers to be stacked in the encoder and decoder. # number of sub-layers to be stacked in the encoder and decoder.
n_layer = 6 n_layer = 6
# dropout rate used by all dropout layers. # dropout rates of different modules.
dropout = 0.1 prepostprocess_dropout = 0.1
attention_dropout = 0.1
relu_dropout = 0.1
# to process before each sub-layer
preprocess_cmd = "n" # layer normalization
# to process after each sub-layer
postprocess_cmd = "da" # dropout + residual connection
# random seed used in dropout for CE. # random seed used in dropout for CE.
dropout_seed = None dropout_seed = None
# the flag indicating whether to share embedding and softmax weights. # the flag indicating whether to share embedding and softmax weights.
......
...@@ -156,7 +156,9 @@ def fast_infer(test_data, trg_idx2word, use_wordpiece): ...@@ -156,7 +156,9 @@ def fast_infer(test_data, trg_idx2word, use_wordpiece):
ModelHyperParams.max_length + 1, ModelHyperParams.n_layer, ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.n_head, ModelHyperParams.d_key,
ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_value, ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid, ModelHyperParams.dropout, ModelHyperParams.d_inner_hid, ModelHyperParams.prepostprocess_dropout,
ModelHyperParams.attention_dropout, ModelHyperParams.relu_dropout,
ModelHyperParams.preprocess_cmd, ModelHyperParams.postprocess_cmd,
ModelHyperParams.weight_sharing, InferTaskConfig.beam_size, ModelHyperParams.weight_sharing, InferTaskConfig.beam_size,
InferTaskConfig.max_out_len, ModelHyperParams.eos_idx) InferTaskConfig.max_out_len, ModelHyperParams.eos_idx)
......
import os
import time
import argparse import argparse
import ast import ast
import numpy as np
import multiprocessing import multiprocessing
import os
import six
import time
import paddle import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.profiler as profiler import paddle.fluid.profiler as profiler
from train import split_data, read_multiple, prepare_batch_input
from model import transformer, position_encoding_init
from optim import LearningRateScheduler
from config import *
import reader import reader
from config import *
from train import pad_batch_data, prepare_data_generator, \
prepare_feed_dict_list, py_reader_provider_wrapper
from model import transformer, position_encoding_init
def parse_args(): def parse_args():
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser("Training for Transformer.")
"Profile the training process for Transformer.")
parser.add_argument( parser.add_argument(
"--src_vocab_fpath", "--src_vocab_fpath",
type=str, type=str,
...@@ -43,38 +42,70 @@ def parse_args(): ...@@ -43,38 +42,70 @@ def parse_args():
parser.add_argument( parser.add_argument(
"--batch_size", "--batch_size",
type=int, type=int,
default=2048, default=4096,
help="The number of sequences contained in a mini-batch, or the maximum " help="The number of sequences contained in a mini-batch, or the maximum "
"number of tokens (include paddings) contained in a mini-batch. Note " "number of tokens (include paddings) contained in a mini-batch. Note "
"that this represents the number on single device and the actual batch " "that this represents the number on single device and the actual batch "
"size for multi-devices will multiply the device number.") "size for multi-devices will multiply the device number.")
parser.add_argument(
"--num_iters",
type=int,
default=10,
help="The maximum number of iterations profiling over.")
parser.add_argument( parser.add_argument(
"--pool_size", "--pool_size",
type=int, type=int,
default=10000, default=200000,
help="The buffer size to pool data.") help="The buffer size to pool data.")
parser.add_argument(
"--sort_type",
default="pool",
choices=("global", "pool", "none"),
help="The grain to sort by length: global for all instances; pool for "
"instances in pool; none for no sort.")
parser.add_argument(
"--shuffle",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to shuffle instances in each pass.")
parser.add_argument(
"--shuffle_batch",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to shuffle the data batches.")
parser.add_argument( parser.add_argument(
"--special_token", "--special_token",
type=str, type=str,
default=["<s>", "<e>", "<unk>"], default=["<s>", "<e>", "<unk>"],
nargs=3, nargs=3,
help="The <bos>, <eos> and <unk> tokens in the dictionary.") help="The <bos>, <eos> and <unk> tokens in the dictionary.")
parser.add_argument(
"--token_delimiter",
type=lambda x: str(x.encode().decode("unicode-escape")),
default=" ",
help="The delimiter used to split tokens in source or target sentences. "
"For EN-DE BPE data we provided, use spaces as token delimiter. "
"For EN-FR wordpiece data we provided, use '\x01' as token delimiter.")
parser.add_argument(
"--use_mem_opt",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to use memory optimization.")
parser.add_argument(
"--use_py_reader",
type=ast.literal_eval,
default=True,
help="The flag indicating whether to use py_reader.")
parser.add_argument(
"--iter_num",
type=int,
default=20,
help="The iteration number to run in profiling.")
parser.add_argument(
"--use_parallel_exe",
type=bool,
default=False,
help="The flag indicating whether to use ParallelExecutor.")
parser.add_argument( parser.add_argument(
'opts', 'opts',
help='See config.py for all options', help='See config.py for all options',
default=None, default=None,
nargs=argparse.REMAINDER) nargs=argparse.REMAINDER)
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help="The device type.")
args = parser.parse_args() args = parser.parse_args()
# Append args related to dict # Append args related to dict
...@@ -91,153 +122,147 @@ def parse_args(): ...@@ -91,153 +122,147 @@ def parse_args():
return args return args
def train_loop(exe, train_progm, init, num_iters, train_data, dev_count, def main(args):
sum_cost, avg_cost, lr_scheduler, token_num, predict): train_prog = fluid.Program()
startup_prog = fluid.Program()
data_input_names = encoder_data_input_fields + decoder_data_input_fields[: with fluid.program_guard(train_prog, startup_prog):
-1] + label_data_input_fields with fluid.unique_name.guard():
sum_cost, avg_cost, predict, token_num, pyreader = transformer(
start_time = time.time() ModelHyperParams.src_vocab_size,
exec_time = 0.0 ModelHyperParams.trg_vocab_size,
for batch_id, data in enumerate(train_data()):
if batch_id >= num_iters:
break
feed_list = []
total_num_token = 0
for place_id, data_buffer in enumerate(
split_data(
data, num_part=dev_count)):
data_input_dict, num_token = prepare_batch_input(
data_buffer, data_input_names, ModelHyperParams.eos_idx,
ModelHyperParams.eos_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model)
total_num_token += num_token
feed_kv_pairs = data_input_dict.items()
lr_rate = lr_scheduler.update_learning_rate()
feed_kv_pairs += {lr_scheduler.learning_rate.name: lr_rate}.items()
feed_list.append(dict(feed_kv_pairs))
if not init:
for pos_enc_param_name in pos_enc_param_names:
pos_enc = position_encoding_init(
ModelHyperParams.max_length + 1, ModelHyperParams.max_length + 1,
ModelHyperParams.d_model) ModelHyperParams.n_layer,
feed_list[place_id][pos_enc_param_name] = pos_enc ModelHyperParams.n_head,
for feed_dict in feed_list: ModelHyperParams.d_key,
feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token ModelHyperParams.d_value,
ModelHyperParams.d_model,
exe_start_time = time.time() ModelHyperParams.d_inner_hid,
if dev_count > 1: ModelHyperParams.prepostprocess_dropout,
# prallel executor ModelHyperParams.attention_dropout,
outs = exe.run(fetch_list=[sum_cost.name, token_num.name], ModelHyperParams.relu_dropout,
feed=feed_list) ModelHyperParams.preprocess_cmd,
else: ModelHyperParams.postprocess_cmd,
# executor ModelHyperParams.weight_sharing,
outs = exe.run(fetch_list=[sum_cost, token_num], feed=feed_list[0]) TrainTaskConfig.label_smooth_eps,
exec_time += time.time() - exe_start_time use_py_reader=args.use_py_reader,
is_test=False)
sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1]) lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
total_sum_cost = sum_cost_val.sum() # sum the cost from multi-devices ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)
total_token_num = token_num_val.sum()
total_avg_cost = total_sum_cost / total_token_num
print("batch: %d, sum loss: %f, avg loss: %f, ppl: %f" %
(batch_id, total_sum_cost, total_avg_cost,
np.exp([min(total_avg_cost, 100)])))
init = True
return time.time() - start_time, exec_time
def profile(args):
print args
if args.device == 'CPU':
TrainTaskConfig.use_gpu = False
if not TrainTaskConfig.use_gpu:
place = fluid.CPUPlace()
dev_count = multiprocessing.cpu_count()
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
exe = fluid.Executor(place)
sum_cost, avg_cost, predict, token_num = transformer(
ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size,
ModelHyperParams.max_length + 1, ModelHyperParams.n_layer,
ModelHyperParams.n_head, ModelHyperParams.d_key,
ModelHyperParams.d_value, ModelHyperParams.d_model,
ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps)
lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
TrainTaskConfig.warmup_steps,
TrainTaskConfig.learning_rate)
optimizer = fluid.optimizer.Adam( optimizer = fluid.optimizer.Adam(
learning_rate=lr_scheduler.learning_rate, learning_rate=lr_decay * TrainTaskConfig.learning_rate,
beta1=TrainTaskConfig.beta1, beta1=TrainTaskConfig.beta1,
beta2=TrainTaskConfig.beta2, beta2=TrainTaskConfig.beta2,
epsilon=TrainTaskConfig.eps) epsilon=TrainTaskConfig.eps)
optimizer.minimize(sum_cost) optimizer.minimize(avg_cost)
if args.use_mem_opt:
fluid.memory_optimize(train_prog)
if TrainTaskConfig.use_gpu:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exe = fluid.Executor(place)
# Initialize the parameters. # Initialize the parameters.
if TrainTaskConfig.ckpt_path: if TrainTaskConfig.ckpt_path:
fluid.io.load_persistables(exe, TrainTaskConfig.ckpt_path) fluid.io.load_persistables(exe, TrainTaskConfig.ckpt_path)
lr_scheduler.current_steps = TrainTaskConfig.start_step
else: else:
exe.run(fluid.framework.default_startup_program()) exe.run(startup_prog)
# Disable all sorts for they will be done in the 1st batch. exec_strategy = fluid.ExecutionStrategy()
train_data = reader.DataReader( # For faster executor
src_vocab_fpath=args.src_vocab_fpath, exec_strategy.use_experimental_executor = True
trg_vocab_fpath=args.trg_vocab_fpath, exec_strategy.num_iteration_per_drop_scope = 5
fpattern=args.train_file_pattern,
use_token_batch=args.use_token_batch,
batch_size=args.batch_size * (1 if args.use_token_batch else dev_count),
pool_size=args.pool_size,
sort_type='none',
shuffle=False,
shuffle_batch=False,
start_mark=args.special_token[0],
end_mark=args.special_token[1],
unk_mark=args.special_token[2],
# count start and end tokens out
max_length=ModelHyperParams.max_length - 2,
clip_last_batch=False)
train_data = read_multiple(
reader=train_data.batch_generator,
count=dev_count if args.use_token_batch else 1)
if dev_count > 1:
build_strategy = fluid.BuildStrategy() build_strategy = fluid.BuildStrategy()
# Since the token number differs among devices, customize gradient scale to
# use token average cost among multi-devices. and the gradient scale is
# `1 / token_number` for average cost.
build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized
train_exe = fluid.ParallelExecutor( train_exe = fluid.ParallelExecutor(
use_cuda=TrainTaskConfig.use_gpu, use_cuda=TrainTaskConfig.use_gpu,
loss_name=sum_cost.name, loss_name=avg_cost.name,
main_program=fluid.default_main_program(), main_program=train_prog,
build_strategy=build_strategy) build_strategy=build_strategy,
exec_strategy=exec_strategy)
print("Warming up ...") # the best cross-entropy value with label smoothing
train_loop(exe if dev_count == 1 else train_exe, loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log(
fluid.default_main_program(), False, 3, train_data, dev_count, (1. - TrainTaskConfig.label_smooth_eps
sum_cost, avg_cost, lr_scheduler, token_num, predict) )) + TrainTaskConfig.label_smooth_eps *
np.log(TrainTaskConfig.label_smooth_eps / (
ModelHyperParams.trg_vocab_size - 1) + 1e-20))
print("\nProfiling ...") train_data = prepare_data_generator(
if dev_count == 1: args, is_test=False, count=dev_count, pyreader=pyreader)
with profiler.profiler('All', 'total', '/tmp/profile_file'): if args.use_py_reader:
total_time, exec_time = train_loop( pyreader.start()
exe, data_generator = None
fluid.default_main_program(), True, args.num_iters, train_data, else:
dev_count, sum_cost, avg_cost, lr_scheduler, token_num, predict) data_generator = train_data()
def run(iter_num):
reader_time = []
run_time = []
for step_idx in six.moves.xrange(iter_num):
try:
start_time = time.time()
feed_dict_list = prepare_feed_dict_list(data_generator,
init_flag, dev_count)
end_time = time.time()
reader_time.append(end_time - start_time)
start_time = time.time()
if args.use_parallel_exe:
outs = train_exe.run(
fetch_list=[sum_cost.name, token_num.name],
feed=feed_dict_list)
else: else:
total_time, exec_time = train_loop( outs = exe.run(program=train_prog,
train_exe, fetch_list=[sum_cost.name, token_num.name],
fluid.default_main_program(), True, args.num_iters, train_data, feed=feed_dict_list[0]
dev_count, sum_cost, avg_cost, lr_scheduler, token_num, predict) if feed_dict_list is not None else None)
print("Elapsed time: total %f s, in executor %f s" % end_time = time.time()
(total_time, exec_time)) run_time.append(end_time - start_time)
sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[
1])
# sum the cost from multi-devices
total_sum_cost = sum_cost_val.sum()
total_token_num = token_num_val.sum()
total_avg_cost = total_sum_cost / total_token_num
print("step_idx: %d, avg loss: %f, "
"normalized loss: %f, ppl: %f" %
(step_idx, total_avg_cost,
total_avg_cost - loss_normalizer,
np.exp([min(total_avg_cost, 100)])))
except (StopIteration, fluid.core.EOFException):
# The current pass is over.
if args.use_py_reader:
pyreader.reset()
pyreader.start()
break
return reader_time, run_time
# start-up
init_flag = True
run(1)
init_flag = False
# profiling
start = time.time()
# currently only support profiling on one device
with profiler.profiler('All', 'total', '/tmp/profile_file'):
reader_time, run_time = run(args.iter_num)
end = time.time()
total_time = end - start
print("Total time: {0}, reader time: {1} s, run time: {2} s".format(
total_time, np.sum(reader_time), np.sum(run_time)))
if __name__ == "__main__": if __name__ == "__main__":
args = parse_args() args = parse_args()
profile(args) main(args)
...@@ -12,15 +12,16 @@ class SortType(object): ...@@ -12,15 +12,16 @@ class SortType(object):
class Converter(object): class Converter(object):
def __init__(self, vocab, beg, end, unk, delimiter): def __init__(self, vocab, beg, end, unk, delimiter, add_beg):
self._vocab = vocab self._vocab = vocab
self._beg = beg self._beg = beg
self._end = end self._end = end
self._unk = unk self._unk = unk
self._delimiter = delimiter self._delimiter = delimiter
self._add_beg = add_beg
def __call__(self, sentence): def __call__(self, sentence):
return [self._beg] + [ return ([self._beg] if self._add_beg else []) + [
self._vocab.get(w, self._unk) self._vocab.get(w, self._unk)
for w in sentence.split(self._delimiter) for w in sentence.split(self._delimiter)
] + [self._end] ] + [self._end]
...@@ -215,7 +216,8 @@ class DataReader(object): ...@@ -215,7 +216,8 @@ class DataReader(object):
beg=self._src_vocab[start_mark], beg=self._src_vocab[start_mark],
end=self._src_vocab[end_mark], end=self._src_vocab[end_mark],
unk=self._src_vocab[unk_mark], unk=self._src_vocab[unk_mark],
delimiter=self._token_delimiter) delimiter=self._token_delimiter,
add_beg=False)
] ]
if not self._only_src: if not self._only_src:
converters.append( converters.append(
...@@ -224,7 +226,8 @@ class DataReader(object): ...@@ -224,7 +226,8 @@ class DataReader(object):
beg=self._trg_vocab[start_mark], beg=self._trg_vocab[start_mark],
end=self._trg_vocab[end_mark], end=self._trg_vocab[end_mark],
unk=self._trg_vocab[unk_mark], unk=self._trg_vocab[unk_mark],
delimiter=self._token_delimiter)) delimiter=self._token_delimiter,
add_beg=True))
converters = ComposedConverter(converters) converters = ComposedConverter(converters)
...@@ -280,8 +283,7 @@ class DataReader(object): ...@@ -280,8 +283,7 @@ class DataReader(object):
def batch_generator(self): def batch_generator(self):
# global sort or global shuffle # global sort or global shuffle
if self._sort_type == SortType.GLOBAL: if self._sort_type == SortType.GLOBAL:
infos = sorted( infos = sorted(self._sample_infos, key=lambda x: x.max_len)
self._sample_infos, key=lambda x: x.max_len, reverse=True)
else: else:
if self._shuffle: if self._shuffle:
infos = self._sample_infos infos = self._sample_infos
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册