From 4f35e2e00a0a606276c8032e2710de651a8f0d2f Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Tue, 16 Jan 2018 12:05:46 +0800 Subject: [PATCH] create fluid directory, and remove ds2 directory --- deep_speech_2/README.md | 535 -------------- deep_speech_2/cloud/README.md | 63 -- deep_speech_2/cloud/_init_paths.py | 17 - deep_speech_2/cloud/pcloud_submit.sh | 29 - deep_speech_2/cloud/pcloud_train.sh | 46 -- deep_speech_2/cloud/pcloud_upload_data.sh | 22 - deep_speech_2/cloud/split_data.py | 41 -- deep_speech_2/cloud/upload_data.py | 129 ---- deep_speech_2/conf/augmentation.config | 8 - .../conf/augmentation.config.example | 39 - deep_speech_2/data/aishell/aishell.py | 109 --- deep_speech_2/data/librispeech/librispeech.py | 148 ---- deep_speech_2/data/noise/chime3_background.py | 128 ---- deep_speech_2/data_utils/audio.py | 685 ------------------ .../data_utils/augmentor/__init__.py | 0 .../data_utils/augmentor/augmentation.py | 124 ---- deep_speech_2/data_utils/augmentor/base.py | 33 - .../data_utils/augmentor/impulse_response.py | 34 - .../data_utils/augmentor/noise_perturb.py | 49 -- .../online_bayesian_normalization.py | 48 -- .../data_utils/augmentor/resample.py | 33 - .../data_utils/augmentor/shift_perturb.py | 34 - .../data_utils/augmentor/speed_perturb.py | 47 -- .../data_utils/augmentor/volume_perturb.py | 40 - deep_speech_2/data_utils/data.py | 384 ---------- .../data_utils/featurizer/__init__.py | 0 .../data_utils/featurizer/audio_featurizer.py | 187 ----- .../featurizer/speech_featurizer.py | 98 --- .../data_utils/featurizer/text_featurizer.py | 68 -- deep_speech_2/data_utils/normalizer.py | 87 --- deep_speech_2/data_utils/speech.py | 143 ---- deep_speech_2/data_utils/utility.py | 181 ----- deep_speech_2/decoders/__init__.py | 0 deep_speech_2/decoders/decoders_deprecated.py | 238 ------ deep_speech_2/decoders/scorer_deprecated.py | 68 -- deep_speech_2/decoders/swig/__init__.py | 0 deep_speech_2/decoders/swig/_init_paths.py | 19 - .../decoders/swig/ctc_beam_search_decoder.cpp | 222 ------ .../decoders/swig/ctc_beam_search_decoder.h | 61 -- .../decoders/swig/ctc_greedy_decoder.cpp | 45 -- .../decoders/swig/ctc_greedy_decoder.h | 20 - deep_speech_2/decoders/swig/decoder_utils.cpp | 176 ----- deep_speech_2/decoders/swig/decoder_utils.h | 94 --- deep_speech_2/decoders/swig/decoders.i | 33 - deep_speech_2/decoders/swig/path_trie.cpp | 148 ---- deep_speech_2/decoders/swig/path_trie.h | 67 -- deep_speech_2/decoders/swig/scorer.cpp | 234 ------ deep_speech_2/decoders/swig/scorer.h | 112 --- deep_speech_2/decoders/swig/setup.py | 119 --- deep_speech_2/decoders/swig/setup.sh | 21 - deep_speech_2/decoders/swig_wrapper.py | 124 ---- deep_speech_2/decoders/tests/test_decoders.py | 90 --- deep_speech_2/deploy/_init_paths.py | 19 - deep_speech_2/deploy/demo_client.py | 94 --- deep_speech_2/deploy/demo_server.py | 205 ------ .../docs/images/multi_gpu_speedup.png | Bin 156739 -> 0 bytes .../docs/images/tuning_error_surface.png | Bin 110461 -> 0 bytes deep_speech_2/examples/aishell/run_data.sh | 42 -- deep_speech_2/examples/aishell/run_infer.sh | 46 -- .../examples/aishell/run_infer_golden.sh | 55 -- deep_speech_2/examples/aishell/run_test.sh | 47 -- .../examples/aishell/run_test_golden.sh | 56 -- deep_speech_2/examples/aishell/run_train.sh | 41 -- .../examples/deploy_demo/run_demo_client.sh | 17 - .../deploy_demo/run_english_demo_server.sh | 54 -- .../examples/librispeech/run_data.sh | 45 -- .../examples/librispeech/run_infer.sh | 46 -- .../examples/librispeech/run_infer_golden.sh | 55 -- .../examples/librispeech/run_test.sh | 47 -- .../examples/librispeech/run_test_golden.sh | 56 -- .../examples/librispeech/run_train.sh | 41 -- .../examples/librispeech/run_tune.sh | 41 -- deep_speech_2/examples/tiny/run_data.sh | 51 -- deep_speech_2/examples/tiny/run_infer.sh | 46 -- .../examples/tiny/run_infer_golden.sh | 55 -- deep_speech_2/examples/tiny/run_test.sh | 47 -- .../examples/tiny/run_test_golden.sh | 56 -- deep_speech_2/examples/tiny/run_train.sh | 41 -- deep_speech_2/examples/tiny/run_tune.sh | 41 -- deep_speech_2/infer.py | 126 ---- deep_speech_2/model_utils/__init__.py | 0 deep_speech_2/model_utils/model.py | 307 -------- deep_speech_2/model_utils/network.py | 302 -------- .../models/aishell/download_model.sh | 19 - .../models/baidu_en8k/download_model.sh | 19 - .../models/librispeech/download_model.sh | 19 - deep_speech_2/models/lm/download_lm_ch.sh | 18 - deep_speech_2/models/lm/download_lm_en.sh | 18 - deep_speech_2/requirements.txt | 4 - deep_speech_2/setup.sh | 38 - deep_speech_2/test.py | 129 ---- deep_speech_2/tools/_init_paths.py | 19 - deep_speech_2/tools/build_vocab.py | 58 -- deep_speech_2/tools/compute_mean_std.py | 51 -- deep_speech_2/tools/profile.sh | 30 - deep_speech_2/tools/tune.py | 244 ------- deep_speech_2/train.py | 131 ---- deep_speech_2/utils/__init__.py | 0 deep_speech_2/utils/error_rate.py | 154 ---- deep_speech_2/utils/tests/test_error_rate.py | 115 --- deep_speech_2/utils/utility.py | 47 -- deep_speech_2/utils/utility.sh | 23 - .../data_utils/__init__.py => fluid/README.md | 0 103 files changed, 8695 deletions(-) delete mode 100644 deep_speech_2/README.md delete mode 100644 deep_speech_2/cloud/README.md delete mode 100644 deep_speech_2/cloud/_init_paths.py delete mode 100644 deep_speech_2/cloud/pcloud_submit.sh delete mode 100644 deep_speech_2/cloud/pcloud_train.sh delete mode 100644 deep_speech_2/cloud/pcloud_upload_data.sh delete mode 100644 deep_speech_2/cloud/split_data.py delete mode 100644 deep_speech_2/cloud/upload_data.py delete mode 100644 deep_speech_2/conf/augmentation.config delete mode 100644 deep_speech_2/conf/augmentation.config.example delete mode 100644 deep_speech_2/data/aishell/aishell.py delete mode 100644 deep_speech_2/data/librispeech/librispeech.py delete mode 100644 deep_speech_2/data/noise/chime3_background.py delete mode 100644 deep_speech_2/data_utils/audio.py delete mode 100644 deep_speech_2/data_utils/augmentor/__init__.py delete mode 100644 deep_speech_2/data_utils/augmentor/augmentation.py delete mode 100644 deep_speech_2/data_utils/augmentor/base.py delete mode 100644 deep_speech_2/data_utils/augmentor/impulse_response.py delete mode 100644 deep_speech_2/data_utils/augmentor/noise_perturb.py delete mode 100644 deep_speech_2/data_utils/augmentor/online_bayesian_normalization.py delete mode 100644 deep_speech_2/data_utils/augmentor/resample.py delete mode 100644 deep_speech_2/data_utils/augmentor/shift_perturb.py delete mode 100644 deep_speech_2/data_utils/augmentor/speed_perturb.py delete mode 100644 deep_speech_2/data_utils/augmentor/volume_perturb.py delete mode 100644 deep_speech_2/data_utils/data.py delete mode 100644 deep_speech_2/data_utils/featurizer/__init__.py delete mode 100644 deep_speech_2/data_utils/featurizer/audio_featurizer.py delete mode 100644 deep_speech_2/data_utils/featurizer/speech_featurizer.py delete mode 100644 deep_speech_2/data_utils/featurizer/text_featurizer.py delete mode 100644 deep_speech_2/data_utils/normalizer.py delete mode 100644 deep_speech_2/data_utils/speech.py delete mode 100644 deep_speech_2/data_utils/utility.py delete mode 100644 deep_speech_2/decoders/__init__.py delete mode 100644 deep_speech_2/decoders/decoders_deprecated.py delete mode 100644 deep_speech_2/decoders/scorer_deprecated.py delete mode 100644 deep_speech_2/decoders/swig/__init__.py delete mode 100644 deep_speech_2/decoders/swig/_init_paths.py delete mode 100644 deep_speech_2/decoders/swig/ctc_beam_search_decoder.cpp delete mode 100644 deep_speech_2/decoders/swig/ctc_beam_search_decoder.h delete mode 100644 deep_speech_2/decoders/swig/ctc_greedy_decoder.cpp delete mode 100644 deep_speech_2/decoders/swig/ctc_greedy_decoder.h delete mode 100644 deep_speech_2/decoders/swig/decoder_utils.cpp delete mode 100644 deep_speech_2/decoders/swig/decoder_utils.h delete mode 100644 deep_speech_2/decoders/swig/decoders.i delete mode 100644 deep_speech_2/decoders/swig/path_trie.cpp delete mode 100644 deep_speech_2/decoders/swig/path_trie.h delete mode 100644 deep_speech_2/decoders/swig/scorer.cpp delete mode 100644 deep_speech_2/decoders/swig/scorer.h delete mode 100644 deep_speech_2/decoders/swig/setup.py delete mode 100644 deep_speech_2/decoders/swig/setup.sh delete mode 100644 deep_speech_2/decoders/swig_wrapper.py delete mode 100644 deep_speech_2/decoders/tests/test_decoders.py delete mode 100644 deep_speech_2/deploy/_init_paths.py delete mode 100644 deep_speech_2/deploy/demo_client.py delete mode 100644 deep_speech_2/deploy/demo_server.py delete mode 100755 deep_speech_2/docs/images/multi_gpu_speedup.png delete mode 100644 deep_speech_2/docs/images/tuning_error_surface.png delete mode 100644 deep_speech_2/examples/aishell/run_data.sh delete mode 100644 deep_speech_2/examples/aishell/run_infer.sh delete mode 100644 deep_speech_2/examples/aishell/run_infer_golden.sh delete mode 100644 deep_speech_2/examples/aishell/run_test.sh delete mode 100644 deep_speech_2/examples/aishell/run_test_golden.sh delete mode 100644 deep_speech_2/examples/aishell/run_train.sh delete mode 100644 deep_speech_2/examples/deploy_demo/run_demo_client.sh delete mode 100644 deep_speech_2/examples/deploy_demo/run_english_demo_server.sh delete mode 100644 deep_speech_2/examples/librispeech/run_data.sh delete mode 100644 deep_speech_2/examples/librispeech/run_infer.sh delete mode 100644 deep_speech_2/examples/librispeech/run_infer_golden.sh delete mode 100644 deep_speech_2/examples/librispeech/run_test.sh delete mode 100644 deep_speech_2/examples/librispeech/run_test_golden.sh delete mode 100644 deep_speech_2/examples/librispeech/run_train.sh delete mode 100644 deep_speech_2/examples/librispeech/run_tune.sh delete mode 100644 deep_speech_2/examples/tiny/run_data.sh delete mode 100644 deep_speech_2/examples/tiny/run_infer.sh delete mode 100644 deep_speech_2/examples/tiny/run_infer_golden.sh delete mode 100644 deep_speech_2/examples/tiny/run_test.sh delete mode 100644 deep_speech_2/examples/tiny/run_test_golden.sh delete mode 100644 deep_speech_2/examples/tiny/run_train.sh delete mode 100644 deep_speech_2/examples/tiny/run_tune.sh delete mode 100644 deep_speech_2/infer.py delete mode 100644 deep_speech_2/model_utils/__init__.py delete mode 100644 deep_speech_2/model_utils/model.py delete mode 100644 deep_speech_2/model_utils/network.py delete mode 100644 deep_speech_2/models/aishell/download_model.sh delete mode 100644 deep_speech_2/models/baidu_en8k/download_model.sh delete mode 100644 deep_speech_2/models/librispeech/download_model.sh delete mode 100644 deep_speech_2/models/lm/download_lm_ch.sh delete mode 100644 deep_speech_2/models/lm/download_lm_en.sh delete mode 100644 deep_speech_2/requirements.txt delete mode 100644 deep_speech_2/setup.sh delete mode 100644 deep_speech_2/test.py delete mode 100644 deep_speech_2/tools/_init_paths.py delete mode 100644 deep_speech_2/tools/build_vocab.py delete mode 100644 deep_speech_2/tools/compute_mean_std.py delete mode 100644 deep_speech_2/tools/profile.sh delete mode 100644 deep_speech_2/tools/tune.py delete mode 100644 deep_speech_2/train.py delete mode 100644 deep_speech_2/utils/__init__.py delete mode 100644 deep_speech_2/utils/error_rate.py delete mode 100644 deep_speech_2/utils/tests/test_error_rate.py delete mode 100644 deep_speech_2/utils/utility.py delete mode 100644 deep_speech_2/utils/utility.sh rename deep_speech_2/data_utils/__init__.py => fluid/README.md (100%) diff --git a/deep_speech_2/README.md b/deep_speech_2/README.md deleted file mode 100644 index 427331fc..00000000 --- a/deep_speech_2/README.md +++ /dev/null @@ -1,535 +0,0 @@ -Deprecated: please check out the new repository [DeepSpeech](https://github.com/PaddlePaddle/DeepSpeech). - -# DeepSpeech2 on PaddlePaddle - -*DeepSpeech2 on PaddlePaddle* is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, based on [Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf), with [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform. Our vision is to empower both industrial application and academic research on speech recognition, via an easy-to-use, efficient and scalable implementation, including training, inference & testing module, distributed [PaddleCloud](https://github.com/PaddlePaddle/cloud) training, and demo deployment. Besides, several pre-trained models for both English and Mandarin are also released. - -## Table of Contents -- [Installation](#installation) -- [Getting Started](#getting-started) -- [Data Preparation](#data-preparation) -- [Training a Model](#training-a-model) -- [Data Augmentation Pipeline](#data-augmentation-pipeline) -- [Inference and Evaluation](#inference-and-evaluation) -- [Running in Docker Container](#running-in-docker-container) -- [Distributed Cloud Training](#distributed-cloud-training) -- [Hyper-parameters Tuning](#hyper-parameters-tuning) -- [Training for Mandarin Language](#training-for-mandarin-language) -- [Trying Live Demo with Your Own Voice](#trying-live-demo-with-your-own-voice) -- [Released Models](#released-models) -- [Experiments and Benchmarks](#experiments-and-benchmarks) -- [Questions and Help](#questions-and-help) - - - -## Installation - -To avoid the trouble of environment setup, [running in docker container](#running-in-docker-container) is highly recommended. Otherwise follow the guidelines below to install the dependencies manually. - -### Prerequisites -- Python 2.7 only supported -- PaddlePaddle the latest version (please refer to the [Installation Guide](https://github.com/PaddlePaddle/Paddle#installation)) - -### Setup - -```bash -git clone https://github.com/PaddlePaddle/models.git -cd models/deep_speech_2 -sh setup.sh -``` - -## Getting Started - -Several shell scripts provided in `./examples` will help us to quickly give it a try, for most major modules, including data preparation, model training, case inference and model evaluation, with a few public dataset (e.g. [LibriSpeech](http://www.openslr.org/12/), [Aishell](http://www.openslr.org/33)). Reading these examples will also help you to understand how to make it work with your own data. - -Some of the scripts in `./examples` are configured with 8 GPUs. If you don't have 8 GPUs available, please modify `CUDA_VISIBLE_DEVICES` and `--trainer_count`. If you don't have any GPU available, please set `--use_gpu` to False to use CPUs instead. Besides, if out-of-memory problem occurs, just reduce `--batch_size` to fit. - -Let's take a tiny sampled subset of [LibriSpeech dataset](http://www.openslr.org/12/) for instance. - -- Go to directory - - ```bash - cd examples/tiny - ``` - - Notice that this is only a toy example with a tiny sampled subset of LibriSpeech. If you would like to try with the complete dataset (would take several days for training), please go to `examples/librispeech` instead. -- Prepare the data - - ```bash - sh run_data.sh - ``` - - `run_data.sh` will download dataset, generate manifests, collect normalizer's statistics and build vocabulary. Once the data preparation is done, you will find the data (only part of LibriSpeech) downloaded in `~/.cache/paddle/dataset/speech/libri` and the corresponding manifest files generated in `./data/tiny` as well as a mean stddev file and a vocabulary file. It has to be run for the very first time you run this dataset and is reusable for all further experiments. -- Train your own ASR model - - ```bash - sh run_train.sh - ``` - - `run_train.sh` will start a training job, with training logs printed to stdout and model checkpoint of every pass/epoch saved to `./checkpoints/tiny`. These checkpoints could be used for training resuming, inference, evaluation and deployment. -- Case inference with an existing model - - ```bash - sh run_infer.sh - ``` - - `run_infer.sh` will show us some speech-to-text decoding results for several (default: 10) samples with the trained model. The performance might not be good now as the current model is only trained with a toy subset of LibriSpeech. To see the results with a better model, you can download a well-trained (trained for several days, with the complete LibriSpeech) model and do the inference: - - ```bash - sh run_infer_golden.sh - ``` -- Evaluate an existing model - - ```bash - sh run_test.sh - ``` - - `run_test.sh` will evaluate the model with Word Error Rate (or Character Error Rate) measurement. Similarly, you can also download a well-trained model and test its performance: - - ```bash - sh run_test_golden.sh - ``` - -More detailed information are provided in the following sections. Wish you a happy journey with the *DeepSpeech2 on PaddlePaddle* ASR engine! - - -## Data Preparation - -### Generate Manifest - -*DeepSpeech2 on PaddlePaddle* accepts a textual **manifest** file as its data set interface. A manifest file summarizes a set of speech data, with each line containing some meta data (e.g. filepath, transcription, duration) of one audio clip, in [JSON](http://www.json.org/) format, such as: - -``` -{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0001.flac", "duration": 3.275, "text": "stuff it into you his belly counselled him"} -{"audio_filepath": "/home/work/.cache/paddle/Libri/134686/1089-134686-0007.flac", "duration": 4.275, "text": "a cold lucid indifference reigned in his soul"} -``` - -To use your custom data, you only need to generate such manifest files to summarize the dataset. Given such summarized manifests, training, inference and all other modules can be aware of where to access the audio files, as well as their meta data including the transcription labels. - -For how to generate such manifest files, please refer to `data/librispeech/librispeech.py`, which will download data and generate manifest files for LibriSpeech dataset. - -### Compute Mean & Stddev for Normalizer - -To perform z-score normalization (zero-mean, unit stddev) upon audio features, we have to estimate in advance the mean and standard deviation of the features, with some training samples: - -```bash -python tools/compute_mean_std.py \ ---num_samples 2000 \ ---specgram_type linear \ ---manifest_paths data/librispeech/manifest.train \ ---output_path data/librispeech/mean_std.npz -``` - -It will compute the mean and standard deviation of power spectrum feature with 2000 random sampled audio clips listed in `data/librispeech/manifest.train` and save the results to `data/librispeech/mean_std.npz` for further usage. - - -### Build Vocabulary - -A vocabulary of possible characters is required to convert the transcription into a list of token indices for training, and in decoding, to convert from a list of indices back to text again. Such a character-based vocabulary can be built with `tools/build_vocab.py`. - -```bash -python tools/build_vocab.py \ ---count_threshold 0 \ ---vocab_path data/librispeech/eng_vocab.txt \ ---manifest_paths data/librispeech/manifest.train -``` - -It will write a vocabuary file `data/librispeeech/eng_vocab.txt` with all transcription text in `data/librispeech/manifest.train`, without vocabulary truncation (`--count_threshold 0`). - -### More Help - -For more help on arguments: - -```bash -python data/librispeech/librispeech.py --help -python tools/compute_mean_std.py --help -python tools/build_vocab.py --help -``` - -## Training a model - -`train.py` is the main caller of the training module. Examples of usage are shown below. - -- Start training from scratch with 8 GPUs: - - ``` - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --trainer_count 8 - ``` - -- Start training from scratch with 16 CPUs: - - ``` - python train.py --use_gpu False --trainer_count 16 - ``` -- Resume training from a checkpoint: - - ``` - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ - python train.py \ - --init_model_path CHECKPOINT_PATH_TO_RESUME_FROM - ``` - -For more help on arguments: - -```bash -python train.py --help -``` -or refer to `example/librispeech/run_train.sh`. - -## Data Augmentation Pipeline - -Data augmentation has often been a highly effective technique to boost the deep learning performance. We augment our speech data by synthesizing new audios with small random perturbation (label-invariant transformation) added upon raw audios. You don't have to do the syntheses on your own, as it is already embedded into the data provider and is done on the fly, randomly for each epoch during training. - -Six optional augmentation components are provided to be selected, configured and inserted into the processing pipeline. - - - Volume Perturbation - - Speed Perturbation - - Shifting Perturbation - - Online Bayesian normalization - - Noise Perturbation (need background noise audio files) - - Impulse Response (need impulse audio files) - -In order to inform the trainer of what augmentation components are needed and what their processing orders are, it is required to prepare in advance an *augmentation configuration file* in [JSON](http://www.json.org/) format. For example: - -``` -[{ - "type": "speed", - "params": {"min_speed_rate": 0.95, - "max_speed_rate": 1.05}, - "prob": 0.6 -}, -{ - "type": "shift", - "params": {"min_shift_ms": -5, - "max_shift_ms": 5}, - "prob": 0.8 -}] -``` - -When the `--augment_conf_file` argument of `trainer.py` is set to the path of the above example configuration file, every audio clip in every epoch will be processed: with 60% of chance, it will first be speed perturbed with a uniformly random sampled speed-rate between 0.95 and 1.05, and then with 80% of chance it will be shifted in time with a random sampled offset between -5 ms and 5 ms. Finally this newly synthesized audio clip will be feed into the feature extractor for further training. - -For other configuration examples, please refer to `conf/augmenatation.config.example`. - -Be careful when utilizing the data augmentation technique, as improper augmentation will do harm to the training, due to the enlarged train-test gap. - -## Inference and Evaluation - -### Prepare Language Model - -A language model is required to improve the decoder's performance. We have prepared two language models (with lossy compression) for users to download and try. One is for English and the other is for Mandarin. Users can simply run this to download the preprared language models: - -```bash -cd models/lm -sh download_lm_en.sh -sh download_lm_ch.sh -``` - -If you wish to train your own better language model, please refer to [KenLM](https://github.com/kpu/kenlm) for tutorials. Here we provide some tips to show how we preparing our English and Mandarin language models. You can take it as a reference when you train your own. - -#### English LM - -The English corpus is from the [Common Crawl Repository](http://commoncrawl.org) and you can download it from [statmt](http://data.statmt.org/ngrams/deduped_en). We use part en.00 to train our English language model. There are some preprocessing steps before training: - - * Characters not in \[A-Za-z0-9\s'\] (\s represents whitespace characters) are removed and Arabic numbers are converted to English numbers like 1000 to one thousand. - * Repeated whitespace characters are squeezed to one and the beginning whitespace characters are removed. Notice that all transcriptions are lowercase, so all characters are converted to lowercase. - * Top 400,000 most frequent words are selected to build the vocabulary and the rest are replaced with 'UNKNOWNWORD'. - -Now the preprocessing is done and we get a clean corpus to train the language model. Our released language model are trained with agruments '-o 5 --prune 0 1 1 1 1'. '-o 5' means the max order of language model is 5. '--prune 0 1 1 1 1' represents count thresholds for each order and more specifically it will prune singletons for orders two and higher. To save disk storage we convert the arpa file to 'trie' binary file with arguments '-a 22 -q 8 -b 8'. '-a' represents the maximum number of leading bits of pointers in 'trie' to chop. '-q -b' are quantization parameters for probability and backoff. - -#### Mandarin LM - -Different from the English language model, Mandarin language model is character-based where each token is a Chinese character. We use internal corpus to train the released Mandarin language models. The corpus contain billions of tokens. The preprocessing has tiny difference from English language model and main steps include: - - * The beginning and trailing whitespace characters are removed. - * English punctuations and Chinese punctuations are removed. - * A whitespace character between two tokens is inserted. - -Please notice that the released language models only contain Chinese simplified characters. After preprocessing done we can begin to train the language model. The key training arguments for small LM is '-o 5 --prune 0 1 2 4 4' and '-o 5' for large LM. Please refer above section for the meaning of each argument. We also convert the arpa file to binary file using default settings. - -### Speech-to-text Inference - -An inference module caller `infer.py` is provided to infer, decode and visualize speech-to-text results for several given audio clips. It might help to have an intuitive and qualitative evaluation of the ASR model's performance. - -- Inference with GPU: - - ```bash - CUDA_VISIBLE_DEVICES=0 python infer.py --trainer_count 1 - ``` - -- Inference with CPUs: - - ```bash - python infer.py --use_gpu False --trainer_count 12 - ``` - -We provide two types of CTC decoders: *CTC greedy decoder* and *CTC beam search decoder*. The *CTC greedy decoder* is an implementation of the simple best-path decoding algorithm, selecting at each timestep the most likely token, thus being greedy and locally optimal. The [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) otherwise utilizes a heuristic breadth-first graph search for reaching a near global optimality; it also requires a pre-trained KenLM language model for better scoring and ranking. The decoder type can be set with argument `--decoding_method`. - -For more help on arguments: - -``` -python infer.py --help -``` -or refer to `example/librispeech/run_infer.sh`. - -### Evaluate a Model - -To evaluate a model's performance quantitatively, please run: - -- Evaluation with GPUs: - - ```bash - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python test.py --trainer_count 8 - ``` - -- Evaluation with CPUs: - - ```bash - python test.py --use_gpu False --trainer_count 12 - ``` - -The error rate (default: word error rate; can be set with `--error_rate_type`) will be printed. - -For more help on arguments: - -```bash -python test.py --help -``` -or refer to `example/librispeech/run_test.sh`. - -## Hyper-parameters Tuning - -The hyper-parameters $\alpha$ (language model weight) and $\beta$ (word insertion weight) for the [*CTC beam search decoder*](https://arxiv.org/abs/1408.2873) often have a significant impact on the decoder's performance. It would be better to re-tune them on the validation set when the acoustic model is renewed. - -`tools/tune.py` performs a 2-D grid search over the hyper-parameter $\alpha$ and $\beta$. You must provide the range of $\alpha$ and $\beta$, as well as the number of their attempts. - -- Tuning with GPU: - - ```bash - CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ - python tools/tune.py \ - --trainer_count 8 \ - --alpha_from 1.0 \ - --alpha_to 3.2 \ - --num_alphas 45 \ - --beta_from 0.1 \ - --beta_to 0.45 \ - --num_betas 8 - ``` - -- Tuning with CPU: - - ```bash - python tools/tune.py --use_gpu False - ``` - The grid search will print the WER (word error rate) or CER (character error rate) at each point in the hyper-parameters space, and draw the error surface optionally. A proper hyper-parameters range should include the global minima of the error surface for WER/CER, as illustrated in the following figure. - -

- -
An example error surface for tuning on the dev-clean set of LibriSpeech -

- -Usually, as the figure shows, the variation of language model weight ($\alpha$) significantly affect the performance of CTC beam search decoder. And a better procedure is to first tune on serveral data batches (the number can be specified) to find out the proper range of hyper-parameters, then change to the whole validation set to carray out an accurate tuning. - -After tuning, you can reset $\alpha$ and $\beta$ in the inference and evaluation modules to see if they really help improve the ASR performance. For more help - -```bash -python tune.py --help -``` -or refer to `example/librispeech/run_tune.sh`. - -## Running in Docker Container - -Docker is an open source tool to build, ship, and run distributed applications in an isolated environment. A Docker image for this project has been provided in [hub.docker.com](https://hub.docker.com) with all the dependencies installed, including the pre-built PaddlePaddle, CTC decoders, and other necessary Python and third-party packages. This Docker image requires the support of NVIDIA GPU, so please make sure its availiability and the [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) has been installed. - -Take several steps to launch the Docker image: - -- Download the Docker image - -```bash -nvidia-docker pull paddlepaddle/models:deep-speech-2 -``` - -- Clone this repository - -``` -git clone https://github.com/PaddlePaddle/models.git -``` - -- Run the Docker image - -```bash -sudo nvidia-docker run -it -v $(pwd)/models:/models paddlepaddle/models:deep-speech-2 /bin/bash -``` -Now go back and start from the [Getting Started](#getting-started) section, you can execute training, inference and hyper-parameters tuning similarly in the Docker container. - -## Distributed Cloud Training - -We also provide a cloud training module for users to do the distributed cluster training on [PaddleCloud](https://github.com/PaddlePaddle/cloud), to achieve a much faster training speed with multiple machines. To start with this, please first install PaddleCloud client and register a PaddleCloud account, as described in [PaddleCloud Usage](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#%E4%B8%8B%E8%BD%BD%E5%B9%B6%E9%85%8D%E7%BD%AEpaddlecloud). - -Please take the following steps to submit a training job: - -- Go to directory: - - ```bash - cd cloud - ``` -- Upload data: - - Data must be uploaded to PaddleCloud filesystem to be accessed within a cloud job. `pcloud_upload_data.sh` helps do the data packing and uploading: - - ```bash - sh pcloud_upload_data.sh - ``` - - Given input manifests, `pcloud_upload_data.sh` will: - - - Extract the audio files listed in the input manifests. - - Pack them into a specified number of tar files. - - Upload these tar files to PaddleCloud filesystem. - - Create cloud manifests by replacing local filesystem paths with PaddleCloud filesystem paths. New manifests will be used to inform the cloud jobs of audio files' location and their meta information. - - It should be done only once for the very first time to do the cloud training. Later, the data is kept persisitent on the cloud filesystem and reusable for further job submissions. - - For argument details please refer to [Train DeepSpeech2 on PaddleCloud](https://github.com/PaddlePaddle/models/tree/develop/deep_speech_2/cloud). - - - Configure training arguments: - - Configure the cloud job parameters in `pcloud_submit.sh` (e.g. `NUM_NODES`, `NUM_GPUS`, `CLOUD_TRAIN_DIR`, `JOB_NAME` etc.) and then configure other hyper-parameters for training in `pcloud_train.sh` (just as what you do for local training). - - For argument details please refer to [Train DeepSpeech2 on PaddleCloud](https://github.com/PaddlePaddle/models/tree/develop/deep_speech_2/cloud). - - - Submit the job: - - By running: - - ```bash - sh pcloud_submit.sh - ``` - a training job has been submitted to PaddleCloud, with the job name printed to the console. - - - Get training logs - - Run this to list all the jobs you have submitted, as well as their running status: - - ```bash - paddlecloud get jobs - ``` - - Run this, the corresponding job's logs will be printed. - ```bash - paddlecloud logs -n 10000 $REPLACED_WITH_YOUR_ACTUAL_JOB_NAME - ``` - -For more information about the usage of PaddleCloud, please refer to [PaddleCloud Usage](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#提交任务). - -For more information about the DeepSpeech2 training on PaddleCloud, please refer to -[Train DeepSpeech2 on PaddleCloud](https://github.com/PaddlePaddle/models/tree/develop/deep_speech_2/cloud). - -## Training for Mandarin Language - -The key steps of training for Mandarin language are same to that of English language and we have also provided an example for Mandarin training with Aishell in ```examples/aishell```. As mentioned above, please execute ```sh run_data.sh```, ```sh run_train.sh```, ```sh run_test.sh``` and ```sh run_infer.sh``` to do data preparation, training, testing and inference correspondingly. We have also prepared a pre-trained model (downloaded by ./models/aishell/download_model.sh) for users to try with ```sh run_infer_golden.sh``` and ```sh run_test_golden.sh```. Notice that, different from English LM, the Mandarin LM is character-based and please run ```tools/tune.py``` to find an optimal setting. - -## Trying Live Demo with Your Own Voice - -Until now, an ASR model is trained and tested qualitatively (`infer.py`) and quantitatively (`test.py`) with existing audio files. But it is not yet tested with your own speech. `deploy/demo_server.py` and `deploy/demo_client.py` helps quickly build up a real-time demo ASR engine with the trained model, enabling you to test and play around with the demo, with your own voice. - -To start the demo's server, please run this in one console: - -```bash -CUDA_VISIBLE_DEVICES=0 \ -python deploy/demo_server.py \ ---trainer_count 1 \ ---host_ip localhost \ ---host_port 8086 -``` - -For the machine (might not be the same machine) to run the demo's client, please do the following installation before moving on. - -For example, on MAC OS X: - -```bash -brew install portaudio -pip install pyaudio -pip install pynput -``` - -Then to start the client, please run this in another console: - -```bash -CUDA_VISIBLE_DEVICES=0 \ -python -u deploy/demo_client.py \ ---host_ip 'localhost' \ ---host_port 8086 -``` - -Now, in the client console, press the `whitespace` key, hold, and start speaking. Until finishing your utterance, release the key to let the speech-to-text results shown in the console. To quit the client, just press `ESC` key. - -Notice that `deploy/demo_client.py` must be run on a machine with a microphone device, while `deploy/demo_server.py` could be run on one without any audio recording hardware, e.g. any remote server machine. Just be careful to set the `host_ip` and `host_port` argument with the actual accessible IP address and port, if the server and client are running with two separate machines. Nothing should be done if they are running on one single machine. - -Please also refer to `examples/mandarin/run_demo_server.sh`, which will first download a pre-trained Mandarin model (trained with 3000 hours of internal speech data) and then start the demo server with the model. With running `examples/mandarin/run_demo_client.sh`, you can speak Mandarin to test it. If you would like to try some other models, just update `--model_path` argument in the script.   - -For more help on arguments: - -```bash -python deploy/demo_server.py --help -python deploy/demo_client.py --help -``` - -## Released Models - -#### Speech Model Released - -Language | Model Name | Training Data | Hours of Speech -:-----------: | :------------: | :----------: | -------: -English | [LibriSpeech Model](http://cloud.dlnel.org/filepub/?uuid=17404caf-cf19-492f-9707-1fad07c19aae) | [LibriSpeech Dataset](http://www.openslr.org/12/) | 960 h -English | [BaiduEN8k Model](to-be-added) | Baidu Internal English Dataset | 8628 h -Mandarin | [Aishell Model](http://cloud.dlnel.org/filepub/?uuid=6c83b9d8-3255-4adf-9726-0fe0be3d0274) | [Aishell Dataset](http://www.openslr.org/33/) | 151 h -Mandarin | [BaiduCN1.2k Model](to-be-added) | Baidu Internal Mandarin Dataset | 1204 h - -#### Language Model Released - -Language Model | Training Data | Token-based | Size | Descriptions -:-------------:| :------------:| :-----: | -----: | :----------------- -[English LM](http://paddlepaddle.bj.bcebos.com/model_zoo/speech/common_crawl_00.prune01111.trie.klm) | [CommonCrawl(en.00)](http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/en/deduped/en.00.deduped.xz) | Word-based | 8.3 GB | Pruned with 0 1 1 1 1;
About 1.85 billion n-grams;
'trie' binary with '-a 22 -q 8 -b 8' -[Mandarin LM Small](http://cloud.dlnel.org/filepub/?uuid=d21861e4-4ed6-45bb-ad8e-ae417a43195e) | Baidu Internal Corpus | Char-based | 2.8 GB | Pruned with 0 1 2 4 4;
About 0.13 billion n-grams;
'probing' binary with default settings -[Mandarin LM Large](http://cloud.dlnel.org/filepub/?uuid=245d02bb-cd01-4ebe-b079-b97be864ec37) | Baidu Internal Corpus | Char-based | 70.4 GB | No Pruning;
About 3.7 billion n-grams;
'probing' binary with default settings - -## Experiments and Benchmarks - -#### Benchmark Results for English Models (Word Error Rate) - -Test Set | LibriSpeech Model | BaiduEN8K Model -:--------------------- | ---------------: | -------------------: -LibriSpeech Test-Clean | 7.77 | 6.63 -LibriSpeech Test-Other | 23.25 | 16.59 -VoxForge American-Canadian | 12.52 |   7.46 -VoxForge Commonwealth | 21.08 | 16.23 -VoxForge European | 31.21 | 20.47 -VoxForge Indian | 56.79 | 28.15 -Baidu Internal Testset  |   47.73 |   8.92 - -#### Benchmark Results for Mandarin Model (Character Error Rate) - -Test Set | Aishell Model | BaiduCN1.2k Model -:--------------------- | ---------------: | -------------------: -Baidu Internal Testset | - | 15.49 - -#### Acceleration with Multi-GPUs - -We compare the training time with 1, 2, 4, 8, 16 Tesla K40m GPUs (with a subset of LibriSpeech samples whose audio durations are between 6.0 and 7.0 seconds). And it shows that a **near-linear** acceleration with multiple GPUs has been achieved. In the following figure, the time (in seconds) cost for training is printed on the blue bars. - -
- -| # of GPU | Acceleration Rate | -| -------- | --------------: | -| 1 | 1.00 X | -| 2 | 1.97 X | -| 4 | 3.74 X | -| 8 | 6.21 X | -|16 | 10.70 X | - -`tools/profile.sh` provides such a profiling tool. - -## Questions and Help - -You are welcome to submit questions and bug reports in [Github Issues](https://github.com/PaddlePaddle/models/issues). You are also welcome to contribute to this project. diff --git a/deep_speech_2/cloud/README.md b/deep_speech_2/cloud/README.md deleted file mode 100644 index a5be1c42..00000000 --- a/deep_speech_2/cloud/README.md +++ /dev/null @@ -1,63 +0,0 @@ -# Train DeepSpeech2 on PaddleCloud - ->Note: ->Please make sure [PaddleCloud Client](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#%E4%B8%8B%E8%BD%BD%E5%B9%B6%E9%85%8D%E7%BD%AEpaddlecloud) has be installed and current directory is `deep_speech_2/cloud/` - -## Step 1: Upload Data - -Provided with several input manifests, `pcloud_upload_data.sh` will pack and upload all the containing audio files to PaddleCloud filesystem, and also generate some corresponding manifest files with updated cloud paths. - -Please modify the following arguments in `pcloud_upload_data.sh`: - -- `IN_MANIFESTS`: Paths (in local filesystem) of manifest files containing the audio files to be uploaded. Multiple paths can be concatenated with a whitespace delimeter. -- `OUT_MANIFESTS`: Paths (in local filesystem) to write the updated output manifest files to. Multiple paths can be concatenated with a whitespace delimeter. The values of `audio_filepath` in the output manifests are updated with cloud filesystem paths. -- `CLOUD_DATA_DIR`: Directory (in PaddleCloud filesystem) to upload the data to. Don't forget to replace `USERNAME` in the default directory and make sure that you have the permission to write it. -- `NUM_SHARDS`: Number of data shards / parts (in tar files) to be generated when packing and uploading data. Smaller `num_shards` requires larger temoporal local disk space for packing data. - -By running: - -``` -sh pcloud_upload_data.sh -``` -all the audio files will be uploaded to PaddleCloud filesystem, and you will get modified manifests files in `OUT_MANIFESTS`. - -You have to take this step only once, in the very first time you do the cloud training. Later on, the data is persisitent on the cloud filesystem and reusable for further job submissions. - -## Step 2: Configure Training - -Configure cloud training arguments in `pcloud_submit.sh`, with the following arguments: - -- `TRAIN_MANIFEST`: Manifest filepath (in local filesystem) for training. Notice that the`audio_filepath` should be in cloud filesystem, like those generated by `pcloud_upload_data.sh`. -- `DEV_MANIFEST`: Manifest filepath (in local filesystem) for validation. -- `CLOUD_MODEL_DIR`: Directory (in PaddleCloud filesystem) to save the model parameters (checkpoints). Don't forget to replace `USERNAME` in the default directory and make sure that you have the permission to write it. -- `BATCH_SIZE`: Training batch size for a single node. -- `NUM_GPU`: Number of GPUs allocated for a single node. -- `NUM_NODE`: Number of nodes (machines) allocated for this job. -- `IS_LOCAL`: Set to False to enable parameter server, if using multiple nodes. - -Configure other training hyper-parameters in `pcloud_train.sh` as you wish, just as what you can do in local training. - -By running: - -``` -sh pcloud_submit.sh -``` -you submit a training job to PaddleCloud. And you will see the job name when the submission is done. - - -## Step 3 Get Job Logs - -Run this to list all the jobs you have submitted, as well as their running status: - -``` -paddlecloud get jobs -``` - -Run this, the corresponding job's logs will be printed. -``` -paddlecloud logs -n 10000 $REPLACED_WITH_YOUR_ACTUAL_JOB_NAME -``` - -## More Help - -For more information about the usage of PaddleCloud, please refer to [PaddleCloud Usage](https://github.com/PaddlePaddle/cloud/blob/develop/doc/usage_cn.md#提交任务). diff --git a/deep_speech_2/cloud/_init_paths.py b/deep_speech_2/cloud/_init_paths.py deleted file mode 100644 index 3305d748..00000000 --- a/deep_speech_2/cloud/_init_paths.py +++ /dev/null @@ -1,17 +0,0 @@ -"""Set up paths for DS2""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os.path -import sys - - -def add_path(path): - if path not in sys.path: - sys.path.insert(0, path) - - -this_dir = os.path.dirname(__file__) -proj_path = os.path.join(this_dir, '..') -add_path(proj_path) diff --git a/deep_speech_2/cloud/pcloud_submit.sh b/deep_speech_2/cloud/pcloud_submit.sh deleted file mode 100644 index 99e458db..00000000 --- a/deep_speech_2/cloud/pcloud_submit.sh +++ /dev/null @@ -1,29 +0,0 @@ -#! /usr/bin/env bash - -TRAIN_MANIFEST="cloud/cloud_manifests/cloud.manifest.train" -DEV_MANIFEST="cloud/cloud_manifests/cloud.manifest.dev" -CLOUD_MODEL_DIR="./checkpoints" -BATCH_SIZE=512 -NUM_GPU=8 -NUM_NODE=1 -IS_LOCAL="True" - -JOB_NAME=deepspeech-`date +%Y%m%d%H%M%S` -DS2_PATH=${PWD%/*} -cp -f pcloud_train.sh ${DS2_PATH} - -paddlecloud submit \ --image bootstrapper:5000/paddlepaddle/pcloud_ds2:latest \ --jobname ${JOB_NAME} \ --cpu ${NUM_GPU} \ --gpu ${NUM_GPU} \ --memory 64Gi \ --parallelism ${NUM_NODE} \ --pscpu 1 \ --pservers 1 \ --psmemory 64Gi \ --passes 1 \ --entry "sh pcloud_train.sh ${TRAIN_MANIFEST} ${DEV_MANIFEST} ${CLOUD_MODEL_DIR} ${NUM_GPU} ${BATCH_SIZE} ${IS_LOCAL}" \ -${DS2_PATH} - -rm ${DS2_PATH}/pcloud_train.sh diff --git a/deep_speech_2/cloud/pcloud_train.sh b/deep_speech_2/cloud/pcloud_train.sh deleted file mode 100644 index d0c47dec..00000000 --- a/deep_speech_2/cloud/pcloud_train.sh +++ /dev/null @@ -1,46 +0,0 @@ -#! /usr/bin/env bash - -TRAIN_MANIFEST=$1 -DEV_MANIFEST=$2 -MODEL_PATH=$3 -NUM_GPU=$4 -BATCH_SIZE=$5 -IS_LOCAL=$6 - -python ./cloud/split_data.py \ ---in_manifest_path=${TRAIN_MANIFEST} \ ---out_manifest_path='/local.manifest.train' - -python ./cloud/split_data.py \ ---in_manifest_path=${DEV_MANIFEST} \ ---out_manifest_path='/local.manifest.dev' - -mkdir ./logs - -python -u train.py \ ---batch_size=${BATCH_SIZE} \ ---trainer_count=${NUM_GPU} \ ---num_passes=200 \ ---num_proc_data=${NUM_GPU} \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---num_iter_print=100 \ ---learning_rate=5e-4 \ ---max_duration=27.0 \ ---min_duration=0.0 \ ---use_sortagrad=True \ ---use_gru=False \ ---use_gpu=True \ ---is_local=${IS_LOCAL} \ ---share_rnn_weights=True \ ---train_manifest='/local.manifest.train' \ ---dev_manifest='/local.manifest.dev' \ ---mean_std_path='data/librispeech/mean_std.npz' \ ---vocab_path='data/librispeech/vocab.txt' \ ---output_model_dir='./checkpoints' \ ---output_model_dir=${MODEL_PATH} \ ---augment_conf_path='conf/augmentation.config' \ ---specgram_type='linear' \ ---shuffle_method='batch_shuffle_clipped' \ -2>&1 | tee ./logs/train.log diff --git a/deep_speech_2/cloud/pcloud_upload_data.sh b/deep_speech_2/cloud/pcloud_upload_data.sh deleted file mode 100644 index 71bb4af1..00000000 --- a/deep_speech_2/cloud/pcloud_upload_data.sh +++ /dev/null @@ -1,22 +0,0 @@ -#! /usr/bin/env bash - -mkdir cloud_manifests - -IN_MANIFESTS="../data/librispeech/manifest.train ../data/librispeech/manifest.dev-clean ../data/librispeech/manifest.test-clean" -OUT_MANIFESTS="cloud_manifests/cloud.manifest.train cloud_manifests/cloud.manifest.dev cloud_manifests/cloud.manifest.test" -CLOUD_DATA_DIR="/pfs/dlnel/home/USERNAME/deepspeech2/data/librispeech" -NUM_SHARDS=50 - -python upload_data.py \ ---in_manifest_paths ${IN_MANIFESTS} \ ---out_manifest_paths ${OUT_MANIFESTS} \ ---cloud_data_dir ${CLOUD_DATA_DIR} \ ---num_shards ${NUM_SHARDS} - -if [ $? -ne 0 ] -then - echo "Upload Data Failed!" - exit 1 -fi - -echo "All Done." diff --git a/deep_speech_2/cloud/split_data.py b/deep_speech_2/cloud/split_data.py deleted file mode 100644 index 3496d52b..00000000 --- a/deep_speech_2/cloud/split_data.py +++ /dev/null @@ -1,41 +0,0 @@ -"""This tool is used for splitting data into each node of -paddlecloud. This script should be called in paddlecloud. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import json -import argparse - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--in_manifest_path", - type=str, - required=True, - help="Input manifest path for all nodes.") -parser.add_argument( - "--out_manifest_path", - type=str, - required=True, - help="Output manifest file path for current node.") -args = parser.parse_args() - - -def split_data(in_manifest_path, out_manifest_path): - with open("/trainer_id", "r") as f: - trainer_id = int(f.readline()[:-1]) - with open("/trainer_count", "r") as f: - trainer_count = int(f.readline()[:-1]) - - out_manifest = [] - for index, json_line in enumerate(open(in_manifest_path, 'r')): - if (index % trainer_count) == trainer_id: - out_manifest.append("%s\n" % json_line.strip()) - with open(out_manifest_path, 'w') as f: - f.writelines(out_manifest) - - -if __name__ == '__main__': - split_data(args.in_manifest_path, args.out_manifest_path) diff --git a/deep_speech_2/cloud/upload_data.py b/deep_speech_2/cloud/upload_data.py deleted file mode 100644 index 9973f8c7..00000000 --- a/deep_speech_2/cloud/upload_data.py +++ /dev/null @@ -1,129 +0,0 @@ -"""This script is for uploading data for DeepSpeech2 training on paddlecloud. - -Steps: -1. Read original manifests and extract local sound files. -2. Tar all local sound files into multiple tar files and upload them. -3. Modify original manifests with updated paths in cloud filesystem. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import json -import os -import tarfile -import sys -import argparse -import shutil -from subprocess import call -import _init_paths -from data_utils.utils import read_manifest - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--in_manifest_paths", - default=[ - "../datasets/manifest.train", "../datasets/manifest.dev", - "../datasets/manifest.test" - ], - type=str, - nargs='+', - help="Local filepaths of input manifests to load, pack and upload." - "(default: %(default)s)") -parser.add_argument( - "--out_manifest_paths", - default=[ - "./cloud.manifest.train", "./cloud.manifest.dev", - "./cloud.manifest.test" - ], - type=str, - nargs='+', - help="Local filepaths of modified manifests to write to. " - "(default: %(default)s)") -parser.add_argument( - "--cloud_data_dir", - required=True, - type=str, - help="Destination directory on paddlecloud to upload data to.") -parser.add_argument( - "--num_shards", - default=10, - type=int, - help="Number of parts to split data to. (default: %(default)s)") -parser.add_argument( - "--local_tmp_dir", - default="./tmp/", - type=str, - help="Local directory for storing temporary data. (default: %(default)s)") -args = parser.parse_args() - - -def upload_data(in_manifest_path_list, out_manifest_path_list, local_tmp_dir, - upload_tar_dir, num_shards): - """Extract and pack sound files listed in the manifest files into multple - tar files and upload them to padldecloud. Besides, generate new manifest - files with updated paths in paddlecloud. - """ - # compute total audio number - total_line = 0 - for manifest_path in in_manifest_path_list: - with open(manifest_path, 'r') as f: - total_line += len(f.readlines()) - line_per_tar = (total_line // num_shards) + 1 - - # pack and upload shard by shard - line_count, tar_file = 0, None - for manifest_path, out_manifest_path in zip(in_manifest_path_list, - out_manifest_path_list): - manifest = read_manifest(manifest_path) - out_manifest = [] - for json_data in manifest: - sound_filepath = json_data['audio_filepath'] - sound_filename = os.path.basename(sound_filepath) - if line_count % line_per_tar == 0: - if tar_file != None: - tar_file.close() - pcloud_cp(tar_path, upload_tar_dir) - os.remove(tar_path) - tar_name = 'part-%s-of-%s.tar' % ( - str(line_count // line_per_tar).zfill(5), - str(num_shards).zfill(5)) - tar_path = os.path.join(local_tmp_dir, tar_name) - tar_file = tarfile.open(tar_path, 'w') - tar_file.add(sound_filepath, arcname=sound_filename) - line_count += 1 - json_data['audio_filepath'] = "tar:%s#%s" % ( - os.path.join(upload_tar_dir, tar_name), sound_filename) - out_manifest.append("%s\n" % json.dumps(json_data)) - with open(out_manifest_path, 'w') as f: - f.writelines(out_manifest) - pcloud_cp(out_manifest_path, upload_tar_dir) - tar_file.close() - pcloud_cp(tar_path, upload_tar_dir) - os.remove(tar_path) - - -def pcloud_mkdir(dir): - """Make directory in PaddleCloud filesystem. - """ - if call(['paddlecloud', 'mkdir', dir]) != 0: - raise IOError("PaddleCloud mkdir failed: %s." % dir) - - -def pcloud_cp(src, dst): - """Copy src from local filesytem to dst in PaddleCloud filesystem, - or downlowd src from PaddleCloud filesystem to dst in local filesystem. - """ - if call(['paddlecloud', 'cp', src, dst]) != 0: - raise IOError("PaddleCloud cp failed: from [%s] to [%s]." % (src, dst)) - - -if __name__ == '__main__': - if not os.path.exists(args.local_tmp_dir): - os.makedirs(args.local_tmp_dir) - pcloud_mkdir(args.cloud_data_dir) - - upload_data(args.in_manifest_paths, args.out_manifest_paths, - args.local_tmp_dir, args.cloud_data_dir, args.num_shards) - - shutil.rmtree(args.local_tmp_dir) diff --git a/deep_speech_2/conf/augmentation.config b/deep_speech_2/conf/augmentation.config deleted file mode 100644 index 6c24da54..00000000 --- a/deep_speech_2/conf/augmentation.config +++ /dev/null @@ -1,8 +0,0 @@ -[ - { - "type": "shift", - "params": {"min_shift_ms": -5, - "max_shift_ms": 5}, - "prob": 1.0 - } -] diff --git a/deep_speech_2/conf/augmentation.config.example b/deep_speech_2/conf/augmentation.config.example deleted file mode 100644 index 21ed6ee1..00000000 --- a/deep_speech_2/conf/augmentation.config.example +++ /dev/null @@ -1,39 +0,0 @@ -[ - { - "type": "noise", - "params": {"min_snr_dB": 40, - "max_snr_dB": 50, - "noise_manifest_path": "datasets/manifest.noise"}, - "prob": 0.6 - }, - { - "type": "impulse", - "params": {"impulse_manifest_path": "datasets/manifest.impulse"}, - "prob": 0.5 - }, - { - "type": "speed", - "params": {"min_speed_rate": 0.95, - "max_speed_rate": 1.05}, - "prob": 0.5 - }, - { - "type": "shift", - "params": {"min_shift_ms": -5, - "max_shift_ms": 5}, - "prob": 1.0 - }, - { - "type": "volume", - "params": {"min_gain_dBFS": -10, - "max_gain_dBFS": 10}, - "prob": 0.0 - }, - { - "type": "bayesian_normal", - "params": {"target_db": -20, - "prior_db": -20, - "prior_samples": 100}, - "prob": 0.0 - } -] diff --git a/deep_speech_2/data/aishell/aishell.py b/deep_speech_2/data/aishell/aishell.py deleted file mode 100644 index 17786b5d..00000000 --- a/deep_speech_2/data/aishell/aishell.py +++ /dev/null @@ -1,109 +0,0 @@ -"""Prepare Aishell mandarin dataset - -Download, unpack and create manifest files. -Manifest file is a json-format file with each line containing the -meta data (i.e. audio filepath, transcript and audio duration) -of each audio file in the data set. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import codecs -import soundfile -import json -import argparse -from data_utils.utility import download, unpack - -DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech') - -URL_ROOT = 'http://www.openslr.org/resources/33' -DATA_URL = URL_ROOT + '/data_aishell.tgz' -MD5_DATA = '2f494334227864a8a8fec932999db9d8' - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--target_dir", - default=DATA_HOME + "/Aishell", - type=str, - help="Directory to save the dataset. (default: %(default)s)") -parser.add_argument( - "--manifest_prefix", - default="manifest", - type=str, - help="Filepath prefix for output manifests. (default: %(default)s)") -args = parser.parse_args() - - -def create_manifest(data_dir, manifest_path_prefix): - print("Creating manifest %s ..." % manifest_path_prefix) - json_lines = [] - transcript_path = os.path.join(data_dir, 'transcript', - 'aishell_transcript_v0.8.txt') - transcript_dict = {} - for line in codecs.open(transcript_path, 'r', 'utf-8'): - line = line.strip() - if line == '': continue - audio_id, text = line.split(' ', 1) - # remove withespace - text = ''.join(text.split()) - transcript_dict[audio_id] = text - - data_types = ['train', 'dev', 'test'] - for type in data_types: - audio_dir = os.path.join(data_dir, 'wav', type) - for subfolder, _, filelist in sorted(os.walk(audio_dir)): - for fname in filelist: - audio_path = os.path.join(subfolder, fname) - audio_id = fname[:-4] - # if no transcription for audio then skipped - if audio_id not in transcript_dict: - continue - audio_data, samplerate = soundfile.read(audio_path) - duration = float(len(audio_data) / samplerate) - text = transcript_dict[audio_id] - json_lines.append( - json.dumps( - { - 'audio_filepath': audio_path, - 'duration': duration, - 'text': text - }, - ensure_ascii=False)) - manifest_path = manifest_path_prefix + '.' + type - with codecs.open(manifest_path, 'w', 'utf-8') as fout: - for line in json_lines: - fout.write(line + '\n') - - -def prepare_dataset(url, md5sum, target_dir, manifest_path): - """Download, unpack and create manifest file.""" - data_dir = os.path.join(target_dir, 'data_aishell') - if not os.path.exists(data_dir): - filepath = download(url, md5sum, target_dir) - unpack(filepath, target_dir) - # unpack all audio tar files - audio_dir = os.path.join(data_dir, 'wav') - for subfolder, _, filelist in sorted(os.walk(audio_dir)): - for ftar in filelist: - unpack(os.path.join(subfolder, ftar), subfolder, True) - else: - print("Skip downloading and unpacking. Data already exists in %s." % - target_dir) - create_manifest(data_dir, manifest_path) - - -def main(): - if args.target_dir.startswith('~'): - args.target_dir = os.path.expanduser(args.target_dir) - - prepare_dataset( - url=DATA_URL, - md5sum=MD5_DATA, - target_dir=args.target_dir, - manifest_path=args.manifest_prefix) - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/data/librispeech/librispeech.py b/deep_speech_2/data/librispeech/librispeech.py deleted file mode 100644 index 9a8e1c28..00000000 --- a/deep_speech_2/data/librispeech/librispeech.py +++ /dev/null @@ -1,148 +0,0 @@ -"""Prepare Librispeech ASR datasets. - -Download, unpack and create manifest files. -Manifest file is a json-format file with each line containing the -meta data (i.e. audio filepath, transcript and audio duration) -of each audio file in the data set. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import distutils.util -import os -import sys -import argparse -import soundfile -import json -import codecs -from data_utils.utility import download, unpack - -URL_ROOT = "http://www.openslr.org/resources/12" -URL_TEST_CLEAN = URL_ROOT + "/test-clean.tar.gz" -URL_TEST_OTHER = URL_ROOT + "/test-other.tar.gz" -URL_DEV_CLEAN = URL_ROOT + "/dev-clean.tar.gz" -URL_DEV_OTHER = URL_ROOT + "/dev-other.tar.gz" -URL_TRAIN_CLEAN_100 = URL_ROOT + "/train-clean-100.tar.gz" -URL_TRAIN_CLEAN_360 = URL_ROOT + "/train-clean-360.tar.gz" -URL_TRAIN_OTHER_500 = URL_ROOT + "/train-other-500.tar.gz" - -MD5_TEST_CLEAN = "32fa31d27d2e1cad72775fee3f4849a9" -MD5_TEST_OTHER = "fb5a50374b501bb3bac4815ee91d3135" -MD5_DEV_CLEAN = "42e2234ba48799c1f50f24a7926300a1" -MD5_DEV_OTHER = "c8d0bcc9cca99d4f8b62fcc847357931" -MD5_TRAIN_CLEAN_100 = "2a93770f6d5c6c964bc36631d331a522" -MD5_TRAIN_CLEAN_360 = "c0e676e450a7ff2f54aeade5171606fa" -MD5_TRAIN_OTHER_500 = "d1a0fd59409feb2c614ce4d30c387708" - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--target_dir", - default='~/.cache/paddle/dataset/speech/libri', - type=str, - help="Directory to save the dataset. (default: %(default)s)") -parser.add_argument( - "--manifest_prefix", - default="manifest", - type=str, - help="Filepath prefix for output manifests. (default: %(default)s)") -parser.add_argument( - "--full_download", - default="True", - type=distutils.util.strtobool, - help="Download all datasets for Librispeech." - " If False, only download a minimal requirement (test-clean, dev-clean" - " train-clean-100). (default: %(default)s)") -args = parser.parse_args() - - -def create_manifest(data_dir, manifest_path): - """Create a manifest json file summarizing the data set, with each line - containing the meta data (i.e. audio filepath, transcription text, audio - duration) of each audio file within the data set. - """ - print("Creating manifest %s ..." % manifest_path) - json_lines = [] - for subfolder, _, filelist in sorted(os.walk(data_dir)): - text_filelist = [ - filename for filename in filelist if filename.endswith('trans.txt') - ] - if len(text_filelist) > 0: - text_filepath = os.path.join(data_dir, subfolder, text_filelist[0]) - for line in open(text_filepath): - segments = line.strip().split() - text = ' '.join(segments[1:]).lower() - audio_filepath = os.path.join(data_dir, subfolder, - segments[0] + '.flac') - audio_data, samplerate = soundfile.read(audio_filepath) - duration = float(len(audio_data)) / samplerate - json_lines.append( - json.dumps({ - 'audio_filepath': audio_filepath, - 'duration': duration, - 'text': text - })) - with codecs.open(manifest_path, 'w', 'utf-8') as out_file: - for line in json_lines: - out_file.write(line + '\n') - - -def prepare_dataset(url, md5sum, target_dir, manifest_path): - """Download, unpack and create summmary manifest file. - """ - if not os.path.exists(os.path.join(target_dir, "LibriSpeech")): - # download - filepath = download(url, md5sum, target_dir) - # unpack - unpack(filepath, target_dir) - else: - print("Skip downloading and unpacking. Data already exists in %s." % - target_dir) - # create manifest json file - create_manifest(target_dir, manifest_path) - - -def main(): - if args.target_dir.startswith('~'): - args.target_dir = os.path.expanduser(args.target_dir) - - prepare_dataset( - url=URL_TEST_CLEAN, - md5sum=MD5_TEST_CLEAN, - target_dir=os.path.join(args.target_dir, "test-clean"), - manifest_path=args.manifest_prefix + ".test-clean") - prepare_dataset( - url=URL_DEV_CLEAN, - md5sum=MD5_DEV_CLEAN, - target_dir=os.path.join(args.target_dir, "dev-clean"), - manifest_path=args.manifest_prefix + ".dev-clean") - if args.full_download: - prepare_dataset( - url=URL_TRAIN_CLEAN_100, - md5sum=MD5_TRAIN_CLEAN_100, - target_dir=os.path.join(args.target_dir, "train-clean-100"), - manifest_path=args.manifest_prefix + ".train-clean-100") - prepare_dataset( - url=URL_TEST_OTHER, - md5sum=MD5_TEST_OTHER, - target_dir=os.path.join(args.target_dir, "test-other"), - manifest_path=args.manifest_prefix + ".test-other") - prepare_dataset( - url=URL_DEV_OTHER, - md5sum=MD5_DEV_OTHER, - target_dir=os.path.join(args.target_dir, "dev-other"), - manifest_path=args.manifest_prefix + ".dev-other") - prepare_dataset( - url=URL_TRAIN_CLEAN_360, - md5sum=MD5_TRAIN_CLEAN_360, - target_dir=os.path.join(args.target_dir, "train-clean-360"), - manifest_path=args.manifest_prefix + ".train-clean-360") - prepare_dataset( - url=URL_TRAIN_OTHER_500, - md5sum=MD5_TRAIN_OTHER_500, - target_dir=os.path.join(args.target_dir, "train-other-500"), - manifest_path=args.manifest_prefix + ".train-other-500") - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/data/noise/chime3_background.py b/deep_speech_2/data/noise/chime3_background.py deleted file mode 100644 index f79ca733..00000000 --- a/deep_speech_2/data/noise/chime3_background.py +++ /dev/null @@ -1,128 +0,0 @@ -"""Prepare CHiME3 background data. - -Download, unpack and create manifest files. -Manifest file is a json-format file with each line containing the -meta data (i.e. audio filepath, transcript and audio duration) -of each audio file in the data set. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import distutils.util -import os -import wget -import zipfile -import argparse -import soundfile -import json -from paddle.v2.dataset.common import md5file - -DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech') - -URL = "https://d4s.myairbridge.com/packagev2/AG0Y3DNBE5IWRRTV/?dlid=W19XG7T0NNHB027139H0EQ" -MD5 = "c3ff512618d7a67d4f85566ea1bc39ec" - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--target_dir", - default=DATA_HOME + "/chime3_background", - type=str, - help="Directory to save the dataset. (default: %(default)s)") -parser.add_argument( - "--manifest_filepath", - default="manifest.chime3.background", - type=str, - help="Filepath for output manifests. (default: %(default)s)") -args = parser.parse_args() - - -def download(url, md5sum, target_dir, filename=None): - """Download file from url to target_dir, and check md5sum.""" - if filename == None: - filename = url.split("/")[-1] - if not os.path.exists(target_dir): os.makedirs(target_dir) - filepath = os.path.join(target_dir, filename) - if not (os.path.exists(filepath) and md5file(filepath) == md5sum): - print("Downloading %s ..." % url) - wget.download(url, target_dir) - print("\nMD5 Chesksum %s ..." % filepath) - if not md5file(filepath) == md5sum: - raise RuntimeError("MD5 checksum failed.") - else: - print("File exists, skip downloading. (%s)" % filepath) - return filepath - - -def unpack(filepath, target_dir): - """Unpack the file to the target_dir.""" - print("Unpacking %s ..." % filepath) - if filepath.endswith('.zip'): - zip = zipfile.ZipFile(filepath, 'r') - zip.extractall(target_dir) - zip.close() - elif filepath.endswith('.tar') or filepath.endswith('.tar.gz'): - tar = zipfile.open(filepath) - tar.extractall(target_dir) - tar.close() - else: - raise ValueError("File format is not supported for unpacking.") - - -def create_manifest(data_dir, manifest_path): - """Create a manifest json file summarizing the data set, with each line - containing the meta data (i.e. audio filepath, transcription text, audio - duration) of each audio file within the data set. - """ - print("Creating manifest %s ..." % manifest_path) - json_lines = [] - for subfolder, _, filelist in sorted(os.walk(data_dir)): - for filename in filelist: - if filename.endswith('.wav'): - filepath = os.path.join(data_dir, subfolder, filename) - audio_data, samplerate = soundfile.read(filepath) - duration = float(len(audio_data)) / samplerate - json_lines.append( - json.dumps({ - 'audio_filepath': filepath, - 'duration': duration, - 'text': '' - })) - with open(manifest_path, 'w') as out_file: - for line in json_lines: - out_file.write(line + '\n') - - -def prepare_chime3(url, md5sum, target_dir, manifest_path): - """Download, unpack and create summmary manifest file.""" - if not os.path.exists(os.path.join(target_dir, "CHiME3")): - # download - filepath = download(url, md5sum, target_dir, - "myairbridge-AG0Y3DNBE5IWRRTV.zip") - # unpack - unpack(filepath, target_dir) - unpack( - os.path.join(target_dir, 'CHiME3_background_bus.zip'), target_dir) - unpack( - os.path.join(target_dir, 'CHiME3_background_caf.zip'), target_dir) - unpack( - os.path.join(target_dir, 'CHiME3_background_ped.zip'), target_dir) - unpack( - os.path.join(target_dir, 'CHiME3_background_str.zip'), target_dir) - else: - print("Skip downloading and unpacking. Data already exists in %s." % - target_dir) - # create manifest json file - create_manifest(target_dir, manifest_path) - - -def main(): - prepare_chime3( - url=URL, - md5sum=MD5, - target_dir=args.target_dir, - manifest_path=args.manifest_filepath) - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/data_utils/audio.py b/deep_speech_2/data_utils/audio.py deleted file mode 100644 index 3fb78295..00000000 --- a/deep_speech_2/data_utils/audio.py +++ /dev/null @@ -1,685 +0,0 @@ -"""Contains the audio segment class.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import io -import struct -import re -import soundfile -import resampy -from scipy import signal -import random -import copy - - -class AudioSegment(object): - """Monaural audio segment abstraction. - - :param samples: Audio samples [num_samples x num_channels]. - :type samples: ndarray.float32 - :param sample_rate: Audio sample rate. - :type sample_rate: int - :raises TypeError: If the sample data type is not float or int. - """ - - def __init__(self, samples, sample_rate): - """Create audio segment from samples. - - Samples are convert float32 internally, with int scaled to [-1, 1]. - """ - self._samples = self._convert_samples_to_float32(samples) - self._sample_rate = sample_rate - if self._samples.ndim >= 2: - self._samples = np.mean(self._samples, 1) - - def __eq__(self, other): - """Return whether two objects are equal.""" - if type(other) is not type(self): - return False - if self._sample_rate != other._sample_rate: - return False - if self._samples.shape != other._samples.shape: - return False - if np.any(self.samples != other._samples): - return False - return True - - def __ne__(self, other): - """Return whether two objects are unequal.""" - return not self.__eq__(other) - - def __str__(self): - """Return human-readable representation of segment.""" - return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, " - "rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate, - self.duration, self.rms_db)) - - @classmethod - def from_file(cls, file): - """Create audio segment from audio file. - - :param filepath: Filepath or file object to audio file. - :type filepath: basestring|file - :return: Audio segment instance. - :rtype: AudioSegment - """ - if isinstance(file, basestring) and re.findall(r".seqbin_\d+$", file): - return cls.from_sequence_file(file) - else: - samples, sample_rate = soundfile.read(file, dtype='float32') - return cls(samples, sample_rate) - - @classmethod - def slice_from_file(cls, file, start=None, end=None): - """Loads a small section of an audio without having to load - the entire file into the memory which can be incredibly wasteful. - - :param file: Input audio filepath or file object. - :type file: basestring|file - :param start: Start time in seconds. If start is negative, it wraps - around from the end. If not provided, this function - reads from the very beginning. - :type start: float - :param end: End time in seconds. If end is negative, it wraps around - from the end. If not provided, the default behvaior is - to read to the end of the file. - :type end: float - :return: AudioSegment instance of the specified slice of the input - audio file. - :rtype: AudioSegment - :raise ValueError: If start or end is incorrectly set, e.g. out of - bounds in time. - """ - sndfile = soundfile.SoundFile(file) - sample_rate = sndfile.samplerate - duration = float(len(sndfile)) / sample_rate - start = 0. if start is None else start - end = 0. if end is None else end - if start < 0.0: - start += duration - if end < 0.0: - end += duration - if start < 0.0: - raise ValueError("The slice start position (%f s) is out of " - "bounds." % start) - if end < 0.0: - raise ValueError("The slice end position (%f s) is out of bounds." % - end) - if start > end: - raise ValueError("The slice start position (%f s) is later than " - "the slice end position (%f s)." % (start, end)) - if end > duration: - raise ValueError("The slice end position (%f s) is out of bounds " - "(> %f s)" % (end, duration)) - start_frame = int(start * sample_rate) - end_frame = int(end * sample_rate) - sndfile.seek(start_frame) - data = sndfile.read(frames=end_frame - start_frame, dtype='float32') - return cls(data, sample_rate) - - @classmethod - def from_sequence_file(cls, filepath): - """Create audio segment from sequence file. Sequence file is a binary - file containing a collection of multiple audio files, with several - header bytes in the head indicating the offsets of each audio byte data - chunk. - - The format is: - - 4 bytes (int, version), - 4 bytes (int, num of utterance), - 4 bytes (int, bytes per header), - [bytes_per_header*(num_utterance+1)] bytes (offsets for each audio), - audio_bytes_data_of_1st_utterance, - audio_bytes_data_of_2nd_utterance, - ...... - - Sequence file name must end with ".seqbin". And the filename of the 5th - utterance's audio file in sequence file "xxx.seqbin" must be - "xxx.seqbin_5", with "5" indicating the utterance index within this - sequence file (starting from 1). - - :param filepath: Filepath of sequence file. - :type filepath: basestring - :return: Audio segment instance. - :rtype: AudioSegment - """ - # parse filepath - matches = re.match(r"(.+\.seqbin)_(\d+)", filepath) - if matches is None: - raise IOError("File type of %s is not supported" % filepath) - filename = matches.group(1) - fileno = int(matches.group(2)) - - # read headers - f = open(filename, 'rb') - version = f.read(4) - num_utterances = struct.unpack("i", f.read(4))[0] - bytes_per_header = struct.unpack("i", f.read(4))[0] - header_bytes = f.read(bytes_per_header * (num_utterances + 1)) - header = [ - struct.unpack("i", header_bytes[bytes_per_header * i: - bytes_per_header * (i + 1)])[0] - for i in range(num_utterances + 1) - ] - - # read audio bytes - f.seek(header[fileno - 1]) - audio_bytes = f.read(header[fileno] - header[fileno - 1]) - f.close() - - # create audio segment - try: - return cls.from_bytes(audio_bytes) - except Exception as e: - samples = np.frombuffer(audio_bytes, dtype='int16') - return cls(samples=samples, sample_rate=8000) - - @classmethod - def from_bytes(cls, bytes): - """Create audio segment from a byte string containing audio samples. - - :param bytes: Byte string containing audio samples. - :type bytes: str - :return: Audio segment instance. - :rtype: AudioSegment - """ - samples, sample_rate = soundfile.read( - io.BytesIO(bytes), dtype='float32') - return cls(samples, sample_rate) - - @classmethod - def concatenate(cls, *segments): - """Concatenate an arbitrary number of audio segments together. - - :param *segments: Input audio segments to be concatenated. - :type *segments: tuple of AudioSegment - :return: Audio segment instance as concatenating results. - :rtype: AudioSegment - :raises ValueError: If the number of segments is zero, or if the - sample_rate of any segments does not match. - :raises TypeError: If any segment is not AudioSegment instance. - """ - # Perform basic sanity-checks. - if len(segments) == 0: - raise ValueError("No audio segments are given to concatenate.") - sample_rate = segments[0]._sample_rate - for seg in segments: - if sample_rate != seg._sample_rate: - raise ValueError("Can't concatenate segments with " - "different sample rates") - if type(seg) is not cls: - raise TypeError("Only audio segments of the same type " - "can be concatenated.") - samples = np.concatenate([seg.samples for seg in segments]) - return cls(samples, sample_rate) - - @classmethod - def make_silence(cls, duration, sample_rate): - """Creates a silent audio segment of the given duration and sample rate. - - :param duration: Length of silence in seconds. - :type duration: float - :param sample_rate: Sample rate. - :type sample_rate: float - :return: Silent AudioSegment instance of the given duration. - :rtype: AudioSegment - """ - samples = np.zeros(int(duration * sample_rate)) - return cls(samples, sample_rate) - - def to_wav_file(self, filepath, dtype='float32'): - """Save audio segment to disk as wav file. - - :param filepath: WAV filepath or file object to save the - audio segment. - :type filepath: basestring|file - :param dtype: Subtype for audio file. Options: 'int16', 'int32', - 'float32', 'float64'. Default is 'float32'. - :type dtype: str - :raises TypeError: If dtype is not supported. - """ - samples = self._convert_samples_from_float32(self._samples, dtype) - subtype_map = { - 'int16': 'PCM_16', - 'int32': 'PCM_32', - 'float32': 'FLOAT', - 'float64': 'DOUBLE' - } - soundfile.write( - filepath, - samples, - self._sample_rate, - format='WAV', - subtype=subtype_map[dtype]) - - def superimpose(self, other): - """Add samples from another segment to those of this segment - (sample-wise addition, not segment concatenation). - - Note that this is an in-place transformation. - - :param other: Segment containing samples to be added in. - :type other: AudioSegments - :raise TypeError: If type of two segments don't match. - :raise ValueError: If the sample rates of the two segments are not - equal, or if the lengths of segments don't match. - """ - if isinstance(other, type(self)): - raise TypeError("Cannot add segments of different types: %s " - "and %s." % (type(self), type(other))) - if self._sample_rate != other._sample_rate: - raise ValueError("Sample rates must match to add segments.") - if len(self._samples) != len(other._samples): - raise ValueError("Segment lengths must match to add segments.") - self._samples += other._samples - - def to_bytes(self, dtype='float32'): - """Create a byte string containing the audio content. - - :param dtype: Data type for export samples. Options: 'int16', 'int32', - 'float32', 'float64'. Default is 'float32'. - :type dtype: str - :return: Byte string containing audio content. - :rtype: str - """ - samples = self._convert_samples_from_float32(self._samples, dtype) - return samples.tostring() - - def gain_db(self, gain): - """Apply gain in decibels to samples. - - Note that this is an in-place transformation. - - :param gain: Gain in decibels to apply to samples. - :type gain: float|1darray - """ - self._samples *= 10.**(gain / 20.) - - def change_speed(self, speed_rate): - """Change the audio speed by linear interpolation. - - Note that this is an in-place transformation. - - :param speed_rate: Rate of speed change: - speed_rate > 1.0, speed up the audio; - speed_rate = 1.0, unchanged; - speed_rate < 1.0, slow down the audio; - speed_rate <= 0.0, not allowed, raise ValueError. - :type speed_rate: float - :raises ValueError: If speed_rate <= 0.0. - """ - if speed_rate <= 0: - raise ValueError("speed_rate should be greater than zero.") - old_length = self._samples.shape[0] - new_length = int(old_length / speed_rate) - old_indices = np.arange(old_length) - new_indices = np.linspace(start=0, stop=old_length, num=new_length) - self._samples = np.interp(new_indices, old_indices, self._samples) - - def normalize(self, target_db=-20, max_gain_db=300.0): - """Normalize audio to be of the desired RMS value in decibels. - - Note that this is an in-place transformation. - - :param target_db: Target RMS value in decibels. This value should be - less than 0.0 as 0.0 is full-scale audio. - :type target_db: float - :param max_gain_db: Max amount of gain in dB that can be applied for - normalization. This is to prevent nans when - attempting to normalize a signal consisting of - all zeros. - :type max_gain_db: float - :raises ValueError: If the required gain to normalize the segment to - the target_db value exceeds max_gain_db. - """ - gain = target_db - self.rms_db - if gain > max_gain_db: - raise ValueError( - "Unable to normalize segment to %f dB because the " - "the probable gain have exceeds max_gain_db (%f dB)" % - (target_db, max_gain_db)) - self.gain_db(min(max_gain_db, target_db - self.rms_db)) - - def normalize_online_bayesian(self, - target_db, - prior_db, - prior_samples, - startup_delay=0.0): - """Normalize audio using a production-compatible online/causal - algorithm. This uses an exponential likelihood and gamma prior to - make online estimates of the RMS even when there are very few samples. - - Note that this is an in-place transformation. - - :param target_db: Target RMS value in decibels. - :type target_bd: float - :param prior_db: Prior RMS estimate in decibels. - :type prior_db: float - :param prior_samples: Prior strength in number of samples. - :type prior_samples: float - :param startup_delay: Default 0.0s. If provided, this function will - accrue statistics for the first startup_delay - seconds before applying online normalization. - :type startup_delay: float - """ - # Estimate total RMS online. - startup_sample_idx = min(self.num_samples - 1, - int(self.sample_rate * startup_delay)) - prior_mean_squared = 10.**(prior_db / 10.) - prior_sum_of_squares = prior_mean_squared * prior_samples - cumsum_of_squares = np.cumsum(self.samples**2) - sample_count = np.arange(self.num_samples) + 1 - if startup_sample_idx > 0: - cumsum_of_squares[:startup_sample_idx] = \ - cumsum_of_squares[startup_sample_idx] - sample_count[:startup_sample_idx] = \ - sample_count[startup_sample_idx] - mean_squared_estimate = ((cumsum_of_squares + prior_sum_of_squares) / - (sample_count + prior_samples)) - rms_estimate_db = 10 * np.log10(mean_squared_estimate) - # Compute required time-varying gain. - gain_db = target_db - rms_estimate_db - self.gain_db(gain_db) - - def resample(self, target_sample_rate, filter='kaiser_best'): - """Resample the audio to a target sample rate. - - Note that this is an in-place transformation. - - :param target_sample_rate: Target sample rate. - :type target_sample_rate: int - :param filter: The resampling filter to use one of {'kaiser_best', - 'kaiser_fast'}. - :type filter: str - """ - self._samples = resampy.resample( - self.samples, self.sample_rate, target_sample_rate, filter=filter) - self._sample_rate = target_sample_rate - - def pad_silence(self, duration, sides='both'): - """Pad this audio sample with a period of silence. - - Note that this is an in-place transformation. - - :param duration: Length of silence in seconds to pad. - :type duration: float - :param sides: Position for padding: - 'beginning' - adds silence in the beginning; - 'end' - adds silence in the end; - 'both' - adds silence in both the beginning and the end. - :type sides: str - :raises ValueError: If sides is not supported. - """ - if duration == 0.0: - return self - cls = type(self) - silence = self.make_silence(duration, self._sample_rate) - if sides == "beginning": - padded = cls.concatenate(silence, self) - elif sides == "end": - padded = cls.concatenate(self, silence) - elif sides == "both": - padded = cls.concatenate(silence, self, silence) - else: - raise ValueError("Unknown value for the sides %s" % sides) - self._samples = padded._samples - - def shift(self, shift_ms): - """Shift the audio in time. If `shift_ms` is positive, shift with time - advance; if negative, shift with time delay. Silence are padded to - keep the duration unchanged. - - Note that this is an in-place transformation. - - :param shift_ms: Shift time in millseconds. If positive, shift with - time advance; if negative; shift with time delay. - :type shift_ms: float - :raises ValueError: If shift_ms is longer than audio duration. - """ - if abs(shift_ms) / 1000.0 > self.duration: - raise ValueError("Absolute value of shift_ms should be smaller " - "than audio duration.") - shift_samples = int(shift_ms * self._sample_rate / 1000) - if shift_samples > 0: - # time advance - self._samples[:-shift_samples] = self._samples[shift_samples:] - self._samples[-shift_samples:] = 0 - elif shift_samples < 0: - # time delay - self._samples[-shift_samples:] = self._samples[:shift_samples] - self._samples[:-shift_samples] = 0 - - def subsegment(self, start_sec=None, end_sec=None): - """Cut the AudioSegment between given boundaries. - - Note that this is an in-place transformation. - - :param start_sec: Beginning of subsegment in seconds. - :type start_sec: float - :param end_sec: End of subsegment in seconds. - :type end_sec: float - :raise ValueError: If start_sec or end_sec is incorrectly set, e.g. out - of bounds in time. - """ - start_sec = 0.0 if start_sec is None else start_sec - end_sec = self.duration if end_sec is None else end_sec - if start_sec < 0.0: - start_sec = self.duration + start_sec - if end_sec < 0.0: - end_sec = self.duration + end_sec - if start_sec < 0.0: - raise ValueError("The slice start position (%f s) is out of " - "bounds." % start_sec) - if end_sec < 0.0: - raise ValueError("The slice end position (%f s) is out of bounds." % - end_sec) - if start_sec > end_sec: - raise ValueError("The slice start position (%f s) is later than " - "the end position (%f s)." % (start_sec, end_sec)) - if end_sec > self.duration: - raise ValueError("The slice end position (%f s) is out of bounds " - "(> %f s)" % (end_sec, self.duration)) - start_sample = int(round(start_sec * self._sample_rate)) - end_sample = int(round(end_sec * self._sample_rate)) - self._samples = self._samples[start_sample:end_sample] - - def random_subsegment(self, subsegment_length, rng=None): - """Cut the specified length of the audiosegment randomly. - - Note that this is an in-place transformation. - - :param subsegment_length: Subsegment length in seconds. - :type subsegment_length: float - :param rng: Random number generator state. - :type rng: random.Random - :raises ValueError: If the length of subsegment is greater than - the origineal segemnt. - """ - rng = random.Random() if rng is None else rng - if subsegment_length > self.duration: - raise ValueError("Length of subsegment must not be greater " - "than original segment.") - start_time = rng.uniform(0.0, self.duration - subsegment_length) - self.subsegment(start_time, start_time + subsegment_length) - - def convolve(self, impulse_segment, allow_resample=False): - """Convolve this audio segment with the given impulse segment. - - Note that this is an in-place transformation. - - :param impulse_segment: Impulse response segments. - :type impulse_segment: AudioSegment - :param allow_resample: Indicates whether resampling is allowed when - the impulse_segment has a different sample - rate from this signal. - :type allow_resample: bool - :raises ValueError: If the sample rate is not match between two - audio segments when resample is not allowed. - """ - if allow_resample and self.sample_rate != impulse_segment.sample_rate: - impulse_segment.resample(self.sample_rate) - if self.sample_rate != impulse_segment.sample_rate: - raise ValueError("Impulse segment's sample rate (%d Hz) is not " - "equal to base signal sample rate (%d Hz)." % - (impulse_segment.sample_rate, self.sample_rate)) - samples = signal.fftconvolve(self.samples, impulse_segment.samples, - "full") - self._samples = samples - - def convolve_and_normalize(self, impulse_segment, allow_resample=False): - """Convolve and normalize the resulting audio segment so that it - has the same average power as the input signal. - - Note that this is an in-place transformation. - - :param impulse_segment: Impulse response segments. - :type impulse_segment: AudioSegment - :param allow_resample: Indicates whether resampling is allowed when - the impulse_segment has a different sample - rate from this signal. - :type allow_resample: bool - """ - target_db = self.rms_db - self.convolve(impulse_segment, allow_resample=allow_resample) - self.normalize(target_db) - - def add_noise(self, - noise, - snr_dB, - allow_downsampling=False, - max_gain_db=300.0, - rng=None): - """Add the given noise segment at a specific signal-to-noise ratio. - If the noise segment is longer than this segment, a random subsegment - of matching length is sampled from it and used instead. - - Note that this is an in-place transformation. - - :param noise: Noise signal to add. - :type noise: AudioSegment - :param snr_dB: Signal-to-Noise Ratio, in decibels. - :type snr_dB: float - :param allow_downsampling: Whether to allow the noise signal to be - downsampled to match the base signal sample - rate. - :type allow_downsampling: bool - :param max_gain_db: Maximum amount of gain to apply to noise signal - before adding it in. This is to prevent attempting - to apply infinite gain to a zero signal. - :type max_gain_db: float - :param rng: Random number generator state. - :type rng: None|random.Random - :raises ValueError: If the sample rate does not match between the two - audio segments when downsampling is not allowed, or - if the duration of noise segments is shorter than - original audio segments. - """ - rng = random.Random() if rng is None else rng - if allow_downsampling and noise.sample_rate > self.sample_rate: - noise = noise.resample(self.sample_rate) - if noise.sample_rate != self.sample_rate: - raise ValueError("Noise sample rate (%d Hz) is not equal to base " - "signal sample rate (%d Hz)." % (noise.sample_rate, - self.sample_rate)) - if noise.duration < self.duration: - raise ValueError("Noise signal (%f sec) must be at least as long as" - " base signal (%f sec)." % - (noise.duration, self.duration)) - noise_gain_db = min(self.rms_db - noise.rms_db - snr_dB, max_gain_db) - noise_new = copy.deepcopy(noise) - noise_new.random_subsegment(self.duration, rng=rng) - noise_new.gain_db(noise_gain_db) - self.superimpose(noise_new) - - @property - def samples(self): - """Return audio samples. - - :return: Audio samples. - :rtype: ndarray - """ - return self._samples.copy() - - @property - def sample_rate(self): - """Return audio sample rate. - - :return: Audio sample rate. - :rtype: int - """ - return self._sample_rate - - @property - def num_samples(self): - """Return number of samples. - - :return: Number of samples. - :rtype: int - """ - return self._samples.shape[0] - - @property - def duration(self): - """Return audio duration. - - :return: Audio duration in seconds. - :rtype: float - """ - return self._samples.shape[0] / float(self._sample_rate) - - @property - def rms_db(self): - """Return root mean square energy of the audio in decibels. - - :return: Root mean square energy in decibels. - :rtype: float - """ - # square root => multiply by 10 instead of 20 for dBs - mean_square = np.mean(self._samples**2) - return 10 * np.log10(mean_square) - - def _convert_samples_to_float32(self, samples): - """Convert sample type to float32. - - Audio sample type is usually integer or float-point. - Integers will be scaled to [-1, 1] in float32. - """ - float32_samples = samples.astype('float32') - if samples.dtype in np.sctypes['int']: - bits = np.iinfo(samples.dtype).bits - float32_samples *= (1. / 2**(bits - 1)) - elif samples.dtype in np.sctypes['float']: - pass - else: - raise TypeError("Unsupported sample type: %s." % samples.dtype) - return float32_samples - - def _convert_samples_from_float32(self, samples, dtype): - """Convert sample type from float32 to dtype. - - Audio sample type is usually integer or float-point. For integer - type, float32 will be rescaled from [-1, 1] to the maximum range - supported by the integer type. - - This is for writing a audio file. - """ - dtype = np.dtype(dtype) - output_samples = samples.copy() - if dtype in np.sctypes['int']: - bits = np.iinfo(dtype).bits - output_samples *= (2**(bits - 1) / 1.) - min_val = np.iinfo(dtype).min - max_val = np.iinfo(dtype).max - output_samples[output_samples > max_val] = max_val - output_samples[output_samples < min_val] = min_val - elif samples.dtype in np.sctypes['float']: - min_val = np.finfo(dtype).min - max_val = np.finfo(dtype).max - output_samples[output_samples > max_val] = max_val - output_samples[output_samples < min_val] = min_val - else: - raise TypeError("Unsupported sample type: %s." % samples.dtype) - return output_samples.astype(dtype) diff --git a/deep_speech_2/data_utils/augmentor/__init__.py b/deep_speech_2/data_utils/augmentor/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/deep_speech_2/data_utils/augmentor/augmentation.py b/deep_speech_2/data_utils/augmentor/augmentation.py deleted file mode 100644 index 5c30b627..00000000 --- a/deep_speech_2/data_utils/augmentor/augmentation.py +++ /dev/null @@ -1,124 +0,0 @@ -"""Contains the data augmentation pipeline.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import json -import random -from data_utils.augmentor.volume_perturb import VolumePerturbAugmentor -from data_utils.augmentor.shift_perturb import ShiftPerturbAugmentor -from data_utils.augmentor.speed_perturb import SpeedPerturbAugmentor -from data_utils.augmentor.noise_perturb import NoisePerturbAugmentor -from data_utils.augmentor.impulse_response import ImpulseResponseAugmentor -from data_utils.augmentor.resample import ResampleAugmentor -from data_utils.augmentor.online_bayesian_normalization import \ - OnlineBayesianNormalizationAugmentor - - -class AugmentationPipeline(object): - """Build a pre-processing pipeline with various augmentation models.Such a - data augmentation pipeline is oftern leveraged to augment the training - samples to make the model invariant to certain types of perturbations in the - real world, improving model's generalization ability. - - The pipeline is built according the the augmentation configuration in json - string, e.g. - - .. code-block:: - - [ { - "type": "noise", - "params": {"min_snr_dB": 10, - "max_snr_dB": 20, - "noise_manifest_path": "datasets/manifest.noise"}, - "prob": 0.0 - }, - { - "type": "speed", - "params": {"min_speed_rate": 0.9, - "max_speed_rate": 1.1}, - "prob": 1.0 - }, - { - "type": "shift", - "params": {"min_shift_ms": -5, - "max_shift_ms": 5}, - "prob": 1.0 - }, - { - "type": "volume", - "params": {"min_gain_dBFS": -10, - "max_gain_dBFS": 10}, - "prob": 0.0 - }, - { - "type": "bayesian_normal", - "params": {"target_db": -20, - "prior_db": -20, - "prior_samples": 100}, - "prob": 0.0 - } - ] - - This augmentation configuration inserts two augmentation models - into the pipeline, with one is VolumePerturbAugmentor and the other - SpeedPerturbAugmentor. "prob" indicates the probability of the current - augmentor to take effect. If "prob" is zero, the augmentor does not take - effect. - - :param augmentation_config: Augmentation configuration in json string. - :type augmentation_config: str - :param random_seed: Random seed. - :type random_seed: int - :raises ValueError: If the augmentation json config is in incorrect format". - """ - - def __init__(self, augmentation_config, random_seed=0): - self._rng = random.Random(random_seed) - self._augmentors, self._rates = self._parse_pipeline_from( - augmentation_config) - - def transform_audio(self, audio_segment): - """Run the pre-processing pipeline for data augmentation. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to process. - :type audio_segment: AudioSegmenet|SpeechSegment - """ - for augmentor, rate in zip(self._augmentors, self._rates): - if self._rng.uniform(0., 1.) < rate: - augmentor.transform_audio(audio_segment) - - def _parse_pipeline_from(self, config_json): - """Parse the config json to build a augmentation pipelien.""" - try: - configs = json.loads(config_json) - augmentors = [ - self._get_augmentor(config["type"], config["params"]) - for config in configs - ] - rates = [config["prob"] for config in configs] - except Exception as e: - raise ValueError("Failed to parse the augmentation config json: " - "%s" % str(e)) - return augmentors, rates - - def _get_augmentor(self, augmentor_type, params): - """Return an augmentation model by the type name, and pass in params.""" - if augmentor_type == "volume": - return VolumePerturbAugmentor(self._rng, **params) - elif augmentor_type == "shift": - return ShiftPerturbAugmentor(self._rng, **params) - elif augmentor_type == "speed": - return SpeedPerturbAugmentor(self._rng, **params) - elif augmentor_type == "resample": - return ResampleAugmentor(self._rng, **params) - elif augmentor_type == "bayesian_normal": - return OnlineBayesianNormalizationAugmentor(self._rng, **params) - elif augmentor_type == "noise": - return NoisePerturbAugmentor(self._rng, **params) - elif augmentor_type == "impulse": - return ImpulseResponseAugmentor(self._rng, **params) - else: - raise ValueError("Unknown augmentor type [%s]." % augmentor_type) diff --git a/deep_speech_2/data_utils/augmentor/base.py b/deep_speech_2/data_utils/augmentor/base.py deleted file mode 100644 index a323165a..00000000 --- a/deep_speech_2/data_utils/augmentor/base.py +++ /dev/null @@ -1,33 +0,0 @@ -"""Contains the abstract base class for augmentation models.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from abc import ABCMeta, abstractmethod - - -class AugmentorBase(object): - """Abstract base class for augmentation model (augmentor) class. - All augmentor classes should inherit from this class, and implement the - following abstract methods. - """ - - __metaclass__ = ABCMeta - - @abstractmethod - def __init__(self): - pass - - @abstractmethod - def transform_audio(self, audio_segment): - """Adds various effects to the input audio segment. Such effects - will augment the training data to make the model invariant to certain - types of perturbations in the real world, improving model's - generalization ability. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegmenet|SpeechSegment - """ - pass diff --git a/deep_speech_2/data_utils/augmentor/impulse_response.py b/deep_speech_2/data_utils/augmentor/impulse_response.py deleted file mode 100644 index 536b4d6a..00000000 --- a/deep_speech_2/data_utils/augmentor/impulse_response.py +++ /dev/null @@ -1,34 +0,0 @@ -"""Contains the impulse response augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase -from data_utils.utility import read_manifest -from data_utils.audio import AudioSegment - - -class ImpulseResponseAugmentor(AugmentorBase): - """Augmentation model for adding impulse response effect. - - :param rng: Random generator object. - :type rng: random.Random - :param impulse_manifest_path: Manifest path for impulse audio data. - :type impulse_manifest_path: basestring - """ - - def __init__(self, rng, impulse_manifest_path): - self._rng = rng - self._impulse_manifest = read_manifest(impulse_manifest_path) - - def transform_audio(self, audio_segment): - """Add impulse response effect. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegmenet|SpeechSegment - """ - impulse_json = self._rng.sample(self._impulse_manifest, 1)[0] - impulse_segment = AudioSegment.from_file(impulse_json['audio_filepath']) - audio_segment.convolve(impulse_segment, allow_resample=True) diff --git a/deep_speech_2/data_utils/augmentor/noise_perturb.py b/deep_speech_2/data_utils/augmentor/noise_perturb.py deleted file mode 100644 index 96e0ff4d..00000000 --- a/deep_speech_2/data_utils/augmentor/noise_perturb.py +++ /dev/null @@ -1,49 +0,0 @@ -"""Contains the noise perturb augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase -from data_utils.utility import read_manifest -from data_utils.audio import AudioSegment - - -class NoisePerturbAugmentor(AugmentorBase): - """Augmentation model for adding background noise. - - :param rng: Random generator object. - :type rng: random.Random - :param min_snr_dB: Minimal signal noise ratio, in decibels. - :type min_snr_dB: float - :param max_snr_dB: Maximal signal noise ratio, in decibels. - :type max_snr_dB: float - :param noise_manifest_path: Manifest path for noise audio data. - :type noise_manifest_path: basestring - """ - - def __init__(self, rng, min_snr_dB, max_snr_dB, noise_manifest_path): - self._min_snr_dB = min_snr_dB - self._max_snr_dB = max_snr_dB - self._rng = rng - self._noise_manifest = read_manifest(manifest_path=noise_manifest_path) - - def transform_audio(self, audio_segment): - """Add background noise audio. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegmenet|SpeechSegment - """ - noise_json = self._rng.sample(self._noise_manifest, 1)[0] - if noise_json['duration'] < audio_segment.duration: - raise RuntimeError("The duration of sampled noise audio is smaller " - "than the audio segment to add effects to.") - diff_duration = noise_json['duration'] - audio_segment.duration - start = self._rng.uniform(0, diff_duration) - end = start + audio_segment.duration - noise_segment = AudioSegment.slice_from_file( - noise_json['audio_filepath'], start=start, end=end) - snr_dB = self._rng.uniform(self._min_snr_dB, self._max_snr_dB) - audio_segment.add_noise( - noise_segment, snr_dB, allow_downsampling=True, rng=self._rng) diff --git a/deep_speech_2/data_utils/augmentor/online_bayesian_normalization.py b/deep_speech_2/data_utils/augmentor/online_bayesian_normalization.py deleted file mode 100644 index e488ac7d..00000000 --- a/deep_speech_2/data_utils/augmentor/online_bayesian_normalization.py +++ /dev/null @@ -1,48 +0,0 @@ -"""Contain the online bayesian normalization augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase - - -class OnlineBayesianNormalizationAugmentor(AugmentorBase): - """Augmentation model for adding online bayesian normalization. - - :param rng: Random generator object. - :type rng: random.Random - :param target_db: Target RMS value in decibels. - :type target_db: float - :param prior_db: Prior RMS estimate in decibels. - :type prior_db: float - :param prior_samples: Prior strength in number of samples. - :type prior_samples: int - :param startup_delay: Default 0.0s. If provided, this function will - accrue statistics for the first startup_delay - seconds before applying online normalization. - :type starup_delay: float. - """ - - def __init__(self, - rng, - target_db, - prior_db, - prior_samples, - startup_delay=0.0): - self._target_db = target_db - self._prior_db = prior_db - self._prior_samples = prior_samples - self._rng = rng - self._startup_delay = startup_delay - - def transform_audio(self, audio_segment): - """Normalizes the input audio using the online Bayesian approach. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegment|SpeechSegment - """ - audio_segment.normalize_online_bayesian(self._target_db, self._prior_db, - self._prior_samples, - self._startup_delay) diff --git a/deep_speech_2/data_utils/augmentor/resample.py b/deep_speech_2/data_utils/augmentor/resample.py deleted file mode 100644 index 8df17f3a..00000000 --- a/deep_speech_2/data_utils/augmentor/resample.py +++ /dev/null @@ -1,33 +0,0 @@ -"""Contain the resample augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase - - -class ResampleAugmentor(AugmentorBase): - """Augmentation model for resampling. - - See more info here: - https://ccrma.stanford.edu/~jos/resample/index.html - - :param rng: Random generator object. - :type rng: random.Random - :param new_sample_rate: New sample rate in Hz. - :type new_sample_rate: int - """ - - def __init__(self, rng, new_sample_rate): - self._new_sample_rate = new_sample_rate - self._rng = rng - - def transform_audio(self, audio_segment): - """Resamples the input audio to a target sample rate. - - Note that this is an in-place transformation. - - :param audio: Audio segment to add effects to. - :type audio: AudioSegment|SpeechSegment - """ - audio_segment.resample(self._new_sample_rate) diff --git a/deep_speech_2/data_utils/augmentor/shift_perturb.py b/deep_speech_2/data_utils/augmentor/shift_perturb.py deleted file mode 100644 index c4cbe3e1..00000000 --- a/deep_speech_2/data_utils/augmentor/shift_perturb.py +++ /dev/null @@ -1,34 +0,0 @@ -"""Contains the volume perturb augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase - - -class ShiftPerturbAugmentor(AugmentorBase): - """Augmentation model for adding random shift perturbation. - - :param rng: Random generator object. - :type rng: random.Random - :param min_shift_ms: Minimal shift in milliseconds. - :type min_shift_ms: float - :param max_shift_ms: Maximal shift in milliseconds. - :type max_shift_ms: float - """ - - def __init__(self, rng, min_shift_ms, max_shift_ms): - self._min_shift_ms = min_shift_ms - self._max_shift_ms = max_shift_ms - self._rng = rng - - def transform_audio(self, audio_segment): - """Shift audio. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegmenet|SpeechSegment - """ - shift_ms = self._rng.uniform(self._min_shift_ms, self._max_shift_ms) - audio_segment.shift(shift_ms) diff --git a/deep_speech_2/data_utils/augmentor/speed_perturb.py b/deep_speech_2/data_utils/augmentor/speed_perturb.py deleted file mode 100644 index cc5738bd..00000000 --- a/deep_speech_2/data_utils/augmentor/speed_perturb.py +++ /dev/null @@ -1,47 +0,0 @@ -"""Contain the speech perturbation augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase - - -class SpeedPerturbAugmentor(AugmentorBase): - """Augmentation model for adding speed perturbation. - - See reference paper here: - http://www.danielpovey.com/files/2015_interspeech_augmentation.pdf - - :param rng: Random generator object. - :type rng: random.Random - :param min_speed_rate: Lower bound of new speed rate to sample and should - not be smaller than 0.9. - :type min_speed_rate: float - :param max_speed_rate: Upper bound of new speed rate to sample and should - not be larger than 1.1. - :type max_speed_rate: float - """ - - def __init__(self, rng, min_speed_rate, max_speed_rate): - if min_speed_rate < 0.9: - raise ValueError( - "Sampling speed below 0.9 can cause unnatural effects") - if max_speed_rate > 1.1: - raise ValueError( - "Sampling speed above 1.1 can cause unnatural effects") - self._min_speed_rate = min_speed_rate - self._max_speed_rate = max_speed_rate - self._rng = rng - - def transform_audio(self, audio_segment): - """Sample a new speed rate from the given range and - changes the speed of the given audio clip. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegment|SpeechSegment - """ - sampled_speed = self._rng.uniform(self._min_speed_rate, - self._max_speed_rate) - audio_segment.change_speed(sampled_speed) diff --git a/deep_speech_2/data_utils/augmentor/volume_perturb.py b/deep_speech_2/data_utils/augmentor/volume_perturb.py deleted file mode 100644 index 758676d5..00000000 --- a/deep_speech_2/data_utils/augmentor/volume_perturb.py +++ /dev/null @@ -1,40 +0,0 @@ -"""Contains the volume perturb augmentation model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.augmentor.base import AugmentorBase - - -class VolumePerturbAugmentor(AugmentorBase): - """Augmentation model for adding random volume perturbation. - - This is used for multi-loudness training of PCEN. See - - https://arxiv.org/pdf/1607.05666v1.pdf - - for more details. - - :param rng: Random generator object. - :type rng: random.Random - :param min_gain_dBFS: Minimal gain in dBFS. - :type min_gain_dBFS: float - :param max_gain_dBFS: Maximal gain in dBFS. - :type max_gain_dBFS: float - """ - - def __init__(self, rng, min_gain_dBFS, max_gain_dBFS): - self._min_gain_dBFS = min_gain_dBFS - self._max_gain_dBFS = max_gain_dBFS - self._rng = rng - - def transform_audio(self, audio_segment): - """Change audio loadness. - - Note that this is an in-place transformation. - - :param audio_segment: Audio segment to add effects to. - :type audio_segment: AudioSegmenet|SpeechSegment - """ - gain = self._rng.uniform(self._min_gain_dBFS, self._max_gain_dBFS) - audio_segment.gain_db(gain) diff --git a/deep_speech_2/data_utils/data.py b/deep_speech_2/data_utils/data.py deleted file mode 100644 index 9dd2a91f..00000000 --- a/deep_speech_2/data_utils/data.py +++ /dev/null @@ -1,384 +0,0 @@ -"""Contains data generator for orgnaizing various audio data preprocessing -pipeline and offering data reader interface of PaddlePaddle requirements. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import random -import tarfile -import multiprocessing -import numpy as np -import paddle.v2 as paddle -from threading import local -import atexit -from data_utils.utility import read_manifest -from data_utils.utility import xmap_readers_mp -from data_utils.augmentor.augmentation import AugmentationPipeline -from data_utils.featurizer.speech_featurizer import SpeechFeaturizer -from data_utils.speech import SpeechSegment -from data_utils.normalizer import FeatureNormalizer - - -class DataGenerator(object): - """ - DataGenerator provides basic audio data preprocessing pipeline, and offers - data reader interfaces of PaddlePaddle requirements. - - :param vocab_filepath: Vocabulary filepath for indexing tokenized - transcripts. - :type vocab_filepath: basestring - :param mean_std_filepath: File containing the pre-computed mean and stddev. - :type mean_std_filepath: None|basestring - :param augmentation_config: Augmentation configuration in json string. - Details see AugmentationPipeline.__doc__. - :type augmentation_config: str - :param max_duration: Audio with duration (in seconds) greater than - this will be discarded. - :type max_duration: float - :param min_duration: Audio with duration (in seconds) smaller than - this will be discarded. - :type min_duration: float - :param stride_ms: Striding size (in milliseconds) for generating frames. - :type stride_ms: float - :param window_ms: Window size (in milliseconds) for generating frames. - :type window_ms: float - :param max_freq: Used when specgram_type is 'linear', only FFT bins - corresponding to frequencies between [0, max_freq] are - returned. - :types max_freq: None|float - :param specgram_type: Specgram feature type. Options: 'linear'. - :type specgram_type: str - :param use_dB_normalization: Whether to normalize the audio to -20 dB - before extracting the features. - :type use_dB_normalization: bool - :param num_threads: Number of CPU threads for processing data. - :type num_threads: int - :param random_seed: Random seed. - :type random_seed: int - :param keep_transcription_text: If set to True, transcription text will - be passed forward directly without - converting to index sequence. - :type keep_transcription_text: bool - :param num_conv_layers: The number of convolution layer, used to compute - the sequence length. - :type num_conv_layers: int - """ - - def __init__(self, - vocab_filepath, - mean_std_filepath, - augmentation_config='{}', - max_duration=float('inf'), - min_duration=0.0, - stride_ms=10.0, - window_ms=20.0, - max_freq=None, - specgram_type='linear', - use_dB_normalization=True, - num_threads=multiprocessing.cpu_count() // 2, - random_seed=0, - keep_transcription_text=False, - num_conv_layers=2): - self._max_duration = max_duration - self._min_duration = min_duration - self._normalizer = FeatureNormalizer(mean_std_filepath) - self._augmentation_pipeline = AugmentationPipeline( - augmentation_config=augmentation_config, random_seed=random_seed) - self._speech_featurizer = SpeechFeaturizer( - vocab_filepath=vocab_filepath, - specgram_type=specgram_type, - stride_ms=stride_ms, - window_ms=window_ms, - max_freq=max_freq, - use_dB_normalization=use_dB_normalization) - self._num_threads = num_threads - self._rng = random.Random(random_seed) - self._keep_transcription_text = keep_transcription_text - self._epoch = 0 - # for caching tar files info - self._local_data = local() - self._local_data.tar2info = {} - self._local_data.tar2object = {} - self._num_conv_layers = num_conv_layers - - def process_utterance(self, filename, transcript): - """Load, augment, featurize and normalize for speech data. - - :param filename: Audio filepath - :type filename: basestring | file - :param transcript: Transcription text. - :type transcript: basestring - :return: Tuple of audio feature tensor and data of transcription part, - where transcription part could be token ids or text. - :rtype: tuple of (2darray, list) - """ - if filename.startswith('tar:'): - speech_segment = SpeechSegment.from_file( - self._subfile_from_tar(filename), transcript) - else: - speech_segment = SpeechSegment.from_file(filename, transcript) - self._augmentation_pipeline.transform_audio(speech_segment) - specgram, transcript_part = self._speech_featurizer.featurize( - speech_segment, self._keep_transcription_text) - specgram = self._normalizer.apply(specgram) - return specgram, transcript_part - - def batch_reader_creator(self, - manifest_path, - batch_size, - min_batch_size=1, - padding_to=-1, - flatten=False, - sortagrad=False, - shuffle_method="batch_shuffle"): - """ - Batch data reader creator for audio data. Return a callable generator - function to produce batches of data. - - Audio features within one batch will be padded with zeros to have the - same shape, or a user-defined shape. - - :param manifest_path: Filepath of manifest for audio files. - :type manifest_path: basestring - :param batch_size: Number of instances in a batch. - :type batch_size: int - :param min_batch_size: Any batch with batch size smaller than this will - be discarded. (To be deprecated in the future.) - :type min_batch_size: int - :param padding_to: If set -1, the maximun shape in the batch - will be used as the target shape for padding. - Otherwise, `padding_to` will be the target shape. - :type padding_to: int - :param flatten: If set True, audio features will be flatten to 1darray. - :type flatten: bool - :param sortagrad: If set True, sort the instances by audio duration - in the first epoch for speed up training. - :type sortagrad: bool - :param shuffle_method: Shuffle method. Options: - '' or None: no shuffle. - 'instance_shuffle': instance-wise shuffle. - 'batch_shuffle': similarly-sized instances are - put into batches, and then - batch-wise shuffle the batches. - For more details, please see - ``_batch_shuffle.__doc__``. - 'batch_shuffle_clipped': 'batch_shuffle' with - head shift and tail - clipping. For more - details, please see - ``_batch_shuffle``. - If sortagrad is True, shuffle is disabled - for the first epoch. - :type shuffle_method: None|str - :return: Batch reader function, producing batches of data when called. - :rtype: callable - """ - - def batch_reader(): - # read manifest - manifest = read_manifest( - manifest_path=manifest_path, - max_duration=self._max_duration, - min_duration=self._min_duration) - # sort (by duration) or batch-wise shuffle the manifest - if self._epoch == 0 and sortagrad: - manifest.sort(key=lambda x: x["duration"]) - else: - if shuffle_method == "batch_shuffle": - manifest = self._batch_shuffle( - manifest, batch_size, clipped=False) - elif shuffle_method == "batch_shuffle_clipped": - manifest = self._batch_shuffle( - manifest, batch_size, clipped=True) - elif shuffle_method == "instance_shuffle": - self._rng.shuffle(manifest) - elif shuffle_method == None: - pass - else: - raise ValueError("Unknown shuffle method %s." % - shuffle_method) - # prepare batches - instance_reader = self._instance_reader_creator(manifest) - batch = [] - for instance in instance_reader(): - batch.append(instance) - if len(batch) == batch_size: - yield self._padding_batch(batch, padding_to, flatten) - batch = [] - if len(batch) >= min_batch_size: - yield self._padding_batch(batch, padding_to, flatten) - self._epoch += 1 - - return batch_reader - - @property - def feeding(self): - """Returns data reader's feeding dict. - - :return: Data feeding dict. - :rtype: dict - """ - feeding_dict = { - "audio_spectrogram": 0, - "transcript_text": 1, - "sequence_offset": 2, - "sequence_length": 3 - } - for i in xrange(self._num_conv_layers): - feeding_dict["conv%d_index_range" % i] = len(feeding_dict) - return feeding_dict - - @property - def vocab_size(self): - """Return the vocabulary size. - - :return: Vocabulary size. - :rtype: int - """ - return self._speech_featurizer.vocab_size - - @property - def vocab_list(self): - """Return the vocabulary in list. - - :return: Vocabulary in list. - :rtype: list - """ - return self._speech_featurizer.vocab_list - - def _parse_tar(self, file): - """Parse a tar file to get a tarfile object - and a map containing tarinfoes - """ - result = {} - f = tarfile.open(file) - for tarinfo in f.getmembers(): - result[tarinfo.name] = tarinfo - return f, result - - def _subfile_from_tar(self, file): - """Get subfile object from tar. - - It will return a subfile object from tar file - and cached tar file info for next reading request. - """ - tarpath, filename = file.split(':', 1)[1].split('#', 1) - if 'tar2info' not in self._local_data.__dict__: - self._local_data.tar2info = {} - if 'tar2object' not in self._local_data.__dict__: - self._local_data.tar2object = {} - if tarpath not in self._local_data.tar2info: - object, infoes = self._parse_tar(tarpath) - self._local_data.tar2info[tarpath] = infoes - self._local_data.tar2object[tarpath] = object - return self._local_data.tar2object[tarpath].extractfile( - self._local_data.tar2info[tarpath][filename]) - - def _instance_reader_creator(self, manifest): - """ - Instance reader creator. Create a callable function to produce - instances of data. - - Instance: a tuple of ndarray of audio spectrogram and a list of - token indices for transcript. - """ - - def reader(): - for instance in manifest: - yield instance - - reader, cleanup_callback = xmap_readers_mp( - lambda instance: self.process_utterance(instance["audio_filepath"], instance["text"]), - reader, - self._num_threads, - 4096, - order=True) - - # register callback to main process - atexit.register(cleanup_callback) - - return reader - - def _padding_batch(self, batch, padding_to=-1, flatten=False): - """ - Padding audio features with zeros to make them have the same shape (or - a user-defined shape) within one bach. - - If ``padding_to`` is -1, the maximun shape in the batch will be used - as the target shape for padding. Otherwise, `padding_to` will be the - target shape (only refers to the second axis). - - If `flatten` is True, features will be flatten to 1darray. - """ - new_batch = [] - # get target shape - max_length = max([audio.shape[1] for audio, text in batch]) - if padding_to != -1: - if padding_to < max_length: - raise ValueError("If padding_to is not -1, it should be larger " - "than any instance's shape in the batch") - max_length = padding_to - # padding - for audio, text in batch: - padded_audio = np.zeros([audio.shape[0], max_length]) - padded_audio[:, :audio.shape[1]] = audio - if flatten: - padded_audio = padded_audio.flatten() - - # Stride size for conv0 is (3, 2) - # Stride size for conv1 to convN is (1, 2) - # Same as the network, hard-coded here - padded_instance = [padded_audio, text] - padded_conv0_h = (padded_audio.shape[0] - 1) // 2 + 1 - padded_conv0_w = (padded_audio.shape[1] - 1) // 3 + 1 - valid_w = (audio.shape[1] - 1) // 3 + 1 - padded_instance += [ - [0], # sequence offset, always 0 - [valid_w], # valid sequence length - # Index ranges for channel, height and width - # Please refer scale_sub_region layer to see details - [1, 32, 1, padded_conv0_h, valid_w + 1, padded_conv0_w] - ] - pre_padded_h = padded_conv0_h - for i in xrange(self._num_conv_layers - 1): - padded_h = (pre_padded_h - 1) // 2 + 1 - pre_padded_h = padded_h - padded_instance += [ - [1, 32, 1, padded_h, valid_w + 1, padded_conv0_w] - ] - - new_batch.append(padded_instance) - return new_batch - - def _batch_shuffle(self, manifest, batch_size, clipped=False): - """Put similarly-sized instances into minibatches for better efficiency - and make a batch-wise shuffle. - - 1. Sort the audio clips by duration. - 2. Generate a random number `k`, k in [0, batch_size). - 3. Randomly shift `k` instances in order to create different batches - for different epochs. Create minibatches. - 4. Shuffle the minibatches. - - :param manifest: Manifest contents. List of dict. - :type manifest: list - :param batch_size: Batch size. This size is also used for generate - a random number for batch shuffle. - :type batch_size: int - :param clipped: Whether to clip the heading (small shift) and trailing - (incomplete batch) instances. - :type clipped: bool - :return: Batch shuffled mainifest. - :rtype: list - """ - manifest.sort(key=lambda x: x["duration"]) - shift_len = self._rng.randint(0, batch_size - 1) - batch_manifest = zip(*[iter(manifest[shift_len:])] * batch_size) - self._rng.shuffle(batch_manifest) - batch_manifest = [item for batch in batch_manifest for item in batch] - if not clipped: - res_len = len(manifest) - shift_len - len(batch_manifest) - batch_manifest.extend(manifest[-res_len:]) - batch_manifest.extend(manifest[0:shift_len]) - return batch_manifest diff --git a/deep_speech_2/data_utils/featurizer/__init__.py b/deep_speech_2/data_utils/featurizer/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/deep_speech_2/data_utils/featurizer/audio_featurizer.py b/deep_speech_2/data_utils/featurizer/audio_featurizer.py deleted file mode 100644 index f594de7d..00000000 --- a/deep_speech_2/data_utils/featurizer/audio_featurizer.py +++ /dev/null @@ -1,187 +0,0 @@ -"""Contains the audio featurizer class.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -from data_utils.utility import read_manifest -from data_utils.audio import AudioSegment -from python_speech_features import mfcc -from python_speech_features import delta - - -class AudioFeaturizer(object): - """Audio featurizer, for extracting features from audio contents of - AudioSegment or SpeechSegment. - - Currently, it supports feature types of linear spectrogram and mfcc. - - :param specgram_type: Specgram feature type. Options: 'linear'. - :type specgram_type: str - :param stride_ms: Striding size (in milliseconds) for generating frames. - :type stride_ms: float - :param window_ms: Window size (in milliseconds) for generating frames. - :type window_ms: float - :param max_freq: When specgram_type is 'linear', only FFT bins - corresponding to frequencies between [0, max_freq] are - returned; when specgram_type is 'mfcc', max_feq is the - highest band edge of mel filters. - :types max_freq: None|float - :param target_sample_rate: Audio are resampled (if upsampling or - downsampling is allowed) to this before - extracting spectrogram features. - :type target_sample_rate: float - :param use_dB_normalization: Whether to normalize the audio to a certain - decibels before extracting the features. - :type use_dB_normalization: bool - :param target_dB: Target audio decibels for normalization. - :type target_dB: float - """ - - def __init__(self, - specgram_type='linear', - stride_ms=10.0, - window_ms=20.0, - max_freq=None, - target_sample_rate=16000, - use_dB_normalization=True, - target_dB=-20): - self._specgram_type = specgram_type - self._stride_ms = stride_ms - self._window_ms = window_ms - self._max_freq = max_freq - self._target_sample_rate = target_sample_rate - self._use_dB_normalization = use_dB_normalization - self._target_dB = target_dB - - def featurize(self, - audio_segment, - allow_downsampling=True, - allow_upsampling=True): - """Extract audio features from AudioSegment or SpeechSegment. - - :param audio_segment: Audio/speech segment to extract features from. - :type audio_segment: AudioSegment|SpeechSegment - :param allow_downsampling: Whether to allow audio downsampling before - featurizing. - :type allow_downsampling: bool - :param allow_upsampling: Whether to allow audio upsampling before - featurizing. - :type allow_upsampling: bool - :return: Spectrogram audio feature in 2darray. - :rtype: ndarray - :raises ValueError: If audio sample rate is not supported. - """ - # upsampling or downsampling - if ((audio_segment.sample_rate > self._target_sample_rate and - allow_downsampling) or - (audio_segment.sample_rate < self._target_sample_rate and - allow_upsampling)): - audio_segment.resample(self._target_sample_rate) - if audio_segment.sample_rate != self._target_sample_rate: - raise ValueError("Audio sample rate is not supported. " - "Turn allow_downsampling or allow up_sampling on.") - # decibel normalization - if self._use_dB_normalization: - audio_segment.normalize(target_db=self._target_dB) - # extract spectrogram - return self._compute_specgram(audio_segment.samples, - audio_segment.sample_rate) - - def _compute_specgram(self, samples, sample_rate): - """Extract various audio features.""" - if self._specgram_type == 'linear': - return self._compute_linear_specgram( - samples, sample_rate, self._stride_ms, self._window_ms, - self._max_freq) - elif self._specgram_type == 'mfcc': - return self._compute_mfcc(samples, sample_rate, self._stride_ms, - self._window_ms, self._max_freq) - else: - raise ValueError("Unknown specgram_type %s. " - "Supported values: linear." % self._specgram_type) - - def _compute_linear_specgram(self, - samples, - sample_rate, - stride_ms=10.0, - window_ms=20.0, - max_freq=None, - eps=1e-14): - """Compute the linear spectrogram from FFT energy.""" - if max_freq is None: - max_freq = sample_rate / 2 - if max_freq > sample_rate / 2: - raise ValueError("max_freq must be greater than half of " - "sample rate.") - if stride_ms > window_ms: - raise ValueError("Stride size must not be greater than " - "window size.") - stride_size = int(0.001 * sample_rate * stride_ms) - window_size = int(0.001 * sample_rate * window_ms) - specgram, freqs = self._specgram_real( - samples, - window_size=window_size, - stride_size=stride_size, - sample_rate=sample_rate) - ind = np.where(freqs <= max_freq)[0][-1] + 1 - return np.log(specgram[:ind, :] + eps) - - def _specgram_real(self, samples, window_size, stride_size, sample_rate): - """Compute the spectrogram for samples from a real signal.""" - # extract strided windows - truncate_size = (len(samples) - window_size) % stride_size - samples = samples[:len(samples) - truncate_size] - nshape = (window_size, (len(samples) - window_size) // stride_size + 1) - nstrides = (samples.strides[0], samples.strides[0] * stride_size) - windows = np.lib.stride_tricks.as_strided( - samples, shape=nshape, strides=nstrides) - assert np.all( - windows[:, 1] == samples[stride_size:(stride_size + window_size)]) - # window weighting, squared Fast Fourier Transform (fft), scaling - weighting = np.hanning(window_size)[:, None] - fft = np.fft.rfft(windows * weighting, axis=0) - fft = np.absolute(fft) - fft = fft**2 - scale = np.sum(weighting**2) * sample_rate - fft[1:-1, :] *= (2.0 / scale) - fft[(0, -1), :] /= scale - # prepare fft frequency list - freqs = float(sample_rate) / window_size * np.arange(fft.shape[0]) - return fft, freqs - - def _compute_mfcc(self, - samples, - sample_rate, - stride_ms=10.0, - window_ms=20.0, - max_freq=None): - """Compute mfcc from samples.""" - if max_freq is None: - max_freq = sample_rate / 2 - if max_freq > sample_rate / 2: - raise ValueError("max_freq must not be greater than half of " - "sample rate.") - if stride_ms > window_ms: - raise ValueError("Stride size must not be greater than " - "window size.") - # compute the 13 cepstral coefficients, and the first one is replaced - # by log(frame energy) - mfcc_feat = mfcc( - signal=samples, - samplerate=sample_rate, - winlen=0.001 * window_ms, - winstep=0.001 * stride_ms, - highfreq=max_freq) - # Deltas - d_mfcc_feat = delta(mfcc_feat, 2) - # Deltas-Deltas - dd_mfcc_feat = delta(d_mfcc_feat, 2) - # transpose - mfcc_feat = np.transpose(mfcc_feat) - d_mfcc_feat = np.transpose(d_mfcc_feat) - dd_mfcc_feat = np.transpose(dd_mfcc_feat) - # concat above three features - concat_mfcc_feat = np.concatenate( - (mfcc_feat, d_mfcc_feat, dd_mfcc_feat)) - return concat_mfcc_feat diff --git a/deep_speech_2/data_utils/featurizer/speech_featurizer.py b/deep_speech_2/data_utils/featurizer/speech_featurizer.py deleted file mode 100644 index 4555dc31..00000000 --- a/deep_speech_2/data_utils/featurizer/speech_featurizer.py +++ /dev/null @@ -1,98 +0,0 @@ -"""Contains the speech featurizer class.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.featurizer.audio_featurizer import AudioFeaturizer -from data_utils.featurizer.text_featurizer import TextFeaturizer - - -class SpeechFeaturizer(object): - """Speech featurizer, for extracting features from both audio and transcript - contents of SpeechSegment. - - Currently, for audio parts, it supports feature types of linear - spectrogram and mfcc; for transcript parts, it only supports char-level - tokenizing and conversion into a list of token indices. Note that the - token indexing order follows the given vocabulary file. - - :param vocab_filepath: Filepath to load vocabulary for token indices - conversion. - :type specgram_type: basestring - :param specgram_type: Specgram feature type. Options: 'linear', 'mfcc'. - :type specgram_type: str - :param stride_ms: Striding size (in milliseconds) for generating frames. - :type stride_ms: float - :param window_ms: Window size (in milliseconds) for generating frames. - :type window_ms: float - :param max_freq: When specgram_type is 'linear', only FFT bins - corresponding to frequencies between [0, max_freq] are - returned; when specgram_type is 'mfcc', max_freq is the - highest band edge of mel filters. - :types max_freq: None|float - :param target_sample_rate: Speech are resampled (if upsampling or - downsampling is allowed) to this before - extracting spectrogram features. - :type target_sample_rate: float - :param use_dB_normalization: Whether to normalize the audio to a certain - decibels before extracting the features. - :type use_dB_normalization: bool - :param target_dB: Target audio decibels for normalization. - :type target_dB: float - """ - - def __init__(self, - vocab_filepath, - specgram_type='linear', - stride_ms=10.0, - window_ms=20.0, - max_freq=None, - target_sample_rate=16000, - use_dB_normalization=True, - target_dB=-20): - self._audio_featurizer = AudioFeaturizer( - specgram_type=specgram_type, - stride_ms=stride_ms, - window_ms=window_ms, - max_freq=max_freq, - target_sample_rate=target_sample_rate, - use_dB_normalization=use_dB_normalization, - target_dB=target_dB) - self._text_featurizer = TextFeaturizer(vocab_filepath) - - def featurize(self, speech_segment, keep_transcription_text): - """Extract features for speech segment. - - 1. For audio parts, extract the audio features. - 2. For transcript parts, keep the original text or convert text string - to a list of token indices in char-level. - - :param audio_segment: Speech segment to extract features from. - :type audio_segment: SpeechSegment - :return: A tuple of 1) spectrogram audio feature in 2darray, 2) list of - char-level token indices. - :rtype: tuple - """ - audio_feature = self._audio_featurizer.featurize(speech_segment) - if keep_transcription_text: - return audio_feature, speech_segment.transcript - text_ids = self._text_featurizer.featurize(speech_segment.transcript) - return audio_feature, text_ids - - @property - def vocab_size(self): - """Return the vocabulary size. - - :return: Vocabulary size. - :rtype: int - """ - return self._text_featurizer.vocab_size - - @property - def vocab_list(self): - """Return the vocabulary in list. - - :return: Vocabulary in list. - :rtype: list - """ - return self._text_featurizer.vocab_list diff --git a/deep_speech_2/data_utils/featurizer/text_featurizer.py b/deep_speech_2/data_utils/featurizer/text_featurizer.py deleted file mode 100644 index 89202163..00000000 --- a/deep_speech_2/data_utils/featurizer/text_featurizer.py +++ /dev/null @@ -1,68 +0,0 @@ -"""Contains the text featurizer class.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import codecs - - -class TextFeaturizer(object): - """Text featurizer, for processing or extracting features from text. - - Currently, it only supports char-level tokenizing and conversion into - a list of token indices. Note that the token indexing order follows the - given vocabulary file. - - :param vocab_filepath: Filepath to load vocabulary for token indices - conversion. - :type specgram_type: basestring - """ - - def __init__(self, vocab_filepath): - self._vocab_dict, self._vocab_list = self._load_vocabulary_from_file( - vocab_filepath) - - def featurize(self, text): - """Convert text string to a list of token indices in char-level.Note - that the token indexing order follows the given vocabulary file. - - :param text: Text to process. - :type text: basestring - :return: List of char-level token indices. - :rtype: list - """ - tokens = self._char_tokenize(text) - return [self._vocab_dict[token] for token in tokens] - - @property - def vocab_size(self): - """Return the vocabulary size. - - :return: Vocabulary size. - :rtype: int - """ - return len(self._vocab_list) - - @property - def vocab_list(self): - """Return the vocabulary in list. - - :return: Vocabulary in list. - :rtype: list - """ - return self._vocab_list - - def _char_tokenize(self, text): - """Character tokenizer.""" - return list(text.strip()) - - def _load_vocabulary_from_file(self, vocab_filepath): - """Load vocabulary from file.""" - vocab_lines = [] - with codecs.open(vocab_filepath, 'r', 'utf-8') as file: - vocab_lines.extend(file.readlines()) - vocab_list = [line[:-1] for line in vocab_lines] - vocab_dict = dict( - [(token, id) for (id, token) in enumerate(vocab_list)]) - return vocab_dict, vocab_list diff --git a/deep_speech_2/data_utils/normalizer.py b/deep_speech_2/data_utils/normalizer.py deleted file mode 100644 index 7c2e05c9..00000000 --- a/deep_speech_2/data_utils/normalizer.py +++ /dev/null @@ -1,87 +0,0 @@ -"""Contains feature normalizers.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np -import random -from data_utils.utility import read_manifest -from data_utils.audio import AudioSegment - - -class FeatureNormalizer(object): - """Feature normalizer. Normalize features to be of zero mean and unit - stddev. - - if mean_std_filepath is provided (not None), the normalizer will directly - initilize from the file. Otherwise, both manifest_path and featurize_func - should be given for on-the-fly mean and stddev computing. - - :param mean_std_filepath: File containing the pre-computed mean and stddev. - :type mean_std_filepath: None|basestring - :param manifest_path: Manifest of instances for computing mean and stddev. - :type meanifest_path: None|basestring - :param featurize_func: Function to extract features. It should be callable - with ``featurize_func(audio_segment)``. - :type featurize_func: None|callable - :param num_samples: Number of random samples for computing mean and stddev. - :type num_samples: int - :param random_seed: Random seed for sampling instances. - :type random_seed: int - :raises ValueError: If both mean_std_filepath and manifest_path - (or both mean_std_filepath and featurize_func) are None. - """ - - def __init__(self, - mean_std_filepath, - manifest_path=None, - featurize_func=None, - num_samples=500, - random_seed=0): - if not mean_std_filepath: - if not (manifest_path and featurize_func): - raise ValueError("If mean_std_filepath is None, meanifest_path " - "and featurize_func should not be None.") - self._rng = random.Random(random_seed) - self._compute_mean_std(manifest_path, featurize_func, num_samples) - else: - self._read_mean_std_from_file(mean_std_filepath) - - def apply(self, features, eps=1e-14): - """Normalize features to be of zero mean and unit stddev. - - :param features: Input features to be normalized. - :type features: ndarray - :param eps: added to stddev to provide numerical stablibity. - :type eps: float - :return: Normalized features. - :rtype: ndarray - """ - return (features - self._mean) / (self._std + eps) - - def write_to_file(self, filepath): - """Write the mean and stddev to the file. - - :param filepath: File to write mean and stddev. - :type filepath: basestring - """ - np.savez(filepath, mean=self._mean, std=self._std) - - def _read_mean_std_from_file(self, filepath): - """Load mean and std from file.""" - npzfile = np.load(filepath) - self._mean = npzfile["mean"] - self._std = npzfile["std"] - - def _compute_mean_std(self, manifest_path, featurize_func, num_samples): - """Compute mean and std from randomly sampled instances.""" - manifest = read_manifest(manifest_path) - sampled_manifest = self._rng.sample(manifest, num_samples) - features = [] - for instance in sampled_manifest: - features.append( - featurize_func( - AudioSegment.from_file(instance["audio_filepath"]))) - features = np.hstack(features) - self._mean = np.mean(features, axis=1).reshape([-1, 1]) - self._std = np.std(features, axis=1).reshape([-1, 1]) diff --git a/deep_speech_2/data_utils/speech.py b/deep_speech_2/data_utils/speech.py deleted file mode 100644 index 0cea8873..00000000 --- a/deep_speech_2/data_utils/speech.py +++ /dev/null @@ -1,143 +0,0 @@ -"""Contains the speech segment class.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from data_utils.audio import AudioSegment - - -class SpeechSegment(AudioSegment): - """Speech segment abstraction, a subclass of AudioSegment, - with an additional transcript. - - :param samples: Audio samples [num_samples x num_channels]. - :type samples: ndarray.float32 - :param sample_rate: Audio sample rate. - :type sample_rate: int - :param transcript: Transcript text for the speech. - :type transript: basestring - :raises TypeError: If the sample data type is not float or int. - """ - - def __init__(self, samples, sample_rate, transcript): - AudioSegment.__init__(self, samples, sample_rate) - self._transcript = transcript - - def __eq__(self, other): - """Return whether two objects are equal. - """ - if not AudioSegment.__eq__(self, other): - return False - if self._transcript != other._transcript: - return False - return True - - def __ne__(self, other): - """Return whether two objects are unequal.""" - return not self.__eq__(other) - - @classmethod - def from_file(cls, filepath, transcript): - """Create speech segment from audio file and corresponding transcript. - - :param filepath: Filepath or file object to audio file. - :type filepath: basestring|file - :param transcript: Transcript text for the speech. - :type transript: basestring - :return: Speech segment instance. - :rtype: SpeechSegment - """ - audio = AudioSegment.from_file(filepath) - return cls(audio.samples, audio.sample_rate, transcript) - - @classmethod - def from_bytes(cls, bytes, transcript): - """Create speech segment from a byte string and corresponding - transcript. - - :param bytes: Byte string containing audio samples. - :type bytes: str - :param transcript: Transcript text for the speech. - :type transript: basestring - :return: Speech segment instance. - :rtype: Speech Segment - """ - audio = AudioSegment.from_bytes(bytes) - return cls(audio.samples, audio.sample_rate, transcript) - - @classmethod - def concatenate(cls, *segments): - """Concatenate an arbitrary number of speech segments together, both - audio and transcript will be concatenated. - - :param *segments: Input speech segments to be concatenated. - :type *segments: tuple of SpeechSegment - :return: Speech segment instance. - :rtype: SpeechSegment - :raises ValueError: If the number of segments is zero, or if the - sample_rate of any two segments does not match. - :raises TypeError: If any segment is not SpeechSegment instance. - """ - if len(segments) == 0: - raise ValueError("No speech segments are given to concatenate.") - sample_rate = segments[0]._sample_rate - transcripts = "" - for seg in segments: - if sample_rate != seg._sample_rate: - raise ValueError("Can't concatenate segments with " - "different sample rates") - if type(seg) is not cls: - raise TypeError("Only speech segments of the same type " - "instance can be concatenated.") - transcripts += seg._transcript - samples = np.concatenate([seg.samples for seg in segments]) - return cls(samples, sample_rate, transcripts) - - @classmethod - def slice_from_file(cls, filepath, transcript, start=None, end=None): - """Loads a small section of an speech without having to load - the entire file into the memory which can be incredibly wasteful. - - :param filepath: Filepath or file object to audio file. - :type filepath: basestring|file - :param start: Start time in seconds. If start is negative, it wraps - around from the end. If not provided, this function - reads from the very beginning. - :type start: float - :param end: End time in seconds. If end is negative, it wraps around - from the end. If not provided, the default behvaior is - to read to the end of the file. - :type end: float - :param transcript: Transcript text for the speech. if not provided, - the defaults is an empty string. - :type transript: basestring - :return: SpeechSegment instance of the specified slice of the input - speech file. - :rtype: SpeechSegment - """ - audio = AudioSegment.slice_from_file(filepath, start, end) - return cls(audio.samples, audio.sample_rate, transcript) - - @classmethod - def make_silence(cls, duration, sample_rate): - """Creates a silent speech segment of the given duration and - sample rate, transcript will be an empty string. - - :param duration: Length of silence in seconds. - :type duration: float - :param sample_rate: Sample rate. - :type sample_rate: float - :return: Silence of the given duration. - :rtype: SpeechSegment - """ - audio = AudioSegment.make_silence(duration, sample_rate) - return cls(audio.samples, audio.sample_rate, "") - - @property - def transcript(self): - """Return the transcript text. - - :return: Transcript text for the speech. - :rtype: basestring - """ - return self._transcript diff --git a/deep_speech_2/data_utils/utility.py b/deep_speech_2/data_utils/utility.py deleted file mode 100644 index bb5cad45..00000000 --- a/deep_speech_2/data_utils/utility.py +++ /dev/null @@ -1,181 +0,0 @@ -"""Contains data helper functions.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import json -import codecs -import os -import tarfile -import time -from Queue import Queue -from threading import Thread -from multiprocessing import Process, Manager -from paddle.v2.dataset.common import md5file - - -def read_manifest(manifest_path, max_duration=float('inf'), min_duration=0.0): - """Load and parse manifest file. - - Instances with durations outside [min_duration, max_duration] will be - filtered out. - - :param manifest_path: Manifest file to load and parse. - :type manifest_path: basestring - :param max_duration: Maximal duration in seconds for instance filter. - :type max_duration: float - :param min_duration: Minimal duration in seconds for instance filter. - :type min_duration: float - :return: Manifest parsing results. List of dict. - :rtype: list - :raises IOError: If failed to parse the manifest. - """ - manifest = [] - for json_line in codecs.open(manifest_path, 'r', 'utf-8'): - try: - json_data = json.loads(json_line) - except Exception as e: - raise IOError("Error reading manifest: %s" % str(e)) - if (json_data["duration"] <= max_duration and - json_data["duration"] >= min_duration): - manifest.append(json_data) - return manifest - - -def download(url, md5sum, target_dir): - """Download file from url to target_dir, and check md5sum.""" - if not os.path.exists(target_dir): os.makedirs(target_dir) - filepath = os.path.join(target_dir, url.split("/")[-1]) - if not (os.path.exists(filepath) and md5file(filepath) == md5sum): - print("Downloading %s ..." % url) - os.system("wget -c " + url + " -P " + target_dir) - print("\nMD5 Chesksum %s ..." % filepath) - if not md5file(filepath) == md5sum: - raise RuntimeError("MD5 checksum failed.") - else: - print("File exists, skip downloading. (%s)" % filepath) - return filepath - - -def unpack(filepath, target_dir, rm_tar=False): - """Unpack the file to the target_dir.""" - print("Unpacking %s ..." % filepath) - tar = tarfile.open(filepath) - tar.extractall(target_dir) - tar.close() - if rm_tar == True: - os.remove(filepath) - - -class XmapEndSignal(): - pass - - -def xmap_readers_mp(mapper, reader, process_num, buffer_size, order=False): - """A multiprocessing pipeline wrapper for the data reader. - - :param mapper: Function to map sample. - :type mapper: callable - :param reader: Given data reader. - :type reader: callable - :param process_num: Number of processes in the pipeline - :type process_num: int - :param buffer_size: Maximal buffer size. - :type buffer_size: int - :param order: Reserve the order of samples from the given reader. - :type order: bool - :return: The wrappered reader - :rtype: callable - """ - end_flag = XmapEndSignal() - - # define a worker to read samples from reader to in_queue - def read_worker(reader, in_queue): - for sample in reader(): - in_queue.put(sample) - in_queue.put(end_flag) - - # define a worker to read samples from reader to in_queue with order flag - def order_read_worker(reader, in_queue): - for order_id, sample in enumerate(reader()): - in_queue.put((order_id, sample)) - in_queue.put(end_flag) - - # define a worker to handle samples from in_queue by mapper and put results - # to out_queue - def handle_worker(in_queue, out_queue, mapper): - sample = in_queue.get() - while not isinstance(sample, XmapEndSignal): - out_queue.put(mapper(sample)) - sample = in_queue.get() - in_queue.put(end_flag) - out_queue.put(end_flag) - - # define a worker to handle samples from in_queue by mapper and put results - # to out_queue with order - def order_handle_worker(in_queue, out_queue, mapper, out_order): - ins = in_queue.get() - while not isinstance(ins, XmapEndSignal): - order_id, sample = ins - result = mapper(sample) - while order_id != out_order[0]: - time.sleep(0.001) - out_queue.put(result) - out_order[0] += 1 - ins = in_queue.get() - in_queue.put(end_flag) - out_queue.put(end_flag) - - # define a thread worker to flush samples from Manager.Queue to Queue - # for acceleration - def flush_worker(in_queue, out_queue): - finish = 0 - while finish < process_num: - sample = in_queue.get() - if isinstance(sample, XmapEndSignal): - finish += 1 - else: - out_queue.put(sample) - out_queue.put(end_flag) - - def cleanup(): - # kill all sub process and threads - os._exit(0) - - def xreader(): - # prepare shared memory - manager = Manager() - in_queue = manager.Queue(buffer_size) - out_queue = manager.Queue(buffer_size) - out_order = manager.list([0]) - - # start a read worker in a process - target = order_read_worker if order else read_worker - p = Process(target=target, args=(reader, in_queue)) - p.daemon = True - p.start() - - # start handle_workers with multiple processes - target = order_handle_worker if order else handle_worker - args = (in_queue, out_queue, mapper, out_order) if order else ( - in_queue, out_queue, mapper) - workers = [ - Process(target=target, args=args) for _ in xrange(process_num) - ] - for w in workers: - w.daemon = True - w.start() - - # start a thread to read data from slow Manager.Queue - flush_queue = Queue(buffer_size) - t = Thread(target=flush_worker, args=(out_queue, flush_queue)) - t.daemon = True - t.start() - - # get results - sample = flush_queue.get() - while not isinstance(sample, XmapEndSignal): - yield sample - sample = flush_queue.get() - - return xreader, cleanup diff --git a/deep_speech_2/decoders/__init__.py b/deep_speech_2/decoders/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/deep_speech_2/decoders/decoders_deprecated.py b/deep_speech_2/decoders/decoders_deprecated.py deleted file mode 100644 index 17b28b0d..00000000 --- a/deep_speech_2/decoders/decoders_deprecated.py +++ /dev/null @@ -1,238 +0,0 @@ -"""Contains various CTC decoders.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from itertools import groupby -import numpy as np -from math import log -import multiprocessing - - -def ctc_greedy_decoder(probs_seq, vocabulary): - """CTC greedy (best path) decoder. - - Path consisting of the most probable tokens are further post-processed to - remove consecutive repetitions and all blanks. - - :param probs_seq: 2-D list of probabilities over the vocabulary for each - character. Each element is a list of float probabilities - for one character. - :type probs_seq: list - :param vocabulary: Vocabulary list. - :type vocabulary: list - :return: Decoding result string. - :rtype: baseline - """ - # dimension verification - for probs in probs_seq: - if not len(probs) == len(vocabulary) + 1: - raise ValueError("probs_seq dimension mismatchedd with vocabulary") - # argmax to get the best index for each time step - max_index_list = list(np.array(probs_seq).argmax(axis=1)) - # remove consecutive duplicate indexes - index_list = [index_group[0] for index_group in groupby(max_index_list)] - # remove blank indexes - blank_index = len(vocabulary) - index_list = [index for index in index_list if index != blank_index] - # convert index list to string - return ''.join([vocabulary[index] for index in index_list]) - - -def ctc_beam_search_decoder(probs_seq, - beam_size, - vocabulary, - cutoff_prob=1.0, - cutoff_top_n=40, - ext_scoring_func=None, - nproc=False): - """CTC Beam search decoder. - - It utilizes beam search to approximately select top best decoding - labels and returning results in the descending order. - The implementation is based on Prefix Beam Search - (https://arxiv.org/abs/1408.2873), and the unclear part is - redesigned. Two important modifications: 1) in the iterative computation - of probabilities, the assignment operation is changed to accumulation for - one prefix may comes from different paths; 2) the if condition "if l^+ not - in A_prev then" after probabilities' computation is deprecated for it is - hard to understand and seems unnecessary. - - :param probs_seq: 2-D list of probability distributions over each time - step, with each element being a list of normalized - probabilities over vocabulary and blank. - :type probs_seq: 2-D list - :param beam_size: Width for beam search. - :type beam_size: int - :param vocabulary: Vocabulary list. - :type vocabulary: list - :param cutoff_prob: Cutoff probability in pruning, - default 1.0, no pruning. - :type cutoff_prob: float - :param ext_scoring_func: External scoring function for - partially decoded sentence, e.g. word count - or language model. - :type external_scoring_func: callable - :param nproc: Whether the decoder used in multiprocesses. - :type nproc: bool - :return: List of tuples of log probability and sentence as decoding - results, in descending order of the probability. - :rtype: list - """ - # dimension check - for prob_list in probs_seq: - if not len(prob_list) == len(vocabulary) + 1: - raise ValueError("The shape of prob_seq does not match with the " - "shape of the vocabulary.") - - # blank_id assign - blank_id = len(vocabulary) - - # If the decoder called in the multiprocesses, then use the global scorer - # instantiated in ctc_beam_search_decoder_batch(). - if nproc is True: - global ext_nproc_scorer - ext_scoring_func = ext_nproc_scorer - - ## initialize - # prefix_set_prev: the set containing selected prefixes - # probs_b_prev: prefixes' probability ending with blank in previous step - # probs_nb_prev: prefixes' probability ending with non-blank in previous step - prefix_set_prev = {'\t': 1.0} - probs_b_prev, probs_nb_prev = {'\t': 1.0}, {'\t': 0.0} - - ## extend prefix in loop - for time_step in xrange(len(probs_seq)): - # prefix_set_next: the set containing candidate prefixes - # probs_b_cur: prefixes' probability ending with blank in current step - # probs_nb_cur: prefixes' probability ending with non-blank in current step - prefix_set_next, probs_b_cur, probs_nb_cur = {}, {}, {} - - prob_idx = list(enumerate(probs_seq[time_step])) - cutoff_len = len(prob_idx) - #If pruning is enabled - if cutoff_prob < 1.0 or cutoff_top_n < cutoff_len: - prob_idx = sorted(prob_idx, key=lambda asd: asd[1], reverse=True) - cutoff_len, cum_prob = 0, 0.0 - for i in xrange(len(prob_idx)): - cum_prob += prob_idx[i][1] - cutoff_len += 1 - if cum_prob >= cutoff_prob: - break - cutoff_len = min(cutoff_len, cutoff_top_n) - prob_idx = prob_idx[0:cutoff_len] - - for l in prefix_set_prev: - if not prefix_set_next.has_key(l): - probs_b_cur[l], probs_nb_cur[l] = 0.0, 0.0 - - # extend prefix by travering prob_idx - for index in xrange(cutoff_len): - c, prob_c = prob_idx[index][0], prob_idx[index][1] - - if c == blank_id: - probs_b_cur[l] += prob_c * ( - probs_b_prev[l] + probs_nb_prev[l]) - else: - last_char = l[-1] - new_char = vocabulary[c] - l_plus = l + new_char - if not prefix_set_next.has_key(l_plus): - probs_b_cur[l_plus], probs_nb_cur[l_plus] = 0.0, 0.0 - - if new_char == last_char: - probs_nb_cur[l_plus] += prob_c * probs_b_prev[l] - probs_nb_cur[l] += prob_c * probs_nb_prev[l] - elif new_char == ' ': - if (ext_scoring_func is None) or (len(l) == 1): - score = 1.0 - else: - prefix = l[1:] - score = ext_scoring_func(prefix) - probs_nb_cur[l_plus] += score * prob_c * ( - probs_b_prev[l] + probs_nb_prev[l]) - else: - probs_nb_cur[l_plus] += prob_c * ( - probs_b_prev[l] + probs_nb_prev[l]) - # add l_plus into prefix_set_next - prefix_set_next[l_plus] = probs_nb_cur[ - l_plus] + probs_b_cur[l_plus] - # add l into prefix_set_next - prefix_set_next[l] = probs_b_cur[l] + probs_nb_cur[l] - # update probs - probs_b_prev, probs_nb_prev = probs_b_cur, probs_nb_cur - - ## store top beam_size prefixes - prefix_set_prev = sorted( - prefix_set_next.iteritems(), key=lambda asd: asd[1], reverse=True) - if beam_size < len(prefix_set_prev): - prefix_set_prev = prefix_set_prev[:beam_size] - prefix_set_prev = dict(prefix_set_prev) - - beam_result = [] - for seq, prob in prefix_set_prev.items(): - if prob > 0.0 and len(seq) > 1: - result = seq[1:] - # score last word by external scorer - if (ext_scoring_func is not None) and (result[-1] != ' '): - prob = prob * ext_scoring_func(result) - log_prob = log(prob) - beam_result.append((log_prob, result)) - else: - beam_result.append((float('-inf'), '')) - - ## output top beam_size decoding results - beam_result = sorted(beam_result, key=lambda asd: asd[0], reverse=True) - return beam_result - - -def ctc_beam_search_decoder_batch(probs_split, - beam_size, - vocabulary, - num_processes, - cutoff_prob=1.0, - cutoff_top_n=40, - ext_scoring_func=None): - """CTC beam search decoder using multiple processes. - - :param probs_seq: 3-D list with each element as an instance of 2-D list - of probabilities used by ctc_beam_search_decoder(). - :type probs_seq: 3-D list - :param beam_size: Width for beam search. - :type beam_size: int - :param vocabulary: Vocabulary list. - :type vocabulary: list - :param num_processes: Number of parallel processes. - :type num_processes: int - :param cutoff_prob: Cutoff probability in pruning, - default 1.0, no pruning. - :type cutoff_prob: float - :param num_processes: Number of parallel processes. - :type num_processes: int - :param ext_scoring_func: External scoring function for - partially decoded sentence, e.g. word count - or language model. - :type external_scoring_function: callable - :return: List of tuples of log probability and sentence as decoding - results, in descending order of the probability. - :rtype: list - """ - if not num_processes > 0: - raise ValueError("Number of processes must be positive!") - - # use global variable to pass the externnal scorer to beam search decoder - global ext_nproc_scorer - ext_nproc_scorer = ext_scoring_func - nproc = True - - pool = multiprocessing.Pool(processes=num_processes) - results = [] - for i, probs_list in enumerate(probs_split): - args = (probs_list, beam_size, vocabulary, cutoff_prob, cutoff_top_n, - None, nproc) - results.append(pool.apply_async(ctc_beam_search_decoder, args)) - - pool.close() - pool.join() - beam_search_results = [result.get() for result in results] - return beam_search_results diff --git a/deep_speech_2/decoders/scorer_deprecated.py b/deep_speech_2/decoders/scorer_deprecated.py deleted file mode 100644 index c6a66103..00000000 --- a/deep_speech_2/decoders/scorer_deprecated.py +++ /dev/null @@ -1,68 +0,0 @@ -"""External Scorer for Beam Search Decoder.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os -import kenlm -import numpy as np - - -class Scorer(object): - """External scorer to evaluate a prefix or whole sentence in - beam search decoding, including the score from n-gram language - model and word count. - - :param alpha: Parameter associated with language model. Don't use - language model when alpha = 0. - :type alpha: float - :param beta: Parameter associated with word count. Don't use word - count when beta = 0. - :type beta: float - :model_path: Path to load language model. - :type model_path: basestring - """ - - def __init__(self, alpha, beta, model_path): - self._alpha = alpha - self._beta = beta - if not os.path.isfile(model_path): - raise IOError("Invaid language model path: %s" % model_path) - self._language_model = kenlm.LanguageModel(model_path) - - # n-gram language model scoring - def _language_model_score(self, sentence): - #log10 prob of last word - log_cond_prob = list( - self._language_model.full_scores(sentence, eos=False))[-1][0] - return np.power(10, log_cond_prob) - - # word insertion term - def _word_count(self, sentence): - words = sentence.strip().split(' ') - return len(words) - - # reset alpha and beta - def reset_params(self, alpha, beta): - self._alpha = alpha - self._beta = beta - - # execute evaluation - def __call__(self, sentence, log=False): - """Evaluation function, gathering all the different scores - and return the final one. - - :param sentence: The input sentence for evalutation - :type sentence: basestring - :param log: Whether return the score in log representation. - :type log: bool - :return: Evaluation score, in the decimal or log. - :rtype: float - """ - lm = self._language_model_score(sentence) - word_cnt = self._word_count(sentence) - if log == False: - score = np.power(lm, self._alpha) * np.power(word_cnt, self._beta) - else: - score = self._alpha * np.log(lm) + self._beta * np.log(word_cnt) - return score diff --git a/deep_speech_2/decoders/swig/__init__.py b/deep_speech_2/decoders/swig/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/deep_speech_2/decoders/swig/_init_paths.py b/deep_speech_2/decoders/swig/_init_paths.py deleted file mode 100644 index ddabb535..00000000 --- a/deep_speech_2/decoders/swig/_init_paths.py +++ /dev/null @@ -1,19 +0,0 @@ -"""Set up paths for DS2""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os.path -import sys - - -def add_path(path): - if path not in sys.path: - sys.path.insert(0, path) - - -this_dir = os.path.dirname(__file__) - -# Add project path to PYTHONPATH -proj_path = os.path.join(this_dir, '..') -add_path(proj_path) diff --git a/deep_speech_2/decoders/swig/ctc_beam_search_decoder.cpp b/deep_speech_2/decoders/swig/ctc_beam_search_decoder.cpp deleted file mode 100644 index 4a63af26..00000000 --- a/deep_speech_2/decoders/swig/ctc_beam_search_decoder.cpp +++ /dev/null @@ -1,222 +0,0 @@ -#include "ctc_beam_search_decoder.h" - -#include -#include -#include -#include -#include -#include - -#include "ThreadPool.h" -#include "fst/fstlib.h" - -#include "decoder_utils.h" -#include "path_trie.h" - -using FSTMATCH = fst::SortedMatcher; - -std::vector> ctc_beam_search_decoder( - const std::vector> &probs_seq, - const std::vector &vocabulary, - size_t beam_size, - double cutoff_prob, - size_t cutoff_top_n, - Scorer *ext_scorer) { - // dimension check - size_t num_time_steps = probs_seq.size(); - for (size_t i = 0; i < num_time_steps; ++i) { - VALID_CHECK_EQ(probs_seq[i].size(), - vocabulary.size() + 1, - "The shape of probs_seq does not match with " - "the shape of the vocabulary"); - } - - // assign blank id - size_t blank_id = vocabulary.size(); - - // assign space id - auto it = std::find(vocabulary.begin(), vocabulary.end(), " "); - int space_id = it - vocabulary.begin(); - // if no space in vocabulary - if ((size_t)space_id >= vocabulary.size()) { - space_id = -2; - } - - // init prefixes' root - PathTrie root; - root.score = root.log_prob_b_prev = 0.0; - std::vector prefixes; - prefixes.push_back(&root); - - if (ext_scorer != nullptr && !ext_scorer->is_character_based()) { - auto fst_dict = static_cast(ext_scorer->dictionary); - fst::StdVectorFst *dict_ptr = fst_dict->Copy(true); - root.set_dictionary(dict_ptr); - auto matcher = std::make_shared(*dict_ptr, fst::MATCH_INPUT); - root.set_matcher(matcher); - } - - // prefix search over time - for (size_t time_step = 0; time_step < num_time_steps; ++time_step) { - auto &prob = probs_seq[time_step]; - - float min_cutoff = -NUM_FLT_INF; - bool full_beam = false; - if (ext_scorer != nullptr) { - size_t num_prefixes = std::min(prefixes.size(), beam_size); - std::sort( - prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare); - min_cutoff = prefixes[num_prefixes - 1]->score + - std::log(prob[blank_id]) - std::max(0.0, ext_scorer->beta); - full_beam = (num_prefixes == beam_size); - } - - std::vector> log_prob_idx = - get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n); - // loop over chars - for (size_t index = 0; index < log_prob_idx.size(); index++) { - auto c = log_prob_idx[index].first; - auto log_prob_c = log_prob_idx[index].second; - - for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) { - auto prefix = prefixes[i]; - if (full_beam && log_prob_c + prefix->score < min_cutoff) { - break; - } - // blank - if (c == blank_id) { - prefix->log_prob_b_cur = - log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score); - continue; - } - // repeated character - if (c == prefix->character) { - prefix->log_prob_nb_cur = log_sum_exp( - prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev); - } - // get new prefix - auto prefix_new = prefix->get_path_trie(c); - - if (prefix_new != nullptr) { - float log_p = -NUM_FLT_INF; - - if (c == prefix->character && - prefix->log_prob_b_prev > -NUM_FLT_INF) { - log_p = log_prob_c + prefix->log_prob_b_prev; - } else if (c != prefix->character) { - log_p = log_prob_c + prefix->score; - } - - // language model scoring - if (ext_scorer != nullptr && - (c == space_id || ext_scorer->is_character_based())) { - PathTrie *prefix_to_score = nullptr; - // skip scoring the space - if (ext_scorer->is_character_based()) { - prefix_to_score = prefix_new; - } else { - prefix_to_score = prefix; - } - - float score = 0.0; - std::vector ngram; - ngram = ext_scorer->make_ngram(prefix_to_score); - score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha; - log_p += score; - log_p += ext_scorer->beta; - } - prefix_new->log_prob_nb_cur = - log_sum_exp(prefix_new->log_prob_nb_cur, log_p); - } - } // end of loop over prefix - } // end of loop over vocabulary - - - prefixes.clear(); - // update log probs - root.iterate_to_vec(prefixes); - - // only preserve top beam_size prefixes - if (prefixes.size() >= beam_size) { - std::nth_element(prefixes.begin(), - prefixes.begin() + beam_size, - prefixes.end(), - prefix_compare); - for (size_t i = beam_size; i < prefixes.size(); ++i) { - prefixes[i]->remove(); - } - } - } // end of loop over time - - // score the last word of each prefix that doesn't end with space - if (ext_scorer != nullptr && !ext_scorer->is_character_based()) { - for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) { - auto prefix = prefixes[i]; - if (!prefix->is_empty() && prefix->character != space_id) { - float score = 0.0; - std::vector ngram = ext_scorer->make_ngram(prefix); - score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha; - score += ext_scorer->beta; - prefix->score += score; - } - } - } - - size_t num_prefixes = std::min(prefixes.size(), beam_size); - std::sort(prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare); - - // compute aproximate ctc score as the return score, without affecting the - // return order of decoding result. To delete when decoder gets stable. - for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) { - double approx_ctc = prefixes[i]->score; - if (ext_scorer != nullptr) { - std::vector output; - prefixes[i]->get_path_vec(output); - auto prefix_length = output.size(); - auto words = ext_scorer->split_labels(output); - // remove word insert - approx_ctc = approx_ctc - prefix_length * ext_scorer->beta; - // remove language model weight: - approx_ctc -= (ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha; - } - prefixes[i]->approx_ctc = approx_ctc; - } - - return get_beam_search_result(prefixes, vocabulary, beam_size); -} - - -std::vector>> -ctc_beam_search_decoder_batch( - const std::vector>> &probs_split, - const std::vector &vocabulary, - size_t beam_size, - size_t num_processes, - double cutoff_prob, - size_t cutoff_top_n, - Scorer *ext_scorer) { - VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!"); - // thread pool - ThreadPool pool(num_processes); - // number of samples - size_t batch_size = probs_split.size(); - - // enqueue the tasks of decoding - std::vector>>> res; - for (size_t i = 0; i < batch_size; ++i) { - res.emplace_back(pool.enqueue(ctc_beam_search_decoder, - probs_split[i], - vocabulary, - beam_size, - cutoff_prob, - cutoff_top_n, - ext_scorer)); - } - - // get decoding results - std::vector>> batch_results; - for (size_t i = 0; i < batch_size; ++i) { - batch_results.emplace_back(res[i].get()); - } - return batch_results; -} diff --git a/deep_speech_2/decoders/swig/ctc_beam_search_decoder.h b/deep_speech_2/decoders/swig/ctc_beam_search_decoder.h deleted file mode 100644 index 6fdd1551..00000000 --- a/deep_speech_2/decoders/swig/ctc_beam_search_decoder.h +++ /dev/null @@ -1,61 +0,0 @@ -#ifndef CTC_BEAM_SEARCH_DECODER_H_ -#define CTC_BEAM_SEARCH_DECODER_H_ - -#include -#include -#include - -#include "scorer.h" - -/* CTC Beam Search Decoder - - * Parameters: - * probs_seq: 2-D vector that each element is a vector of probabilities - * over vocabulary of one time step. - * vocabulary: A vector of vocabulary. - * beam_size: The width of beam search. - * cutoff_prob: Cutoff probability for pruning. - * cutoff_top_n: Cutoff number for pruning. - * ext_scorer: External scorer to evaluate a prefix, which consists of - * n-gram language model scoring and word insertion term. - * Default null, decoding the input sample without scorer. - * Return: - * A vector that each element is a pair of score and decoding result, - * in desending order. -*/ -std::vector> ctc_beam_search_decoder( - const std::vector> &probs_seq, - const std::vector &vocabulary, - size_t beam_size, - double cutoff_prob = 1.0, - size_t cutoff_top_n = 40, - Scorer *ext_scorer = nullptr); - -/* CTC Beam Search Decoder for batch data - - * Parameters: - * probs_seq: 3-D vector that each element is a 2-D vector that can be used - * by ctc_beam_search_decoder(). - * vocabulary: A vector of vocabulary. - * beam_size: The width of beam search. - * num_processes: Number of threads for beam search. - * cutoff_prob: Cutoff probability for pruning. - * cutoff_top_n: Cutoff number for pruning. - * ext_scorer: External scorer to evaluate a prefix, which consists of - * n-gram language model scoring and word insertion term. - * Default null, decoding the input sample without scorer. - * Return: - * A 2-D vector that each element is a vector of beam search decoding - * result for one audio sample. -*/ -std::vector>> -ctc_beam_search_decoder_batch( - const std::vector>> &probs_split, - const std::vector &vocabulary, - size_t beam_size, - size_t num_processes, - double cutoff_prob = 1.0, - size_t cutoff_top_n = 40, - Scorer *ext_scorer = nullptr); - -#endif // CTC_BEAM_SEARCH_DECODER_H_ diff --git a/deep_speech_2/decoders/swig/ctc_greedy_decoder.cpp b/deep_speech_2/decoders/swig/ctc_greedy_decoder.cpp deleted file mode 100644 index 03449d73..00000000 --- a/deep_speech_2/decoders/swig/ctc_greedy_decoder.cpp +++ /dev/null @@ -1,45 +0,0 @@ -#include "ctc_greedy_decoder.h" -#include "decoder_utils.h" - -std::string ctc_greedy_decoder( - const std::vector> &probs_seq, - const std::vector &vocabulary) { - // dimension check - size_t num_time_steps = probs_seq.size(); - for (size_t i = 0; i < num_time_steps; ++i) { - VALID_CHECK_EQ(probs_seq[i].size(), - vocabulary.size() + 1, - "The shape of probs_seq does not match with " - "the shape of the vocabulary"); - } - - size_t blank_id = vocabulary.size(); - - std::vector max_idx_vec(num_time_steps, 0); - std::vector idx_vec; - for (size_t i = 0; i < num_time_steps; ++i) { - double max_prob = 0.0; - size_t max_idx = 0; - const std::vector &probs_step = probs_seq[i]; - for (size_t j = 0; j < probs_step.size(); ++j) { - if (max_prob < probs_step[j]) { - max_idx = j; - max_prob = probs_step[j]; - } - } - // id with maximum probability in current time step - max_idx_vec[i] = max_idx; - // deduplicate - if ((i == 0) || ((i > 0) && max_idx_vec[i] != max_idx_vec[i - 1])) { - idx_vec.push_back(max_idx_vec[i]); - } - } - - std::string best_path_result; - for (size_t i = 0; i < idx_vec.size(); ++i) { - if (idx_vec[i] != blank_id) { - best_path_result += vocabulary[idx_vec[i]]; - } - } - return best_path_result; -} diff --git a/deep_speech_2/decoders/swig/ctc_greedy_decoder.h b/deep_speech_2/decoders/swig/ctc_greedy_decoder.h deleted file mode 100644 index 5e64f692..00000000 --- a/deep_speech_2/decoders/swig/ctc_greedy_decoder.h +++ /dev/null @@ -1,20 +0,0 @@ -#ifndef CTC_GREEDY_DECODER_H -#define CTC_GREEDY_DECODER_H - -#include -#include - -/* CTC Greedy (Best Path) Decoder - * - * Parameters: - * probs_seq: 2-D vector that each element is a vector of probabilities - * over vocabulary of one time step. - * vocabulary: A vector of vocabulary. - * Return: - * The decoding result in string - */ -std::string ctc_greedy_decoder( - const std::vector>& probs_seq, - const std::vector& vocabulary); - -#endif // CTC_GREEDY_DECODER_H diff --git a/deep_speech_2/decoders/swig/decoder_utils.cpp b/deep_speech_2/decoders/swig/decoder_utils.cpp deleted file mode 100644 index 70a15928..00000000 --- a/deep_speech_2/decoders/swig/decoder_utils.cpp +++ /dev/null @@ -1,176 +0,0 @@ -#include "decoder_utils.h" - -#include -#include -#include - -std::vector> get_pruned_log_probs( - const std::vector &prob_step, - double cutoff_prob, - size_t cutoff_top_n) { - std::vector> prob_idx; - for (size_t i = 0; i < prob_step.size(); ++i) { - prob_idx.push_back(std::pair(i, prob_step[i])); - } - // pruning of vacobulary - size_t cutoff_len = prob_step.size(); - if (cutoff_prob < 1.0 || cutoff_top_n < cutoff_len) { - std::sort( - prob_idx.begin(), prob_idx.end(), pair_comp_second_rev); - if (cutoff_prob < 1.0) { - double cum_prob = 0.0; - cutoff_len = 0; - for (size_t i = 0; i < prob_idx.size(); ++i) { - cum_prob += prob_idx[i].second; - cutoff_len += 1; - if (cum_prob >= cutoff_prob || cutoff_len >= cutoff_top_n) break; - } - } - prob_idx = std::vector>( - prob_idx.begin(), prob_idx.begin() + cutoff_len); - } - std::vector> log_prob_idx; - for (size_t i = 0; i < cutoff_len; ++i) { - log_prob_idx.push_back(std::pair( - prob_idx[i].first, log(prob_idx[i].second + NUM_FLT_MIN))); - } - return log_prob_idx; -} - - -std::vector> get_beam_search_result( - const std::vector &prefixes, - const std::vector &vocabulary, - size_t beam_size) { - // allow for the post processing - std::vector space_prefixes; - if (space_prefixes.empty()) { - for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) { - space_prefixes.push_back(prefixes[i]); - } - } - - std::sort(space_prefixes.begin(), space_prefixes.end(), prefix_compare); - std::vector> output_vecs; - for (size_t i = 0; i < beam_size && i < space_prefixes.size(); ++i) { - std::vector output; - space_prefixes[i]->get_path_vec(output); - // convert index to string - std::string output_str; - for (size_t j = 0; j < output.size(); j++) { - output_str += vocabulary[output[j]]; - } - std::pair output_pair(-space_prefixes[i]->approx_ctc, - output_str); - output_vecs.emplace_back(output_pair); - } - - return output_vecs; -} - -size_t get_utf8_str_len(const std::string &str) { - size_t str_len = 0; - for (char c : str) { - str_len += ((c & 0xc0) != 0x80); - } - return str_len; -} - -std::vector split_utf8_str(const std::string &str) { - std::vector result; - std::string out_str; - - for (char c : str) { - if ((c & 0xc0) != 0x80) // new UTF-8 character - { - if (!out_str.empty()) { - result.push_back(out_str); - out_str.clear(); - } - } - - out_str.append(1, c); - } - result.push_back(out_str); - return result; -} - -std::vector split_str(const std::string &s, - const std::string &delim) { - std::vector result; - std::size_t start = 0, delim_len = delim.size(); - while (true) { - std::size_t end = s.find(delim, start); - if (end == std::string::npos) { - if (start < s.size()) { - result.push_back(s.substr(start)); - } - break; - } - if (end > start) { - result.push_back(s.substr(start, end - start)); - } - start = end + delim_len; - } - return result; -} - -bool prefix_compare(const PathTrie *x, const PathTrie *y) { - if (x->score == y->score) { - if (x->character == y->character) { - return false; - } else { - return (x->character < y->character); - } - } else { - return x->score > y->score; - } -} - -void add_word_to_fst(const std::vector &word, - fst::StdVectorFst *dictionary) { - if (dictionary->NumStates() == 0) { - fst::StdVectorFst::StateId start = dictionary->AddState(); - assert(start == 0); - dictionary->SetStart(start); - } - fst::StdVectorFst::StateId src = dictionary->Start(); - fst::StdVectorFst::StateId dst; - for (auto c : word) { - dst = dictionary->AddState(); - dictionary->AddArc(src, fst::StdArc(c, c, 0, dst)); - src = dst; - } - dictionary->SetFinal(dst, fst::StdArc::Weight::One()); -} - -bool add_word_to_dictionary( - const std::string &word, - const std::unordered_map &char_map, - bool add_space, - int SPACE_ID, - fst::StdVectorFst *dictionary) { - auto characters = split_utf8_str(word); - - std::vector int_word; - - for (auto &c : characters) { - if (c == " ") { - int_word.push_back(SPACE_ID); - } else { - auto int_c = char_map.find(c); - if (int_c != char_map.end()) { - int_word.push_back(int_c->second); - } else { - return false; // return without adding - } - } - } - - if (add_space) { - int_word.push_back(SPACE_ID); - } - - add_word_to_fst(int_word, dictionary); - return true; // return with successful adding -} diff --git a/deep_speech_2/decoders/swig/decoder_utils.h b/deep_speech_2/decoders/swig/decoder_utils.h deleted file mode 100644 index 72821c18..00000000 --- a/deep_speech_2/decoders/swig/decoder_utils.h +++ /dev/null @@ -1,94 +0,0 @@ -#ifndef DECODER_UTILS_H_ -#define DECODER_UTILS_H_ - -#include -#include "fst/log.h" -#include "path_trie.h" - -const float NUM_FLT_INF = std::numeric_limits::max(); -const float NUM_FLT_MIN = std::numeric_limits::min(); - -// inline function for validation check -inline void check( - bool x, const char *expr, const char *file, int line, const char *err) { - if (!x) { - std::cout << "[" << file << ":" << line << "] "; - LOG(FATAL) << "\"" << expr << "\" check failed. " << err; - } -} - -#define VALID_CHECK(x, info) \ - check(static_cast(x), #x, __FILE__, __LINE__, info) -#define VALID_CHECK_EQ(x, y, info) VALID_CHECK((x) == (y), info) -#define VALID_CHECK_GT(x, y, info) VALID_CHECK((x) > (y), info) -#define VALID_CHECK_LT(x, y, info) VALID_CHECK((x) < (y), info) - - -// Function template for comparing two pairs -template -bool pair_comp_first_rev(const std::pair &a, - const std::pair &b) { - return a.first > b.first; -} - -// Function template for comparing two pairs -template -bool pair_comp_second_rev(const std::pair &a, - const std::pair &b) { - return a.second > b.second; -} - -// Return the sum of two probabilities in log scale -template -T log_sum_exp(const T &x, const T &y) { - static T num_min = -std::numeric_limits::max(); - if (x <= num_min) return y; - if (y <= num_min) return x; - T xmax = std::max(x, y); - return std::log(std::exp(x - xmax) + std::exp(y - xmax)) + xmax; -} - -// Get pruned probability vector for each time step's beam search -std::vector> get_pruned_log_probs( - const std::vector &prob_step, - double cutoff_prob, - size_t cutoff_top_n); - -// Get beam search result from prefixes in trie tree -std::vector> get_beam_search_result( - const std::vector &prefixes, - const std::vector &vocabulary, - size_t beam_size); - -// Functor for prefix comparsion -bool prefix_compare(const PathTrie *x, const PathTrie *y); - -/* Get length of utf8 encoding string - * See: http://stackoverflow.com/a/4063229 - */ -size_t get_utf8_str_len(const std::string &str); - -/* Split a string into a list of strings on a given string - * delimiter. NB: delimiters on beginning / end of string are - * trimmed. Eg, "FooBarFoo" split on "Foo" returns ["Bar"]. - */ -std::vector split_str(const std::string &s, - const std::string &delim); - -/* Splits string into vector of strings representing - * UTF-8 characters (not same as chars) - */ -std::vector split_utf8_str(const std::string &str); - -// Add a word in index to the dicionary of fst -void add_word_to_fst(const std::vector &word, - fst::StdVectorFst *dictionary); - -// Add a word in string to dictionary -bool add_word_to_dictionary( - const std::string &word, - const std::unordered_map &char_map, - bool add_space, - int SPACE_ID, - fst::StdVectorFst *dictionary); -#endif // DECODER_UTILS_H diff --git a/deep_speech_2/decoders/swig/decoders.i b/deep_speech_2/decoders/swig/decoders.i deleted file mode 100644 index 4227d4a3..00000000 --- a/deep_speech_2/decoders/swig/decoders.i +++ /dev/null @@ -1,33 +0,0 @@ -%module swig_decoders -%{ -#include "scorer.h" -#include "ctc_greedy_decoder.h" -#include "ctc_beam_search_decoder.h" -#include "decoder_utils.h" -%} - -%include "std_vector.i" -%include "std_pair.i" -%include "std_string.i" -%import "decoder_utils.h" - -namespace std { - %template(DoubleVector) std::vector; - %template(IntVector) std::vector; - %template(StringVector) std::vector; - %template(VectorOfStructVector) std::vector >; - %template(FloatVector) std::vector; - %template(Pair) std::pair; - %template(PairFloatStringVector) std::vector >; - %template(PairDoubleStringVector) std::vector >; - %template(PairDoubleStringVector2) std::vector > >; - %template(DoubleVector3) std::vector > >; -} - -%template(IntDoublePairCompSecondRev) pair_comp_second_rev; -%template(StringDoublePairCompSecondRev) pair_comp_second_rev; -%template(DoubleStringPairCompFirstRev) pair_comp_first_rev; - -%include "scorer.h" -%include "ctc_greedy_decoder.h" -%include "ctc_beam_search_decoder.h" diff --git a/deep_speech_2/decoders/swig/path_trie.cpp b/deep_speech_2/decoders/swig/path_trie.cpp deleted file mode 100644 index 40d90970..00000000 --- a/deep_speech_2/decoders/swig/path_trie.cpp +++ /dev/null @@ -1,148 +0,0 @@ -#include "path_trie.h" - -#include -#include -#include -#include -#include - -#include "decoder_utils.h" - -PathTrie::PathTrie() { - log_prob_b_prev = -NUM_FLT_INF; - log_prob_nb_prev = -NUM_FLT_INF; - log_prob_b_cur = -NUM_FLT_INF; - log_prob_nb_cur = -NUM_FLT_INF; - score = -NUM_FLT_INF; - - ROOT_ = -1; - character = ROOT_; - exists_ = true; - parent = nullptr; - - dictionary_ = nullptr; - dictionary_state_ = 0; - has_dictionary_ = false; - - matcher_ = nullptr; -} - -PathTrie::~PathTrie() { - for (auto child : children_) { - delete child.second; - } -} - -PathTrie* PathTrie::get_path_trie(int new_char, bool reset) { - auto child = children_.begin(); - for (child = children_.begin(); child != children_.end(); ++child) { - if (child->first == new_char) { - break; - } - } - if (child != children_.end()) { - if (!child->second->exists_) { - child->second->exists_ = true; - child->second->log_prob_b_prev = -NUM_FLT_INF; - child->second->log_prob_nb_prev = -NUM_FLT_INF; - child->second->log_prob_b_cur = -NUM_FLT_INF; - child->second->log_prob_nb_cur = -NUM_FLT_INF; - } - return (child->second); - } else { - if (has_dictionary_) { - matcher_->SetState(dictionary_state_); - bool found = matcher_->Find(new_char); - if (!found) { - // Adding this character causes word outside dictionary - auto FSTZERO = fst::TropicalWeight::Zero(); - auto final_weight = dictionary_->Final(dictionary_state_); - bool is_final = (final_weight != FSTZERO); - if (is_final && reset) { - dictionary_state_ = dictionary_->Start(); - } - return nullptr; - } else { - PathTrie* new_path = new PathTrie; - new_path->character = new_char; - new_path->parent = this; - new_path->dictionary_ = dictionary_; - new_path->dictionary_state_ = matcher_->Value().nextstate; - new_path->has_dictionary_ = true; - new_path->matcher_ = matcher_; - children_.push_back(std::make_pair(new_char, new_path)); - return new_path; - } - } else { - PathTrie* new_path = new PathTrie; - new_path->character = new_char; - new_path->parent = this; - children_.push_back(std::make_pair(new_char, new_path)); - return new_path; - } - } -} - -PathTrie* PathTrie::get_path_vec(std::vector& output) { - return get_path_vec(output, ROOT_); -} - -PathTrie* PathTrie::get_path_vec(std::vector& output, - int stop, - size_t max_steps) { - if (character == stop || character == ROOT_ || output.size() == max_steps) { - std::reverse(output.begin(), output.end()); - return this; - } else { - output.push_back(character); - return parent->get_path_vec(output, stop, max_steps); - } -} - -void PathTrie::iterate_to_vec(std::vector& output) { - if (exists_) { - log_prob_b_prev = log_prob_b_cur; - log_prob_nb_prev = log_prob_nb_cur; - - log_prob_b_cur = -NUM_FLT_INF; - log_prob_nb_cur = -NUM_FLT_INF; - - score = log_sum_exp(log_prob_b_prev, log_prob_nb_prev); - output.push_back(this); - } - for (auto child : children_) { - child.second->iterate_to_vec(output); - } -} - -void PathTrie::remove() { - exists_ = false; - - if (children_.size() == 0) { - auto child = parent->children_.begin(); - for (child = parent->children_.begin(); child != parent->children_.end(); - ++child) { - if (child->first == character) { - parent->children_.erase(child); - break; - } - } - - if (parent->children_.size() == 0 && !parent->exists_) { - parent->remove(); - } - - delete this; - } -} - -void PathTrie::set_dictionary(fst::StdVectorFst* dictionary) { - dictionary_ = dictionary; - dictionary_state_ = dictionary->Start(); - has_dictionary_ = true; -} - -using FSTMATCH = fst::SortedMatcher; -void PathTrie::set_matcher(std::shared_ptr matcher) { - matcher_ = matcher; -} diff --git a/deep_speech_2/decoders/swig/path_trie.h b/deep_speech_2/decoders/swig/path_trie.h deleted file mode 100644 index 7fd715d2..00000000 --- a/deep_speech_2/decoders/swig/path_trie.h +++ /dev/null @@ -1,67 +0,0 @@ -#ifndef PATH_TRIE_H -#define PATH_TRIE_H - -#include -#include -#include -#include -#include - -#include "fst/fstlib.h" - -/* Trie tree for prefix storing and manipulating, with a dictionary in - * finite-state transducer for spelling correction. - */ -class PathTrie { -public: - PathTrie(); - ~PathTrie(); - - // get new prefix after appending new char - PathTrie* get_path_trie(int new_char, bool reset = true); - - // get the prefix in index from root to current node - PathTrie* get_path_vec(std::vector& output); - - // get the prefix in index from some stop node to current nodel - PathTrie* get_path_vec(std::vector& output, - int stop, - size_t max_steps = std::numeric_limits::max()); - - // update log probs - void iterate_to_vec(std::vector& output); - - // set dictionary for FST - void set_dictionary(fst::StdVectorFst* dictionary); - - void set_matcher(std::shared_ptr>); - - bool is_empty() { return ROOT_ == character; } - - // remove current path from root - void remove(); - - float log_prob_b_prev; - float log_prob_nb_prev; - float log_prob_b_cur; - float log_prob_nb_cur; - float score; - float approx_ctc; - int character; - PathTrie* parent; - -private: - int ROOT_; - bool exists_; - bool has_dictionary_; - - std::vector> children_; - - // pointer to dictionary of FST - fst::StdVectorFst* dictionary_; - fst::StdVectorFst::StateId dictionary_state_; - // true if finding ars in FST - std::shared_ptr> matcher_; -}; - -#endif // PATH_TRIE_H diff --git a/deep_speech_2/decoders/swig/scorer.cpp b/deep_speech_2/decoders/swig/scorer.cpp deleted file mode 100644 index 686c67c7..00000000 --- a/deep_speech_2/decoders/swig/scorer.cpp +++ /dev/null @@ -1,234 +0,0 @@ -#include "scorer.h" - -#include -#include - -#include "lm/config.hh" -#include "lm/model.hh" -#include "lm/state.hh" -#include "util/string_piece.hh" -#include "util/tokenize_piece.hh" - -#include "decoder_utils.h" - -using namespace lm::ngram; - -Scorer::Scorer(double alpha, - double beta, - const std::string& lm_path, - const std::vector& vocab_list) { - this->alpha = alpha; - this->beta = beta; - - dictionary = nullptr; - is_character_based_ = true; - language_model_ = nullptr; - - max_order_ = 0; - dict_size_ = 0; - SPACE_ID_ = -1; - - setup(lm_path, vocab_list); -} - -Scorer::~Scorer() { - if (language_model_ != nullptr) { - delete static_cast(language_model_); - } - if (dictionary != nullptr) { - delete static_cast(dictionary); - } -} - -void Scorer::setup(const std::string& lm_path, - const std::vector& vocab_list) { - // load language model - load_lm(lm_path); - // set char map for scorer - set_char_map(vocab_list); - // fill the dictionary for FST - if (!is_character_based()) { - fill_dictionary(true); - } -} - -void Scorer::load_lm(const std::string& lm_path) { - const char* filename = lm_path.c_str(); - VALID_CHECK_EQ(access(filename, F_OK), 0, "Invalid language model path"); - - RetriveStrEnumerateVocab enumerate; - lm::ngram::Config config; - config.enumerate_vocab = &enumerate; - language_model_ = lm::ngram::LoadVirtual(filename, config); - max_order_ = static_cast(language_model_)->Order(); - vocabulary_ = enumerate.vocabulary; - for (size_t i = 0; i < vocabulary_.size(); ++i) { - if (is_character_based_ && vocabulary_[i] != UNK_TOKEN && - vocabulary_[i] != START_TOKEN && vocabulary_[i] != END_TOKEN && - get_utf8_str_len(enumerate.vocabulary[i]) > 1) { - is_character_based_ = false; - } - } -} - -double Scorer::get_log_cond_prob(const std::vector& words) { - lm::base::Model* model = static_cast(language_model_); - double cond_prob; - lm::ngram::State state, tmp_state, out_state; - // avoid to inserting in begin - model->NullContextWrite(&state); - for (size_t i = 0; i < words.size(); ++i) { - lm::WordIndex word_index = model->BaseVocabulary().Index(words[i]); - // encounter OOV - if (word_index == 0) { - return OOV_SCORE; - } - cond_prob = model->BaseScore(&state, word_index, &out_state); - tmp_state = state; - state = out_state; - out_state = tmp_state; - } - // return log10 prob - return cond_prob; -} - -double Scorer::get_sent_log_prob(const std::vector& words) { - std::vector sentence; - if (words.size() == 0) { - for (size_t i = 0; i < max_order_; ++i) { - sentence.push_back(START_TOKEN); - } - } else { - for (size_t i = 0; i < max_order_ - 1; ++i) { - sentence.push_back(START_TOKEN); - } - sentence.insert(sentence.end(), words.begin(), words.end()); - } - sentence.push_back(END_TOKEN); - return get_log_prob(sentence); -} - -double Scorer::get_log_prob(const std::vector& words) { - assert(words.size() > max_order_); - double score = 0.0; - for (size_t i = 0; i < words.size() - max_order_ + 1; ++i) { - std::vector ngram(words.begin() + i, - words.begin() + i + max_order_); - score += get_log_cond_prob(ngram); - } - return score; -} - -void Scorer::reset_params(float alpha, float beta) { - this->alpha = alpha; - this->beta = beta; -} - -std::string Scorer::vec2str(const std::vector& input) { - std::string word; - for (auto ind : input) { - word += char_list_[ind]; - } - return word; -} - -std::vector Scorer::split_labels(const std::vector& labels) { - if (labels.empty()) return {}; - - std::string s = vec2str(labels); - std::vector words; - if (is_character_based_) { - words = split_utf8_str(s); - } else { - words = split_str(s, " "); - } - return words; -} - -void Scorer::set_char_map(const std::vector& char_list) { - char_list_ = char_list; - char_map_.clear(); - - for (size_t i = 0; i < char_list_.size(); i++) { - if (char_list_[i] == " ") { - SPACE_ID_ = i; - char_map_[' '] = i; - } else if (char_list_[i].size() == 1) { - char_map_[char_list_[i][0]] = i; - } - } -} - -std::vector Scorer::make_ngram(PathTrie* prefix) { - std::vector ngram; - PathTrie* current_node = prefix; - PathTrie* new_node = nullptr; - - for (int order = 0; order < max_order_; order++) { - std::vector prefix_vec; - - if (is_character_based_) { - new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_, 1); - current_node = new_node; - } else { - new_node = current_node->get_path_vec(prefix_vec, SPACE_ID_); - current_node = new_node->parent; // Skipping spaces - } - - // reconstruct word - std::string word = vec2str(prefix_vec); - ngram.push_back(word); - - if (new_node->character == -1) { - // No more spaces, but still need order - for (int i = 0; i < max_order_ - order - 1; i++) { - ngram.push_back(START_TOKEN); - } - break; - } - } - std::reverse(ngram.begin(), ngram.end()); - return ngram; -} - -void Scorer::fill_dictionary(bool add_space) { - fst::StdVectorFst dictionary; - // First reverse char_list so ints can be accessed by chars - std::unordered_map char_map; - for (size_t i = 0; i < char_list_.size(); i++) { - char_map[char_list_[i]] = i; - } - - // For each unigram convert to ints and put in trie - int dict_size = 0; - for (const auto& word : vocabulary_) { - bool added = add_word_to_dictionary( - word, char_map, add_space, SPACE_ID_, &dictionary); - dict_size += added ? 1 : 0; - } - - dict_size_ = dict_size; - - /* Simplify FST - - * This gets rid of "epsilon" transitions in the FST. - * These are transitions that don't require a string input to be taken. - * Getting rid of them is necessary to make the FST determinisitc, but - * can greatly increase the size of the FST - */ - fst::RmEpsilon(&dictionary); - fst::StdVectorFst* new_dict = new fst::StdVectorFst; - - /* This makes the FST deterministic, meaning for any string input there's - * only one possible state the FST could be in. It is assumed our - * dictionary is deterministic when using it. - * (lest we'd have to check for multiple transitions at each state) - */ - fst::Determinize(dictionary, new_dict); - - /* Finds the simplest equivalent fst. This is unnecessary but decreases - * memory usage of the dictionary - */ - fst::Minimize(new_dict); - this->dictionary = new_dict; -} diff --git a/deep_speech_2/decoders/swig/scorer.h b/deep_speech_2/decoders/swig/scorer.h deleted file mode 100644 index 61836463..00000000 --- a/deep_speech_2/decoders/swig/scorer.h +++ /dev/null @@ -1,112 +0,0 @@ -#ifndef SCORER_H_ -#define SCORER_H_ - -#include -#include -#include -#include - -#include "lm/enumerate_vocab.hh" -#include "lm/virtual_interface.hh" -#include "lm/word_index.hh" -#include "util/string_piece.hh" - -#include "path_trie.h" - -const double OOV_SCORE = -1000.0; -const std::string START_TOKEN = ""; -const std::string UNK_TOKEN = ""; -const std::string END_TOKEN = ""; - -// Implement a callback to retrive the dictionary of language model. -class RetriveStrEnumerateVocab : public lm::EnumerateVocab { -public: - RetriveStrEnumerateVocab() {} - - void Add(lm::WordIndex index, const StringPiece &str) { - vocabulary.push_back(std::string(str.data(), str.length())); - } - - std::vector vocabulary; -}; - -/* External scorer to query score for n-gram or sentence, including language - * model scoring and word insertion. - * - * Example: - * Scorer scorer(alpha, beta, "path_of_language_model"); - * scorer.get_log_cond_prob({ "WORD1", "WORD2", "WORD3" }); - * scorer.get_sent_log_prob({ "WORD1", "WORD2", "WORD3" }); - */ -class Scorer { -public: - Scorer(double alpha, - double beta, - const std::string &lm_path, - const std::vector &vocabulary); - ~Scorer(); - - double get_log_cond_prob(const std::vector &words); - - double get_sent_log_prob(const std::vector &words); - - // return the max order - size_t get_max_order() const { return max_order_; } - - // return the dictionary size of language model - size_t get_dict_size() const { return dict_size_; } - - // retrun true if the language model is character based - bool is_character_based() const { return is_character_based_; } - - // reset params alpha & beta - void reset_params(float alpha, float beta); - - // make ngram for a given prefix - std::vector make_ngram(PathTrie *prefix); - - // trransform the labels in index to the vector of words (word based lm) or - // the vector of characters (character based lm) - std::vector split_labels(const std::vector &labels); - - // language model weight - double alpha; - // word insertion weight - double beta; - - // pointer to the dictionary of FST - void *dictionary; - -protected: - // necessary setup: load language model, set char map, fill FST's dictionary - void setup(const std::string &lm_path, - const std::vector &vocab_list); - - // load language model from given path - void load_lm(const std::string &lm_path); - - // fill dictionary for FST - void fill_dictionary(bool add_space); - - // set char map - void set_char_map(const std::vector &char_list); - - double get_log_prob(const std::vector &words); - - // translate the vector in index to string - std::string vec2str(const std::vector &input); - -private: - void *language_model_; - bool is_character_based_; - size_t max_order_; - size_t dict_size_; - - int SPACE_ID_; - std::vector char_list_; - std::unordered_map char_map_; - - std::vector vocabulary_; -}; - -#endif // SCORER_H_ diff --git a/deep_speech_2/decoders/swig/setup.py b/deep_speech_2/decoders/swig/setup.py deleted file mode 100644 index b6bc0ca0..00000000 --- a/deep_speech_2/decoders/swig/setup.py +++ /dev/null @@ -1,119 +0,0 @@ -"""Script to build and install decoder package.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -from setuptools import setup, Extension, distutils -import glob -import platform -import os, sys -import multiprocessing.pool -import argparse - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--num_processes", - default=1, - type=int, - help="Number of cpu processes to build package. (default: %(default)d)") -args = parser.parse_known_args() - -# reconstruct sys.argv to pass to setup below -sys.argv = [sys.argv[0]] + args[1] - - -# monkey-patch for parallel compilation -# See: https://stackoverflow.com/a/13176803 -def parallelCCompile(self, - sources, - output_dir=None, - macros=None, - include_dirs=None, - debug=0, - extra_preargs=None, - extra_postargs=None, - depends=None): - # those lines are copied from distutils.ccompiler.CCompiler directly - macros, objects, extra_postargs, pp_opts, build = self._setup_compile( - output_dir, macros, include_dirs, sources, depends, extra_postargs) - cc_args = self._get_cc_args(pp_opts, debug, extra_preargs) - - # parallel code - def _single_compile(obj): - try: - src, ext = build[obj] - except KeyError: - return - self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts) - - # convert to list, imap is evaluated on-demand - thread_pool = multiprocessing.pool.ThreadPool(args[0].num_processes) - list(thread_pool.imap(_single_compile, objects)) - return objects - - -def compile_test(header, library): - dummy_path = os.path.join(os.path.dirname(__file__), "dummy") - command = "bash -c \"g++ -include " + header \ - + " -l" + library + " -x c++ - <<<'int main() {}' -o " \ - + dummy_path + " >/dev/null 2>/dev/null && rm " \ - + dummy_path + " 2>/dev/null\"" - return os.system(command) == 0 - - -# hack compile to support parallel compiling -distutils.ccompiler.CCompiler.compile = parallelCCompile - -FILES = glob.glob('kenlm/util/*.cc') \ - + glob.glob('kenlm/lm/*.cc') \ - + glob.glob('kenlm/util/double-conversion/*.cc') - -FILES += glob.glob('openfst-1.6.3/src/lib/*.cc') - -FILES = [ - fn for fn in FILES - if not (fn.endswith('main.cc') or fn.endswith('test.cc') or fn.endswith( - 'unittest.cc')) -] - -LIBS = ['stdc++'] -if platform.system() != 'Darwin': - LIBS.append('rt') - -ARGS = ['-O3', '-DNDEBUG', '-DKENLM_MAX_ORDER=6', '-std=c++11'] - -if compile_test('zlib.h', 'z'): - ARGS.append('-DHAVE_ZLIB') - LIBS.append('z') - -if compile_test('bzlib.h', 'bz2'): - ARGS.append('-DHAVE_BZLIB') - LIBS.append('bz2') - -if compile_test('lzma.h', 'lzma'): - ARGS.append('-DHAVE_XZLIB') - LIBS.append('lzma') - -os.system('swig -python -c++ ./decoders.i') - -decoders_module = [ - Extension( - name='_swig_decoders', - sources=FILES + glob.glob('*.cxx') + glob.glob('*.cpp'), - language='c++', - include_dirs=[ - '.', - 'kenlm', - 'openfst-1.6.3/src/include', - 'ThreadPool', - ], - libraries=LIBS, - extra_compile_args=ARGS) -] - -setup( - name='swig_decoders', - version='1.0', - description="""CTC decoders""", - ext_modules=decoders_module, - py_modules=['swig_decoders'], ) diff --git a/deep_speech_2/decoders/swig/setup.sh b/deep_speech_2/decoders/swig/setup.sh deleted file mode 100644 index 78ae2b20..00000000 --- a/deep_speech_2/decoders/swig/setup.sh +++ /dev/null @@ -1,21 +0,0 @@ -#!/usr/bin/env bash - -if [ ! -d kenlm ]; then - git clone https://github.com/luotao1/kenlm.git - echo -e "\n" -fi - -if [ ! -d openfst-1.6.3 ]; then - echo "Download and extract openfst ..." - wget http://www.openfst.org/twiki/pub/FST/FstDownload/openfst-1.6.3.tar.gz - tar -xzvf openfst-1.6.3.tar.gz - echo -e "\n" -fi - -if [ ! -d ThreadPool ]; then - git clone https://github.com/progschj/ThreadPool.git - echo -e "\n" -fi - -echo "Install decoders ..." -python setup.py install --num_processes 4 diff --git a/deep_speech_2/decoders/swig_wrapper.py b/deep_speech_2/decoders/swig_wrapper.py deleted file mode 100644 index 21aed03c..00000000 --- a/deep_speech_2/decoders/swig_wrapper.py +++ /dev/null @@ -1,124 +0,0 @@ -"""Wrapper for various CTC decoders in SWIG.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import swig_decoders - - -class Scorer(swig_decoders.Scorer): - """Wrapper for Scorer. - - :param alpha: Parameter associated with language model. Don't use - language model when alpha = 0. - :type alpha: float - :param beta: Parameter associated with word count. Don't use word - count when beta = 0. - :type beta: float - :model_path: Path to load language model. - :type model_path: basestring - """ - - def __init__(self, alpha, beta, model_path, vocabulary): - swig_decoders.Scorer.__init__(self, alpha, beta, model_path, vocabulary) - - -def ctc_greedy_decoder(probs_seq, vocabulary): - """Wrapper for ctc best path decoder in swig. - - :param probs_seq: 2-D list of probability distributions over each time - step, with each element being a list of normalized - probabilities over vocabulary and blank. - :type probs_seq: 2-D list - :param vocabulary: Vocabulary list. - :type vocabulary: list - :return: Decoding result string. - :rtype: basestring - """ - result = swig_decoders.ctc_greedy_decoder(probs_seq.tolist(), vocabulary) - return result.decode('utf-8') - - -def ctc_beam_search_decoder(probs_seq, - vocabulary, - beam_size, - cutoff_prob=1.0, - cutoff_top_n=40, - ext_scoring_func=None): - """Wrapper for the CTC Beam Search Decoder. - - :param probs_seq: 2-D list of probability distributions over each time - step, with each element being a list of normalized - probabilities over vocabulary and blank. - :type probs_seq: 2-D list - :param vocabulary: Vocabulary list. - :type vocabulary: list - :param beam_size: Width for beam search. - :type beam_size: int - :param cutoff_prob: Cutoff probability in pruning, - default 1.0, no pruning. - :type cutoff_prob: float - :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n - characters with highest probs in vocabulary will be - used in beam search, default 40. - :type cutoff_top_n: int - :param ext_scoring_func: External scoring function for - partially decoded sentence, e.g. word count - or language model. - :type external_scoring_func: callable - :return: List of tuples of log probability and sentence as decoding - results, in descending order of the probability. - :rtype: list - """ - beam_results = swig_decoders.ctc_beam_search_decoder( - probs_seq.tolist(), vocabulary, beam_size, cutoff_prob, cutoff_top_n, - ext_scoring_func) - beam_results = [(res[0], res[1].decode('utf-8')) for res in beam_results] - return beam_results - - -def ctc_beam_search_decoder_batch(probs_split, - vocabulary, - beam_size, - num_processes, - cutoff_prob=1.0, - cutoff_top_n=40, - ext_scoring_func=None): - """Wrapper for the batched CTC beam search decoder. - - :param probs_seq: 3-D list with each element as an instance of 2-D list - of probabilities used by ctc_beam_search_decoder(). - :type probs_seq: 3-D list - :param vocabulary: Vocabulary list. - :type vocabulary: list - :param beam_size: Width for beam search. - :type beam_size: int - :param num_processes: Number of parallel processes. - :type num_processes: int - :param cutoff_prob: Cutoff probability in vocabulary pruning, - default 1.0, no pruning. - :type cutoff_prob: float - :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n - characters with highest probs in vocabulary will be - used in beam search, default 40. - :type cutoff_top_n: int - :param num_processes: Number of parallel processes. - :type num_processes: int - :param ext_scoring_func: External scoring function for - partially decoded sentence, e.g. word count - or language model. - :type external_scoring_function: callable - :return: List of tuples of log probability and sentence as decoding - results, in descending order of the probability. - :rtype: list - """ - probs_split = [probs_seq.tolist() for probs_seq in probs_split] - - batch_beam_results = swig_decoders.ctc_beam_search_decoder_batch( - probs_split, vocabulary, beam_size, num_processes, cutoff_prob, - cutoff_top_n, ext_scoring_func) - batch_beam_results = [ - [(res[0], res[1].decode("utf-8")) for res in beam_results] - for beam_results in batch_beam_results - ] - return batch_beam_results diff --git a/deep_speech_2/decoders/tests/test_decoders.py b/deep_speech_2/decoders/tests/test_decoders.py deleted file mode 100644 index d522b5ef..00000000 --- a/deep_speech_2/decoders/tests/test_decoders.py +++ /dev/null @@ -1,90 +0,0 @@ -"""Test decoders.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import unittest -from decoders import decoders_deprecated as decoder - - -class TestDecoders(unittest.TestCase): - def setUp(self): - self.vocab_list = ["\'", ' ', 'a', 'b', 'c', 'd'] - self.beam_size = 20 - self.probs_seq1 = [[ - 0.06390443, 0.21124858, 0.27323887, 0.06870235, 0.0361254, - 0.18184413, 0.16493624 - ], [ - 0.03309247, 0.22866108, 0.24390638, 0.09699597, 0.31895462, - 0.0094893, 0.06890021 - ], [ - 0.218104, 0.19992557, 0.18245131, 0.08503348, 0.14903535, - 0.08424043, 0.08120984 - ], [ - 0.12094152, 0.19162472, 0.01473646, 0.28045061, 0.24246305, - 0.05206269, 0.09772094 - ], [ - 0.1333387, 0.00550838, 0.00301669, 0.21745861, 0.20803985, - 0.41317442, 0.01946335 - ], [ - 0.16468227, 0.1980699, 0.1906545, 0.18963251, 0.19860937, - 0.04377724, 0.01457421 - ]] - self.probs_seq2 = [[ - 0.08034842, 0.22671944, 0.05799633, 0.36814645, 0.11307441, - 0.04468023, 0.10903471 - ], [ - 0.09742457, 0.12959763, 0.09435383, 0.21889204, 0.15113123, - 0.10219457, 0.20640612 - ], [ - 0.45033529, 0.09091417, 0.15333208, 0.07939558, 0.08649316, - 0.12298585, 0.01654384 - ], [ - 0.02512238, 0.22079203, 0.19664364, 0.11906379, 0.07816055, - 0.22538587, 0.13483174 - ], [ - 0.17928453, 0.06065261, 0.41153005, 0.1172041, 0.11880313, - 0.07113197, 0.04139363 - ], [ - 0.15882358, 0.1235788, 0.23376776, 0.20510435, 0.00279306, - 0.05294827, 0.22298418 - ]] - self.greedy_result = ["ac'bdc", "b'da"] - self.beam_search_result = ['acdc', "b'a"] - - def test_greedy_decoder_1(self): - bst_result = decoder.ctc_greedy_decoder(self.probs_seq1, - self.vocab_list) - self.assertEqual(bst_result, self.greedy_result[0]) - - def test_greedy_decoder_2(self): - bst_result = decoder.ctc_greedy_decoder(self.probs_seq2, - self.vocab_list) - self.assertEqual(bst_result, self.greedy_result[1]) - - def test_beam_search_decoder_1(self): - beam_result = decoder.ctc_beam_search_decoder( - probs_seq=self.probs_seq1, - beam_size=self.beam_size, - vocabulary=self.vocab_list) - self.assertEqual(beam_result[0][1], self.beam_search_result[0]) - - def test_beam_search_decoder_2(self): - beam_result = decoder.ctc_beam_search_decoder( - probs_seq=self.probs_seq2, - beam_size=self.beam_size, - vocabulary=self.vocab_list) - self.assertEqual(beam_result[0][1], self.beam_search_result[1]) - - def test_beam_search_decoder_batch(self): - beam_results = decoder.ctc_beam_search_decoder_batch( - probs_split=[self.probs_seq1, self.probs_seq2], - beam_size=self.beam_size, - vocabulary=self.vocab_list, - num_processes=24) - self.assertEqual(beam_results[0][0][1], self.beam_search_result[0]) - self.assertEqual(beam_results[1][0][1], self.beam_search_result[1]) - - -if __name__ == '__main__': - unittest.main() diff --git a/deep_speech_2/deploy/_init_paths.py b/deep_speech_2/deploy/_init_paths.py deleted file mode 100644 index ddabb535..00000000 --- a/deep_speech_2/deploy/_init_paths.py +++ /dev/null @@ -1,19 +0,0 @@ -"""Set up paths for DS2""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os.path -import sys - - -def add_path(path): - if path not in sys.path: - sys.path.insert(0, path) - - -this_dir = os.path.dirname(__file__) - -# Add project path to PYTHONPATH -proj_path = os.path.join(this_dir, '..') -add_path(proj_path) diff --git a/deep_speech_2/deploy/demo_client.py b/deep_speech_2/deploy/demo_client.py deleted file mode 100644 index ddf4dd1b..00000000 --- a/deep_speech_2/deploy/demo_client.py +++ /dev/null @@ -1,94 +0,0 @@ -"""Client-end for the ASR demo.""" -from pynput import keyboard -import struct -import socket -import sys -import argparse -import pyaudio - -parser = argparse.ArgumentParser(description=__doc__) -parser.add_argument( - "--host_ip", - default="localhost", - type=str, - help="Server IP address. (default: %(default)s)") -parser.add_argument( - "--host_port", - default=8086, - type=int, - help="Server Port. (default: %(default)s)") -args = parser.parse_args() - -is_recording = False -enable_trigger_record = True - - -def on_press(key): - """On-press keyboard callback function.""" - global is_recording, enable_trigger_record - if key == keyboard.Key.space: - if (not is_recording) and enable_trigger_record: - sys.stdout.write("Start Recording ... ") - sys.stdout.flush() - is_recording = True - - -def on_release(key): - """On-release keyboard callback function.""" - global is_recording, enable_trigger_record - if key == keyboard.Key.esc: - return False - elif key == keyboard.Key.space: - if is_recording == True: - is_recording = False - - -data_list = [] - - -def callback(in_data, frame_count, time_info, status): - """Audio recorder's stream callback function.""" - global data_list, is_recording, enable_trigger_record - if is_recording: - data_list.append(in_data) - enable_trigger_record = False - elif len(data_list) > 0: - # Connect to server and send data - sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) - sock.connect((args.host_ip, args.host_port)) - sent = ''.join(data_list) - sock.sendall(struct.pack('>i', len(sent)) + sent) - print('Speech[length=%d] Sent.' % len(sent)) - # Receive data from the server and shut down - received = sock.recv(1024) - print "Recognition Results: {}".format(received) - sock.close() - data_list = [] - enable_trigger_record = True - return (in_data, pyaudio.paContinue) - - -def main(): - # prepare audio recorder - p = pyaudio.PyAudio() - stream = p.open( - format=pyaudio.paInt32, - channels=1, - rate=16000, - input=True, - stream_callback=callback) - stream.start_stream() - - # prepare keyboard listener - with keyboard.Listener( - on_press=on_press, on_release=on_release) as listener: - listener.join() - - # close up - stream.stop_stream() - stream.close() - p.terminate() - - -if __name__ == "__main__": - main() diff --git a/deep_speech_2/deploy/demo_server.py b/deep_speech_2/deploy/demo_server.py deleted file mode 100644 index 3e81c0c5..00000000 --- a/deep_speech_2/deploy/demo_server.py +++ /dev/null @@ -1,205 +0,0 @@ -"""Server-end for the ASR demo.""" -import os -import time -import random -import argparse -import functools -from time import gmtime, strftime -import SocketServer -import struct -import wave -import paddle.v2 as paddle -import _init_paths -from data_utils.data import DataGenerator -from model_utils.model import DeepSpeech2Model -from data_utils.utility import read_manifest -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('host_port', int, 8086, "Server's IP port.") -add_arg('beam_size', int, 500, "Beam search width.") -add_arg('num_conv_layers', int, 2, "# of convolution layers.") -add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") -add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") -add_arg('alpha', float, 2.15, "Coef of LM for beam search.") -add_arg('beta', float, 0.35, "Coef of WC for beam search.") -add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") -add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") -add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") -add_arg('use_gpu', bool, True, "Use GPU or not.") -add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " - "bi-directional RNNs. Not for GRU.") -add_arg('host_ip', str, - 'localhost', - "Server's IP address.") -add_arg('speech_save_dir', str, - 'demo_cache', - "Directory to save demo audios.") -add_arg('warmup_manifest', str, - 'data/librispeech/manifest.test-clean', - "Filepath of manifest to warm up.") -add_arg('mean_std_path', str, - 'data/librispeech/mean_std.npz', - "Filepath of normalizer's mean & std.") -add_arg('vocab_path', str, - 'data/librispeech/eng_vocab.txt', - "Filepath of vocabulary.") -add_arg('model_path', str, - './checkpoints/libri/params.latest.tar.gz', - "If None, the training starts from scratch, " - "otherwise, it resumes from the pre-trained model.") -add_arg('lang_model_path', str, - 'lm/data/common_crawl_00.prune01111.trie.klm', - "Filepath for language model.") -add_arg('decoding_method', str, - 'ctc_beam_search', - "Decoding method. Options: ctc_beam_search, ctc_greedy", - choices = ['ctc_beam_search', 'ctc_greedy']) -add_arg('specgram_type', str, - 'linear', - "Audio feature type. Options: linear, mfcc.", - choices=['linear', 'mfcc']) -# yapf: disable -args = parser.parse_args() - - -class AsrTCPServer(SocketServer.TCPServer): - """The ASR TCP Server.""" - - def __init__(self, - server_address, - RequestHandlerClass, - speech_save_dir, - audio_process_handler, - bind_and_activate=True): - self.speech_save_dir = speech_save_dir - self.audio_process_handler = audio_process_handler - SocketServer.TCPServer.__init__( - self, server_address, RequestHandlerClass, bind_and_activate=True) - - -class AsrRequestHandler(SocketServer.BaseRequestHandler): - """The ASR request handler.""" - - def handle(self): - # receive data through TCP socket - chunk = self.request.recv(1024) - target_len = struct.unpack('>i', chunk[:4])[0] - data = chunk[4:] - while len(data) < target_len: - chunk = self.request.recv(1024) - data += chunk - # write to file - filename = self._write_to_file(data) - - print("Received utterance[length=%d] from %s, saved to %s." % - (len(data), self.client_address[0], filename)) - start_time = time.time() - transcript = self.server.audio_process_handler(filename) - finish_time = time.time() - print("Response Time: %f, Transcript: %s" % - (finish_time - start_time, transcript)) - self.request.sendall(transcript.encode('utf-8')) - - def _write_to_file(self, data): - # prepare save dir and filename - if not os.path.exists(self.server.speech_save_dir): - os.mkdir(self.server.speech_save_dir) - timestamp = strftime("%Y%m%d%H%M%S", gmtime()) - out_filename = os.path.join( - self.server.speech_save_dir, - timestamp + "_" + self.client_address[0] + ".wav") - # write to wav file - file = wave.open(out_filename, 'wb') - file.setnchannels(1) - file.setsampwidth(4) - file.setframerate(16000) - file.writeframes(data) - file.close() - return out_filename - - -def warm_up_test(audio_process_handler, - manifest_path, - num_test_cases, - random_seed=0): - """Warming-up test.""" - manifest = read_manifest(manifest_path) - rng = random.Random(random_seed) - samples = rng.sample(manifest, num_test_cases) - for idx, sample in enumerate(samples): - print("Warm-up Test Case %d: %s", idx, sample['audio_filepath']) - start_time = time.time() - transcript = audio_process_handler(sample['audio_filepath']) - finish_time = time.time() - print("Response Time: %f, Transcript: %s" % - (finish_time - start_time, transcript)) - - -def start_server(): - """Start the ASR server""" - # prepare data generator - data_generator = DataGenerator( - vocab_filepath=args.vocab_path, - mean_std_filepath=args.mean_std_path, - augmentation_config='{}', - specgram_type=args.specgram_type, - num_threads=1, - keep_transcription_text=True) - # prepare ASR model - ds2_model = DeepSpeech2Model( - vocab_size=data_generator.vocab_size, - num_conv_layers=args.num_conv_layers, - num_rnn_layers=args.num_rnn_layers, - rnn_layer_size=args.rnn_layer_size, - use_gru=args.use_gru, - pretrained_model_path=args.model_path, - share_rnn_weights=args.share_rnn_weights) - - vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list] - - # prepare ASR inference handler - def file_to_transcript(filename): - feature = data_generator.process_utterance(filename, "") - result_transcript = ds2_model.infer_batch( - infer_data=[feature], - decoding_method=args.decoding_method, - beam_alpha=args.alpha, - beam_beta=args.beta, - beam_size=args.beam_size, - cutoff_prob=args.cutoff_prob, - cutoff_top_n=args.cutoff_top_n, - vocab_list=vocab_list, - language_model_path=args.lang_model_path, - num_processes=1) - return result_transcript[0] - - # warming up with utterrances sampled from Librispeech - print('-----------------------------------------------------------') - print('Warming up ...') - warm_up_test( - audio_process_handler=file_to_transcript, - manifest_path=args.warmup_manifest, - num_test_cases=3) - print('-----------------------------------------------------------') - - # start the server - server = AsrTCPServer( - server_address=(args.host_ip, args.host_port), - RequestHandlerClass=AsrRequestHandler, - speech_save_dir=args.speech_save_dir, - audio_process_handler=file_to_transcript) - print("ASR Server Started.") - server.serve_forever() - - -def main(): - print_arguments(args) - paddle.init(use_gpu=args.use_gpu, trainer_count=1) - start_server() - - -if __name__ == "__main__": - main() diff --git a/deep_speech_2/docs/images/multi_gpu_speedup.png b/deep_speech_2/docs/images/multi_gpu_speedup.png deleted file mode 100755 index 57a803bac8a6c793548abf71db2899aeac829fa1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 156739 zcmZ6zdt8!tA3t1k%eG3_teHnvtZa8BnVF)1+iF@fWoCD#B9@kvlqh5h3RG^XDUw;? z5muIFDQ0Gh3Ra#|AQK_aiU75Bt5I`~Ka}^9L`^T-W#doZs*Fm$X0pytjN~ z{mr^{>$aRYe(cn`btd1gTerSv;|Aj^HP)*<BLyuRRe${A^mx~XV@}_7-P!f8aN9dU z2Y2my{P^*?pSNw>{)-J+OcN~;WuW{syz4=h(aLM!NkpWPQc1JII zh9xaPGlqsr6sP4jkcpq*`2H=?G06j0g_W~!>r518Wgaj8e-HL6-}Xe;A|d;gAA>{V z&kfy-GZosM{r@}|GHV#3oW#VYhg@McT68WpO~~w zt5FkR0KN}%#%63LU)`ng%doW_2@3U76fjaqm$#%Wzzv@&>r9J?Z{P%$X=@g#l!07! z(^tg)=cuE9p-fenqpP8Z05i?c9+DdclLyFY$zF7Q&`CN};ttPr8Rzt0DvU}K?P0go zzjhSmw>^zMtv;KdU5jta@;d2=bJ_(IwIT`{yoC!lvlF7Ml`O11CQR{)W+I@(+q?soq*^hgRhuZZU>BrJQF8NTEX*oS36uqK18vw*`0tGb%rKn zE}SG{+s9&UrZjHHJXPBR;0ux5RbHCb?!4UFeff#m{uF)lTojV|OIS76x56dtKbJ3I ztncQ^au(Uu%VTupTl_I~-^lj4-DWP;stneK#1epJYy54+qt+Z^mv=Qfe|Y>tsMIQv zt-3cJ8+jFdz1K1Z{4*F1amnp;AQUl$#}A|=gv+bEm}dsv#K}Rf{YA3+O&d3EWB>F+ z@gs27qelsfcjdW7&KM3|m@8YyKTodA0^~`jdTL=lhVEx@4$>=1|Lk%ocFY;RU!%Wx z(sAk1=z2KFO^WIs&n93of*pNrh$Np{`6d^3YR6Tiy!Xcv9J?pGAj|mXOeIhBAICs0 zUH^NHH0S!h5x}-tHMA3?s+LjbocvCwVBmA-4?BxVr&CPKsF%!U|BkdPBMJ~93(SGf zip3p}J=C_n0DIk~gsvbTXe|z#=rRjYsGRS~+@3ThQ5{4_xpc8tObQDTgU9A{nhb>g z{KwrZg1ui^2jToqqq?lYdD?sEKfPh%H)ohm(6^(m8;pk-x^y*cEz8v&nAFk3Y3}MC z?JcSl{@5sbzw#}c-X`z0!W}r**T^3G;G_*Mv>A&HsP`57ES_VY36?w8a9aPz%`~(^y&ERsN_G!DwAL_}&@gSluc)g-dmz5hAdZn67+}PsvV# z3ry1YHSb?={)SV_rb^9ms@x3)1eM0-y#7UYekFQYUo?Z{Q4&4?(vo@~m z!cO%zRJ28<;DTQv-tnLdmeS#{`1eDsOLO-}5BBKI5a&CcF1O-`t=%@yN!(3+R{kWa z;v~D{i!qcWVqwX!b!@REV5;R4s$(DeQm@5KkF98vqbJTO0ZW-9oIP4{y?K3+;|Lxn z()~B|HDptj@+R3M1HYhiO-?#|s-yx@lW;kZW}jaTAU+%prOXsmVM z(Ze);LASL+e2gVb)%(--`E9eAYDranJUG4Eaq$U3Bbp|=5ZtqkpLl)d(LthLELw}sxVBtN_=G;e&`j6E z8ErqfYC`#V^(hQJ>7}g?A)!d`M5tvZUm^qJ2yU*oJl+!Q1d``)-bNqFaA^lY+@|$L zug#9}kZd{nKJdxDwO-@a*1#*Cm(*C|n(T9P&ad1F z;nLw}iUWK)Z%p#XK%A^iUhm0XkPpVyZg{P&dT5O&wxG4qXP^#4X!?W}U0ES{&^%-6Iwzxi`tV|$$6mp%w+w=GiIWpys9+y=hGA*>}Y z-&UPf;<7;4T?{%a>`4!nmj-#BrlyRCFZ6{0UOrt_rK%=}nj)-vM}y&opD%?9%3fH_ zmvy+@vGJ}wtG@+4WI7PPBF`u{I_ISeC)Hi0xSsaC54(#?F`J>T*PxM~H#2n83i8Rq z;Xz1rM1;z#?O1sV0qvEb{lS!Py~Cty+?9Ts#}u`}wBfV;))74J`RFel;Ow*L$XcX* zMWs%kh6-DDXhV?WfQT!U|F%gYuH76$IkMsLS$qHS6~mm8x0CF1%2O@EoJJi;%s{(%b$bxD|C6R zX_maPv_(th%^}H+ZTHxt9o2NC)L6@Hioa%s#}*|~2%Kgg3SQO04szWC@0#2LcCFjW z^L8R~DO3AydoN3Ek=PmV`?6}zd@f3zg8~pkKpZ&6aF&h!n~EpoT9n(gi{&R#9QiP z(ELs^o+RCMPB8V`VCc`sdAr_!Kk#F$)9a;!@RJ2OOBpYQKNI3c%?^6Yo67+GfI?VQ zONQ8oF1+XC$h6Ele?UR$?E6NZ?qYN-ZW^?#)Ok-d6KRGNzHR8}L<;WZyWliknsuGs zYVC9#E*z)v%{+^nI2$(p-%1yUF@?|;M|R9Zb~%Nw`u?$r7OcKEK*DPN01YRxGlE4sr}6YO9MuTf0(Qb>BD0 z({o}^qq|nUs=Z?4M%xx>F95JK%F5Ut0EO6LWwhWP-`3ZZF_(uBn|3Gp%peJD+W8B& zj-U|pC`GF=y(ND8tEI8uHTM7hd{(y5E;<`lt?dM~LhSu}uiF9SrJmyBFf>&*B%rX9v#ea!Nx`~8(Cn6<^-Ew3QWO$&$d67xC6xzc1zYRZeWsHX(pI76HMta z5s~ahXl*y)m664z+?8gX}E{Dmy%y;SJ6s*T}vJ6;Qt&M>x zJfAxpkzXX1ZfJA4h^cNCP~Ak|L(z8SRE>vMTom>dy{(WCqZ@6rZG_ors@8VW2|ot1 zt6iA?8M6@e#`5MuZ-kaqMXep_%KU*P4*}8#vltE21ITh8xaLwV*i}A2?|9Hd%o#uz z*H9a@uV5GM7ucchV{;@cJ@0ZIPYhWq8&kd?@EN|eMHmcRyjxcw zSg^s2Ue7Vihyl3MD%$;)!FMCIlGlz>}*=I{~p{HyzBoRwd8{8x5uq zI`RA}KaTT%O*FWkKT^iSHFV>Wm=LsNPy&W?IP!uQmzi<93Zzpe(Vk#l?{`+>DEPj%c#9O&9T<(<6t!v7rUhr~kop#lfz3aRo&I8}Yy(Po7TVqFyxAP= z*pHWI(~#T_m$7VQc?5@VNhHW0VTA1iaQnJ0<1B@8OK}i==BWN@*by1_6rd(t8y~$5 z&UOLXM*G;-Vy7!$K$pZjH5GcvRQc_kI9ZhDidjOqRMkWNpW06J7{w1fn7|XSIi`T< z{aro#3~wi{rjEPyPj4F7Mj zkTsgnYbf-!-2BDoWm~=RDnsHr>Z3j2Tok`6y9Zi2#ek^%*CfxJGYPl+X%V)%XDJcU zr)e%u?0e{F-)MQcRqu}uP6_%8j(Y+j*GmU4QCQY5hrT-Y9k=JW$>R;GvdhD@ao3_+B-SlySdU=z7F;c* zsixR+$5H0|mr$L%`u9xt2;ua_*HT-Gdy(y9NRf+7_6Shk8TV~z6@4o|?gMH#$6b8S z(jItKJ`?dL2I_=+92YL_aH?sHE$;Rnvi`rVo6c@-aAxE-BoGA)F6}QXbvgx1@etRX zvFnC_CHiY8kx|?U2T)}YJSJgq;X_5#e%==Yiv~?lnvv*uU#p>&7;OpSRoQ1T6fnF*q&>E|ymgef8y6+&qDLD?F1s z@ezS}*;;NjQ9mh(kLC-X1PbdKp^_(_Ik;uFK+|YY5fU40;wU7zjGD1{Y2p72y5`+I ze9beHh}RqiZ!9bED4J4m-rP8K#NZ+pQ=F~a7TQ8!NbLti*|GyHxb05)fAUnph*^SP zF_49OEW<=ezQiiitO{#E$NiOC!9AXEn-H(OGQiM9fg@ zQGF2{F1pW=&Y4X-5Bk3if^Pa}dZT&;9?u_2?0lC z2zor0<9$Jofz@e!prW`UbWSWH-M?`DTj*fbBnpk&B49Zk;$35cHPU0E=Yin@flcXv zk7L%(lpK;nZ*~Qx(-)D^UY=qIF!2smdFze7Y_r#PEbSt2-oI$Ky?eFRm)ce8;EEQf zJq5%?smh!%UBO;pujMDC(>~^^-I>)w2?R`p1o`+%v6-Qb?h%TXDjG|1_zvm{kw0;S zhv?cXx)fHF&?o`<{H;nqFw>fU#JSqAL4o52@zA59aApRIX-yd zDaHJ2+4N`0xU2Xuo&C(IE)aW&R=>T4c2vXdc|1Rzt2;%GO0jK(YOH4%P)cdXU|m)o z>0DZX&3SQipT2%ig<)bh9jvhxAS#w-zj(jL>uV@{FcOWNZ)l55`st@fg*Ka8;qrg%;`pjG39M?3`H) z+KXM-YSeZa`EUj7_bu-6kU6-v@QL^N=9L9!EuJNw10Tdo~OfF`y5<7uMn?IJJ7 zv(&N7@dIN(DH$77BobJP_W-f;+T8pJ0Ah;!n9p=hR}iOrScbXOpc+j z3GEj(ovl6vOvR&@=o)`*=9 zLe{8<3D>S25Nj0_#Gx z!MSyYRKi))CSXci_F0+!27d{gF?D_oK^EbL(I?@{4w3XaW3T6X;8)?X3~9LIF}j+W zPR(<5U7kb>N?eSX(4D7@IHz$~0YQ5*RIDnik1iq}dILktGlHBw&zO&B#=7-oJ)*1z zL5Ra02UmquRe)kNL!yhSGltUf%MOeNg)=#}2v&|MaL*HP4@dn^w|6=IEv|CwVwd+& znbL#Y6!BIurfZCq%H3%L8bnG#M$xLk0)UryLu$_ro^tT4?5ZN2Arf+JsvPi4fM0k= z;ZzGn?)}dqSGH1vnfpXpc$IZYWJMVltBZ2{H#x~J0Y#qsr-*V-RS+({QreLb92rv;Y@?xXapVOGQ(*qpf4MnS;Vh?ic$N02**il?s9t#OOkCpB-Lh)~7KI;2+| zD^Myt^xQf4=s4kBnFV*kx`k41Q*IKi?N)qT)$Yn0udKfjv$YSxwMZGjX^wdbtImt= zxjy&zZfri<)(+#Am>qdv>hub(`eca|wwIT{@WOXH$~}L9FVbkMs?6@9KG6t)>6v&o z-j`W4zO!NBDjNqr7Cp78t&SB}FaWf4S3W${o-9Pvi6okloistEx+}c%PMiI=o4CP+$0^NRoF!sB!52fHp z!d%(KOd)IQ{>3!ir5_s=^8D-sVRKKLd-nj$o=^+4uWr_03cyWuZ1~5X+8y&=e%ss~ z`V-Drq@et4ry`e971r8bFFJ+w#wxlZqlhzUrSAa5*0-)SXqcVVwx7Z%{uBkg0HWyg zMutm;0uMOIsmPEf?>A?=#HG2An;%37Qdr2``bc(g3DRC8{og_{@9|M~nqNP4U#4vC z=uM=b!JOm_W(0{qikW?FdjkPdD57yNgL{##@m~|P+s#M1#4NXWJEOzBSXSj$pa;mt zjJ}%1g`9CuK@VvT>WEt|q2aMD!6m~+*e5U_DYvkhe-#Zf*8V?#wcPm*|4n^mL9VyB zigLnl@p^REYF~&s{+MDY5W%G53xui84dAYxdScbXV3j{Ly>~#i!*FFwT0K=C&^hL` zqbhPXF9!wtbhhS*;zbQa2ISCF7DV1*kKK)U71!T$T;4l>8J^fLUFIm4kE|`g*Iw($ zYs$5&!*g3kV$@$V=Dzl=f2Q+XQ+r}o^%ZLb^*xa8UcSx9Qfmn*8uTHCI*GOKqzlpb zp_>YUSy|)06k@%~R{No1<--6jM;6boE=Yu8KrH+B-9673P@JD5Urlb6_It9ssvdHt zb~-5f$gSIr*o&MS+LLM`jKka2Gt|4;=(j!`4v)5g4XBVEXSk?$uPywYVja7juDCeu zt`QDUy)V!vfc1P#~M1R%08$w!bExAu0Z3l@Fw~I)rlnu3IL@% zqv_UGm21(RlhFxH0TqG)yAbrNwlj#ZRT+6zcE5yh4ZKk4=er;1Rv=9FAgLV4SoK1Q z=g^cih))no$6>SMM?k7wpjSVpkkc*5E1k9m&eOj%5Qk(i+z~I# zE28B|ZteDDsq(U6xr&IcJg`&ZK{!b`?RjUaM_CZhpEN zbX0k~LUN%nsniP!^~O07Ge*svfVG^oj+%!J{s$_xeW5>}{XzPzX=k1d4WafwVEMu! zmQgb3zt-wy=ozV_AH$UKUF@q?5lzQYpu|qNqpeqX$mj=<>}g4jfx>)LgvJhqj+CUB zr)1d!3yl@_1t<0C!|(K_o=flY8M<6X--?KA5c#PNfz*cvyk}YC#O(aR3+aIVwE@n| zz!A@-WY1dNK%-%x5YWMmzFx((Bz9X~MXFuGa4Gd9_D{7!yPpn55jS_#7l6r0?1aDh z|6FVg=yY`AzyOl>M)Wm?LxvMRWgmf)RN1clB&oA2(oHL7S&-602E%bF9)ss`GLI2_ zQ=!g&#ddg+vpBTUUt#E{-iWoLK+v{(2Bmo9-b;3zO0VKXd`<(w2dpBjSZ|3 z!)(p6E^^CK(SWP{Vr|=1d(AWN8R0v-YmU3ZW_poV84IsO0R6|5X!_ir4v3F3=!hEX zYCHxT^fqwxuSC-&JG;Ur`g{iJ%CPFd2sVD$u8`aZ=J(Eqt5hpjp%GXpxyB2^nmX@D zWudKq(={)g_EeZNf<-frV9;!|9mBR`tEKau_%3A7Q4}{PP90=K!-88cQA%q>oM$6f ze4Pi8`bEOR(`er-jFP0+QSCTmg7wpnWzp+XB6p)KRNsdz{!nMeIi1X47dS*xpRQs* zPVCUoj#9eWWdSx*@2v0$!p$PM`N0%7e_!cbPGH#I_qUc zZ+|WfFC|R=6#XUYEKM0K*~+R~wD6p_sP_mICg}K}RWT?UCd0u{O+_`}g&t4z;LVkX z7~R87j`pJ~-2g+k)^Cq{>v2$Y7tyL5Fx-+!HilH+iV$NEN&`s~fk%u^V59}R2cNzJ zvZ30`d1PXNnrM)~S0&t|_Nu#F%&HXQ2eNm&?zo?{7*CE@r+P!e)jI*IodfBA4qG_d zk~D$jxW&ZJagO4pVd!!ne|Tlid~HtJ<7wz|HChk)#_}5X;;J!_X(c31P?MUmwz5_8 z#WdWQdEw>BjP>*&RTW#Y7T&`7jb%bOYXdsSG`mW0^gvb?8up9aSC9j~ za&G#ow?0jhpq@@Q)yv{QUPq6pVSYigBXV#yJ2=Uk5OW&=c9`r4B$i(!PQLu*JA|wdI>XQQvTkwj?Gh(z}joZ!!LAgGin7YZB6H+0H$Rcs%PtgjY)`TXu)w)-x-Rp63 z&H+^cLw1qhR{FsEFrOfsGG(kkVsvs-wUU2hR^Pe>@oUfCm zP|0`BHLm^*M(&uhKxhy8MAg3@W)Uf)K|YYg53$fzNrq}S-KBx+Z6Dr&Ch_Az=YKs} z>23dq@X9@FE@iHYhp+=jq$R$u{lf$n5*XF4iMP|b-f@kWR`7BRb+qb*=)wZ4=%Ky* zTJxId(^wco{9=@3ka@ zwTFu1!=(g-1tGEO;Zc3!AnSUikeV4%SS_rzhf>PX1%yP(;c}bH-=SeRQR>?47r#CZ zf6Ur6m17;1XOqvMluw<1E!$~W)VyYN(_4`xxFSdqIwG1rEYFaqrkulOlsfQ{ZQ4L; zymadFRi9c_x=VyOW`Zib2R(&~7Bso3t#yxLugWzpSknyJUAKfZb5QQ6@5>Cql=sR! zU@dm{Ktle&U}TempZF}$2db7NUI~wCQJ?LaK+4+_e@VEXXqP`@)6=-N+_-kDe3aV( zSgr)rvw8|=U$fhz-iNKUgk1sHtvv$hA8p}B+vy`Che5IY#9BQ`!5p zEBR-Qd{jnz)h_m}SHuZmqd{=i_0~WMSd5KV-fX|c64Uo> zsM!;VtM-yhcog}kHiVg4P~4hl9hIwibbIeZh(fS%a&|AAt%I@I6McbD_0!em1^phr zeR$VIP-hPM1jW`Vf!Vt^B?p4V1Z6XzJwDXkTM7h|CmNa_U}CuMia4H{0MF`>e3#|% z7R3iV=(o&xJT1Os>MOjKpY)pak3M2Yc9>@ z+wmJFfu1U$Ydotn)bZmyECWq=xk%Qc$Zyym#S{P5Wef+2T9x5u!>Oz10owClUsabF zHCmSEQodLzP@M>d^c*EkyS-S&8m4)fM*WmiI)${O-cPoPuX%@jFYG?mO6DWp`7eUlY?dGp4Ui zdcRg}7^+y)SBx-IXuBpxd0KDd_mqDJ5}pS3Cr!~vQ_)nC#G7E!{w-|w;QDFPTKX9_Kc2fOTm8$iH1-2>&=ISgK{dPH5J1{00F#bW7V=G(EgtB}cG z%=1=uGbB#$|OUx*K4@t z7^0$dC`colugXvNM0=7%y3oC{zaB4$XBarO6M!K3dVsDH5B4pt>wE*Zv&8&^2|4a$kJ zg7sA8PfA6{rqy(C%KW*FCRZ6vOUEPZGp63n&#$}F_Bk#y*G6`MzJ0liztXh@(|&y^ zzIZWh6>%6kchkIKv`4?B8%HfU!^WN8G{Tjuvr102dPO;MLbk2L!nNjMR>30}%i%#! zn8pvr!m&TKS?7TL{l@#8@C4M4aARS~GE5ZGV9S!&-MqY4QbOp9*xMm(xWfx)Fc=w- zl7o=y&!P>F4BaDtSQzySvId-u12fF=5I(KbMcjkr1-QQdlnl`c4~erBAFT26iQNtw z@i}p+Q;GDhtl$|vNwD_MeO=vHC7i;>K{dB*S^+*jTk)aj=G z(FXR|MWbRB4JzXjWbq_aXS$P!(d^GCLuHz-96hW{af3$cDp#~)Jh3Hd%n}(h|FOXv zrpg-dh@}ABW&Xd>XLf`_UYo}6$Ae7c2~@kmoina5_3eo&4xM@Y4%*DJB}VV%1EO)+UN1@l=i4zhKSEpa1e$B z^Rr=)k3A@CJN`}Flz6?L+3ZR6=ASbo_$QFIUA#px-bfMu&d^?F9APK4YwqIwSR(dp zHL)*5pX0Bvo9C)WK*5V8WCDHdgJ)a2am(07H&OdX&qKWE- z=#^8GLGVS>&hum^k+NW~1DXlKw+VY6tCuV+Y8tDLhBJ5TDpdcfctu>;SJ~iv&wcd= z3E+hNOfaGJC_$W!G=knwc$EO`3gmH{&!Lr~D05(KO@5f}u*VvHY5%y4G%LG~g*~|A zJ?XUu+45cd6)YhBJ@o7NNqomKGuZmHP2V7~Ek19Cm4;zZ=YaRRv=v8yy6ME=6$Q(_U1oIY$})I=gai!mA;A3Ae1K^Y_|pZe6l_L@NipG zrzO5=O=fIit}^26h~~OKZmhh1Y7EE&g*FEIhq3iLSA!ncqGj(37H#KWxgkFZJ=+TE z6TaUUm#b)k#oinpwH-hT=EnQ{pzhCI>sI>^1vyB`C6?yzhl7F-)zM^GD5ilec%g7t zBY>o-K0UppVz|^YJHCvggO*sH&71~#RwA-%jRpUb<~ltXU0O*e<<`>$uc`LO&{OB5 zw+zp+U^W-Fe({f%jXs)l1QvDQTAh)Q(J*?}IgnPH;}0rwa}w25n0Zn`IJVbWMUJ!A z;MODJJ1mlPSvV3$DCOH$*vd16gmSSL)QDdX02s(HbRA9ov>lkIySEXU*VNP7aKy!c z5Bt>&N#zz=hmjdBSP?Zv5$&f(4MU{*Zx>_nY^Gwu{54i z>Z<6PvVb>;A57R8`R#^=NxnDe(JNM}+=^>C2S36I^B)#j*NeKI5 ztrqj94S~?Mjj0%Ay0tHmIdkd{f3=H9Got9V<#66Vx9*{%w5L)i?(T`;oN!| zGt^QqV}4x1OEtfQnX(0nc!GGX5<2p>8>Th~s3#c%e2 zhxV~@UtGQtzkcl3jBhf4kjk#B_s;6?Hg)W*iNFeeOsO**y48ex7VCF%KMtIhYhf48 zqcDLAX=#emsdRgC$%Zb7CcKoJ)O>X_N5S1Vj1ct`15n&lxEWM)Xipo$QN7@7R4esf zmvkSTO~snNe`h!1iqCfK^P3lU2O@>{nrNWDeP{`je1-;xvZO+a>fy@6C_RGNP9pw; z+|Kg8h?k7a3=Lmh{u5}@;Az==6FnM|NHeE|b(uQw|oTL+toJmtz{Pk<=-+4}VqS{AQUE4vS9V0G6u3h_p zvG*(CePzt=uI($(`8=1?2h)K=u>F>)6{cSFe(A*n zYJuVxwnjjBLSfcE6A>)#9jvSF#zN<<=u$Cpw7txz59b^nG??5GoLwF z>TzN2kd5PwrPr3jWnGG*W$}6d%=-GZ`D@3i=@STJn^y9~)`Oa-%3C5`GXgfLU(*fq z<(S3mn40>4lHSSP2b22wlZgU;-L}&aTMjfq`-I$T40+}P$E;t54C41!eD{i9dl#$6!J&4mig zfd~=7%+*P1X2?~WivM9%_FoP2;P-qO^dIB-kCb*$fp)rd{C>Uk@7 z>A<0&%0BXM+Ka#GOzS;^uZJmDj{S?(P#UMD|2fQv0R7+<&+|r){(8@&K&RRwiU;qq z^a2=37!GUZDkc#;Z3#8Pq?Q8>Pd>Z@vKo$2P;*O#qfdh&b>zxqTKe1-Uo-mENhgAp z1yu|ix8i?h_XTq&mxa`vPP>-QM~wxZ^+g(_oJ5NHc&X8PoaZzWNRsIe14*QWBQF@; zzls`bd}N1M1)kjcc>V;%@f-Y`8(B~;7%)cyk4$goZ`!EpYv1G#PRMkm*WPGfq`a#l zM{z0kM!qqoEW4xx5*uy~*13LTmSE1Z@-Apagvp!pIvWyQU5TTN>P+v=60{(ms0DfPCjn7ICAyiR zI4Llb=;h)hK3;J>Bm>0UzE}PCl^(S)5yAv6hoDb7b`x)8L(pj#{R+W^s5={$^)1$C&(Kb+7cVuw7FjoHV5;vkc%J@GynpdeEoG57MT z6#QA_-6L)G`uYtqtZ*;iUdf=b+Q>s(Uks4XU;u_O)LOGf{){#_eV`cRf0C|errDJ8 zZ_~Zl6X_lfANpjBexnjhob}Q-;7UMc#^kAiO^Io!}ZT!_~ezXo>68+k=iuOE1U+{18uxGt&2=f}1w1%g4Ov<8~ z0q2)_VMQZVS^SMQGh00^v?no@q^~V-m6G^IrUs%50xmX;;lrX;ZzYihu{Ln!f^UW7 z8ULB1OHd&ELOU(nofQ<&;{rCS^t%c^v#TQM#w`mqN#ozOStFp{b=^*x2Z^s9a0f`<{`A-hNhmC1Zrmb&3Er|ie0-B=UeUO!D4{?7&T|j8 z?Jjwj_6=tFjYr?)`*hS>X07;+9qK3Wi`545b$)%A(ymdFbk9EwGUw4!;yiyG#u#n> zE2z=Qs^Ta=jIO9#`vm^fe~EgwhEAM4CgSH|V;hyfo(53Us_$s(66p|)RX*Q#i!JW4 z`oNAb$@L+7Ev-iKn=fg(w5KE@s(klt2KskI*yE$n?rufU^G8`AWw?I4>d9il^jD0V z#ZGg(VH#WPjHh}VpA^1STEaxNPJ=%fd##L(M})7zVlT@Q9=ID3o#>P@etdX;Nvde@(v>}>3Yj~&@;Bky{OioD0EJ7@TOGaNo&ve+M@`#iZH9Sfsv9NLZbF&-_opg9$;VjPwzug*cm<$+}_8dtCi& z(|pIKjkA-Q(OXk@siVi@&lvD))Aabp;gI2!PoN-ic%!FFM*0Bf#@xzZCA!I^uZ}dK zWaJorRS{H7+`4kIy<=P){|xj)G&VbbTIi;jvaWJ`xaxyfC0-T0T`=x?3e~5-c=V8y z7J%m9&~pLi!$#{Dju+GRnk6StjZSX zM>rA)iW6vF7ke>UOO-I}&rXsf)x|rVoNR8q;MU<)qlYAnEm?GATL)F^KW z`>{QD>K*P0Ms7@Ui#v$end}`LCT(!_7-n>{#-S>^qIA2Z4?D+p+09{(r>t~$3Js{x z%X<-VssfANABA|W%umRnem}AGFcP4&rU1hZihi?Y$7XsYbO6cyJ@hw*;~%c>++u(#e(5Z1IZ8B}GX7Nc!e3uhuYS4jWna;Nz$M>=3U# zHKlOqZ!$kRz|=jRShCGz^=2Talz0s_f5NCTC`E#Q>0GOf`A^p46Ax*ZPbIL#k1%!G zhNqUYpI#p2pD!1sq|#*U?%#GQ@wnIgY{rUY6Un>w#*LDa{-D?7M8JnY#!ApykU8X8 zkZWe*rmaR z(-=YE>OK2R_gytYMYa<@WwOV4IY;JxPtk7?U=m43JC_tkr|qM*-+18%dK`x{MrCXQ zVfO~QiJe9On(r>Yy<(OOPwKF5Ncx%%&FDB07AthByD^#-vi8f?cyU7GSAdi}%m-g8 zu`L3#3lYr${{hhB$97%+X%|4&@!PRs{P>p16=03MZqEXfB6Vd?`GS@{pF;ZGk6-X| zpPgGQ(Ptz8GdwZ@qzMOm&8XQYZ{yz0E7TW&%YSux98=%$wA4imMBh#I>pLR5csfby$=SsJ`#=8$ur~fS_Wun|&&7_fsX3M%k^~)Guyt;t%%~;Sy4? z-TjT~1@3AQgr$FrW4B5>w)3k~x7L^B*v46TL*IEJ_215q77y<&(P&?juJ+VB?n3i5 zC`tphrOsL^0iTM9zK=c$-Qmh29FhsGE1SCu2w!L4_VT3+ZALKt9sM~@Xi0f&^vP9N zhI^CIR<`HmpGFWB2=By<1r_Lwr(%RXm2Jo!sA3V`#~zjr?&UwL!6j^-pZ&=(ESje| z`1~@cT9uRk;zSq@+@+B;GI+3u76l%cumL3~F9T&YqE0dgs8GgI6R#{OKd!7F-#Y&E zW}p_sbV)n}7|I$~FY6>ft$qtr=kfg7+S1Kc8ASoAc*d z+gqP-{g$S|6B9gFS6Fun{7Z44C4I=sKusS`ju6Idrg;nu;&~od$`r;E9F+b8l3y=e zfy`~aZyV6)SBM;Rs?!*0m0v<;5%cZP5f8T&$au?N8`n;!uNB^lSbz_`qU$Cnd}pMT;(Bi^DL~a$W*M*5EYqu$~=&w;1N86iipZd&c9Fh{r&yRVVv%--$zx@|7Gn9SEazY?1K06NvaijI*Tu7eJO*5B*{8;13lZp49aN ze+RxPV}#=bj2z``nCM-0xnw#hCiwizHgv?w;%q|Fu_~e;H0>K)rF0bEI07yfy-I(t|SCo+6+Pe-i$FsnjIXKf7hy}au@;}+{ zF4T(-3zq}16Q*-Ye_7Mhe$?~OzVg2iN*{!BMDzi-W#HPH{Ntg_PAi3c2S!m~{thrU zz!(S|e>f^?MI0jfhi1gLLiq)Dcd$9qx^YO?jdoyuHm4hu=Tj4-G2D#lL$Zw0+@z zX=m~k`aEFd$1fZt)xu$`2Vaed;3*MVL(xgd6~}X+1Ya%RFX82_TjdzRm4=v`*pGwZ zaL2ZNt;BHX%<+)|#aYj)*}meLl{!+VwZF5u{SR-P|9m>LWm^2-p<=!Mbd@!ZUW(hD zk;2OA0^9jVEBE~AZwO2jnc*{op47n;_|kzl^{&DZ{m&NAnHyX!I+B~O?KksJNb-*6 ze@_CA>eU~)RM~F$jjf{MJ7GtqgTk@cm*XTC(;fcF1JZJIvVLh08O`+d2s zB@)<&;Y&HUBrfp_1_UK~@G^tix7u}jF3Umrr>qC-)b_h#r@M>yV#rtK-A6a-dSO>1 z;%A;&^~L7CNsN1w$Q{Bf$bU2sT7)k1_EFOb=rJ6%q4=I!N8#A<8Gls3dR6V%kv z;g4$SNCuXR?C)Np`plRc-fl(==9i_ffA*fq$Mr|Ql7p56`LvJnKUQp%8Mxcqu>RIz zb{-(tmd@F0e&IKt2WRJza36DR7sz--XLj-TswE9=eb_eg+YWM{c=t@~)ZAX?nCYi! zX{4t4&&(fVZWRBw@V_}% zc5GeW!DSc;o$^rp+xd#SE|x!CZ#$F6hREL^;g%DCpI`o7@F=Vcv~)Li|3r9Qc-JXY zho^6!M^P}O&A$k{yJM$V8#mJqAT#$4(RvO*dK|gGaXc^1RSEgIDR_E)nj=(ykfyrs zJAc7=W=DDsTyRMU%xwr((vqHCf&$Nrd|yRpxHaHsDU~LEgULD)b?bS=E~n8$CnQh) z!k=WopC#@Oe=OI*D?`69&N6-Nb~_SM>!e|)GS41+jwjr3_XGGl*<*0FLH#4T@@X(; z@wci!kbrQ^Jy~2;KoSq|Fj4l?IaM?j;8VG_YHIzk!}~MCi&;w_-J)xuV)!2puJZwr z!uD5wdd2-uD6b@gXN9geT|64wexw##ZnXW)G_!DN*Y)3^iGv`!lw0~)Tb2T%llSU+ zd$@vSMRtYXRX^-4NKz}RZ3?m^IIj5W(CSzDrp>^-%vLAzVb;F#>B|^mClOG&4)#6H zsJ8Cud@+>Go_l=7U;n^#w7~pLLKOUd@s95)5p%n(v6sd~#4PGrQqopiiqj2an_U+B z8nx-gkNh{4-ty=6lZE-Gi0`F2M&ewFc6_nKC7o-8h$Y#g##T()(uAjP(&|A1M~+(i z$R(p)eSRx5=NJNPs0?fNTuB3}`66KOWQt&wkXEe`qD<(&LE~?^5bMjq;W*S371I`+ z!LWw*b$ldiYnMYv6;YdZVpgE>r-5}S=-Gy$pYU|6Qf+=XWq50W_e6;C8)#!KN_`_5 zkwQs}M*1QYEBEtnT^^`d()AX1zd?60dwxUjs#LAH^ps4kdhnc_Fxo4Q=E%F@b8zFT z{#g&4-5LV@5#iOQMiW<^uaom0*wk^-SVgP6R;B;0*4jpANp;xpmq_v#O|Gg^^d}pq>kFJ?TjaT| zwP|#kbUYYE+^MaTtMXR_*Np0!dM{G`=vX5(Ai-C|WlgDHI#Zj&qZ3+x9%J7;8)$_R z&%`e*KsnX7`+jh7Nq)YE{)Ba#%dhWl+^3o4hgkYl4mD${nl|>a!y9cTqmt$v&sk>h z+usBoIh6E0^#!|xS)55oj|g|z)8E!zTaG2K?>R*No~q6A9#+&!smoS0ru0O!dVvK` z7(@Z~;%!*_|FhY4t^T!SaPu-}P&QhlU6LguUH!S&iCwuBD)sM+ogCgQ|QWyz);}RLG17^F3we-bz$*u^NW@0`-ECJyLVK& zqo|^G63i0YFWOeqtTB2w_}odpt$0dZ2Lko1{r&F+SE{}g?@YE%{8zT)tKWm7#}rr7 zRl)k)*1x_h4i{W*o!D48XB>TV_K8!$9!X)2On9vr{F~&%n=IZ(tbpL-=mxzQrqQx##A0KDkq-x$cpe09YE(z*8dQNBRP( z;R&|~Huqp}KERTP`%Llt|6>3gl>resAjWNHU&OnMwSM8Sz*PVlB67I0?4Mg+5=dw7 z4=%)Sj(=V6>k=K``I|TbIYqf7?)3=v=?ApX)P+WL%F|>Xm}pzYzqrzpAGzX799c>@ zmndEQ)Ww%7toGnGvJGf&V9>P9zg`OM#5p7F@&Z+@%=z=b9W0=o zoe$}=iyZ7_J$69*ZU)@j!FhW&%5@B&oGmQxJo&ngs|1HvzCRjT$;n<%G4}RUNmAMe zWQ}gjmP+q%cq=sN}#S8 zx53yq2U5y6Vlq}X&QTh>W$gdYr;4+HW-s7AB5_ercA=$*>K#Z0$bxY&R#lI2B!aP&J&Bg?-}t6<=7a<@Ka0?w&Xag|WLREq=Gw_d3hJqISG5_E@wo%R@lfeEI(Movg{TnQ=**wGop_z$7N# zXyJFB0F6d_KhckP!6J5GAi9u*DcwibpMG`k(b%p2#FKMh9&#a0X4^VK`bY0e&cHG@ zV;t1)oZRt$#j!J!iO#Jk;rloPTnqv;+pzkP7^>js z=_dU|6;%R92m5CJ#2B;-_%tP1=E{crI(fkwk$QkYukErko%&u<#(yZGdzL*OKY;Ayg4!fUy)5A z(Gy-3(YgFT5n z1nKhgqAHCgQ8|%R{|Ctb;{jUJ?Js(npIhPRwz3=@RP%VPRjEwf#h~yNp5f#x3mI=b z?l3u1;^pZ*AXdmWRD<~wybk^AMPFFE@_OQ6Au@@K`64{+Ho(<7ReVrd)DA7$8g|)*c(34K0>O zE=7lXksvl3(MweKWJh6-x;Vclc7T5y(%Ig8a<2WX`5-Yx6>!uD79d#uy4uJ2o+Ye6 z2aIdg{{c||_?&?a*jP9ttuGuYRc}UZ>Rgfar4E+eT|kS;K+(H&XPGseJ65d6KoS@& zrFLAbY|}+#7rxeY=nr4A5gfEKYD<`!DKnUm7}s zLGjcA5BjGEqlmnatxIBj-_JD z-Q5GT;ky9C%9WG}Y`1?ahA_sF_WKe4N_mP+98m^D@>M@fQdSlqPS5s8Aw*x}BKG_G zJlz?~BA>x?)Nl;!T|;DmZw5rYT({pZ^tisRHvuwR2Rv&1jXsk%1DAV;<3V)4NN&AOnRp@-u}M;=qKRmhS$f-u<|rlNs3xWkXS9 z2sfOa06yf`4rem5JDU3@V(QJ#N{_Vl@2Z@WS&XM}sV)@(;g{y8xGJkoMdZ1%JDqUiLvJ4B?+P)o2RFy?@ju2rcha9$)!GM>LE)<+()b{wl0- zNV?KL`lUq<4m0arTVvs*iLnm{rDUrZOB>(iQz3z5&v67M{(r17sbF^w$?SKL0#31j z=Kt2~n3sZMcn&`bmabZ658+)mj(ydZlb5z&b3fuANZ6m!sXhN5vi4LwVg<03)<`;h z#IE$N&Bn|6p|T-(XMY`Pgi8Uy0=K7tN2|6fsE}2nQ+|6ccb~#;u4g45U>)>^QPcQW zD`P2M$%1+cZl!DVp|shdd*o^PC;+W+KK#+Kw-6kt1QWfvaZOkf?g;hMeCqKq5Y^z@ zP&`zo0GLitt$k3T_MFJmHq96Ejs74X;+0YDfrcqMXL@C=`s2uBn8r#l>Mvy8*sF|D zYpL}lLbdF@;_hV{nfaq9qhGfXh#u)HVfSN>enVy`kK};nXJjRyT*sD?D0L8=0D~CSWX(ut!m24nUpeBKaUz-`9j*S>dov#A5GKU07!;uD*nr)q~E1wDb9xk zxbB6HJ_uwCPULHrmj|8)ZzBI4Om?Y|qQ6H1917KiXi+B^^d7Po@+J0^Z+Yz4KqxiS zID8kM&}v!R4%`)Bb%n5(;=6yv47o~2-JGBCn^ z1$9WtKNT+gFTQ1_xp5l>bFop<1h~XF`WaX)tyuEO!?b8=CFmJfRdW!inc}{y2fYv^ z0s`!XLdhAnZCdw2Vaf^ztlS>gj>8G;XU-)iMNT2TS>a}r500?uo$nTxJRNrW? z08BL3)}Qaa`wy_IvpV<0OlSF1EbfzJ1sKfyePNjq{LG>+?V#klWq@=tP-DOTs!P>Amrb(sO!1`%h$DMIN1ZSi~}PwpXAiCC%^AWZeq` z%HBX!|HS*P?nPz;sZ~K1oPW`YGx`>9Qe`Y#Yn6V-|#)nF0#{I)1d~uGz7ave1!7=D{`(9pF=p1jy z$7k;R%hM^viuoYpWMCo5zob!Vx2V1+dLek?*L^U6?%`f4=XIn-RD!t<0L{~8&~Iwh zgL+mga1$yYAf9%1U z^5H*BKRa*g4fL@aO(8m-zfv43cb)8b6ADHRmZ%Wb6#i4EvYO)mm7+~C*w4ubBP{JS z|2M;$PVYVU;OtbzoAYc8p?~fH9w&25;`onJ;rK}&WC(U2l?&i?j?e%hYM;%(qSfLa z7S0d?MmmrEG;<(0fV-dOj7m4ePK4#^qWSf&1XuDy*c%DoilmoF{TnSwUrg|^l@Jqb zQ3@orXS21Q}JULXAb{r!(D4uHeEGXFe8z_(%vTFIN<>xamSVQ8EJKyl0O2CnGu_e+% z;!{YiH!}YqyOl5X`Q1lotc$31K>A8mkA0Ka`XJOrMCkzMkPG3_7aI%to&dSD*OiN> zlSljzjX-(A1|vDEe@I_4U#K9(g+t9lWtb|@p|rrhX3vVwQc1~%@75d1rw(2jE4i$^ zKzd%NX2>x)V{YMp6`ViweSne&MTm`@5K!IKsEAxByX*Gt(!OE=2G_F^MALjMB@LDz zp$p6?(QfAC+xy|CM9ZTby^*Sbf6d+Z2yWxM=JVZ4-g50wq|X)Yh89(M*gK!yTRRrmaks=C^PJNCHkYD4w(i8*=lR-y-|{zZ zJQzL5p7RKjW(_>%78FiQ39m!k#8|Z{v1ringLwr$$1LtKi9O7uc|8oY+`pw_@36qW zG79U7)m2;z5X=Gl)~%4!Ht;9`{V*gU_v98;{MD|aPFzOR1G?s8o;b$gks{(zn+TYCo z?wM9crf;0mb)iUDah1pc&4H}4B;+TF^|pBWz#nlAumIu&(yBlEmeZIYJTW>|422cj zucgLrrbT56t)(gY`&AaQNCwE>)kZ?wu^7C}yEYgp4+` z$EP=T-XK;l*5h|TcXldfRriu4vzQ{uj$t=zB0Pr7Bx}a9T!=izHp3RPd?`FN7y ztRP&_;%Fm|!E5iTd8bT+Q_b!vNRw)4yNouA&c$mUOC(v)lomj)0t@m;Cy4-A5@=vy zoND@vjOy+Hxgh!tfAC5xvx+SW$5ltX+uWkiGtylK)h;DRbWS6pl2PwCy_`ctvxoMM zdZA}SN}a9phACo94Ab#MD5vYQPwXAI zERRamP^<)|#aAMIdDMdl_WUT}P+^owJ|S;Y|3|MnHIWYu)=!8sS1LfJpFh9l{IAvd z6Jl6Uy%TizaM^f`92b-MTrwLPz1I})Yt=fOIU*`e$y(cvZ0@gEWqZY}sm} zu(z``_NJf2hex5yc1U2G+w~IP1R*3!CD;#~*hxHQMCXxuQ4tv{HW3>SF@gdJu?||j z2+Yp$wQWD<^l@ALtJ&h-Kih|t_SY*#?sct{$D}T~gOlvG)L#9X!fr-*aUTf1Rj`MR z^~4P^AYEfCW{c3smH!55&%z1ffp9lkh&ZNNvtE(jfX32E`lU&+?Rk0@iWSEZjGsTs>TLQXXpe+o7&YBy*SId&9-oin}$o*mWpHqI|R&Sw?m zpg_H*d?M4Fm`L92>Z7uFEw6_vP9SY$hymI1>f)---n2RvO;*gtPWyB4Y+TCq=Zu!T z>~0DLJFOjHfG~JFr?<l8pD_* ztj@~Fsv%TTKJc?*OW*_0Bj=UGjItojs*&@{r)Neo+&i$BRx(e3v$qC?x&<0;L2f^! za_vY2!7HYv62i?B*D4xHhf3wnrlr`~UTVc)EXRI>d8oC2Bn1~n819;HI9ZXSHujSU zSFz4?`6Wb@QaVm~r3fu-#x_KrN0aeWy=e6_>h88Vw2YzWHFMxiE%;Zg$(}xHX)|Wy z6qUlHVacPw&Vtz3wIKRBPo)2xP8C2I^su|=D8bNXjcTaNC0aWe*f*1y*##n|${6N5 zEw`o8x8}E|*ieD@qI0$+ku0jD)A2{bT&moAJ#pSGss{0M&AUldwh$W2wDdYomaY@$jFLW=^m-ys_IKd$3|(eiy;a8SOi_a z@b)A+)4c6rZ=F?>1vd0kXH1#;78nh0y!*P6#@U>&3gLttr}7>^w8;jVzTQ0UplGWJ zh41QzjT{ec>$g`ZtK-%`1y$CHmrigCenrb7lFcX4`OPnYl%#2pi&747v0eE;q-wvR z<=xQzJsSo^D8#SU-)v_d+$pUTkbXaI*A4d+XH*DPES&WuG7N0en zEWWvW;?44(-imo_HdAyz@=N6FugdEgOJu%Fiz3}}U~{8n1JPoJ6Egc`4(tf!yQF;) zg!SWag?QwY0u?f(hMf!xNF9uSjrGO1<*ybeFBY5y#@FHZ23z&lYvK^dcekTRO{)1& zk+(LvvWsU|X~Q9Dfd2;l0*4B(e%Vlw9`Df>)SKWIiA*oSYs_iDF$90wd zu3V&o_NixMnE_<4$~`U|FHCqsVIwReCd_X#q_iFZmmoC~3c<`~pgQZ@z^(fy`kMpf zZ+_YO+_Lj@f`w5xKO0nkC^G!QF@|xVvZ4GM3JCOS#B4LIYWisDDR^vmIfd+AI=dH) zfzOlEIQD8OlEkQ{&veTO-A9tD-n|*Iz(j8N zX^=WhPq4ZLb)D;HXt>T8E?-PC?hf0Z>qBi*g(+?Z_wX9wW$J7>4={2b4|UJU+v{8G zMN0z$nXI9Jqmb+KeQ?seZSWyA4S z+qa7kmTO~G)wqp~g;ai}R%gO*BlGvKx0HuflE?$bHl{NeGsaOwXo7fehb`t`+y#kj z;v++(uEo6quc<49=Danznjp@fqB>~^-=o&PL0ROZvKpSNBFZ~Rs0fsEIU-yh>_PR) zc3Q$v4O`RREqN>BCjL``987L-+t4iAHA0a3mb^TtvBsTcK}9y<=3c8^6c?i0lIp{x z^y7o2Cjj_f7O=Dg79H-OHKXNkZV3%Hd;hu5@_f97AokVa@{g1T;#^vYC;V`YtJj2hvG2**AK^3~tM92N1e2kR>yViBcuo9rheko; z7FbP#6O}^?>(gaS7lsvT`(*vemQ6qF^Y@%4=#%B4hd@8&H#epf@f7b=bnz>axOjhf z-FS>T2|jVvjpmUboGALrd{+;|Z+QQ@ce!`9UgHst=g4zq5S%xS8WN)?2)$2g{>@-) zB`+r%o@<^F#B^EDkPBSlCn_rxVJ1&=#v&=PBlqf6)nM9LfJNhIxy$98FLj;PAM|SH z_;FlavCYDAWd!f-{cT7R_%L#Br%%Yn&`j)&m=(%nu^cD*6>%733No#xO@Zd7UB|c# zOdJ0ws^};yMQHx{^AkTiwXte;Y+7KK|KMo1URf4fncO;LZ7ov0OJ5BMCleX-DO9pN z3(0rnuN5Aw*r%`EJOR;eQXSP)(lkLJ0_K$cx z4^Tk;lPC(vw(2>~sk3A@3CdT%4q zN#CJjE1Q-o*hh9D6L9^uK^*f3?H_{s$4!Gm4k1}l4W5TBpXlJVA0cxm(OA#cpF&PC z_#0)siZyDfPfvEX6UQdsJKZ_A)O3^Wv;C2P_a8-ftm5{Qv}(<}$}Mp^Ii`s}J3x`; zx4CDor%Hs@5eZwL*9o1+NM#u#FI#{WIvI^xXOQ$)m#14WqYdqR5Aw5Xn_cC|EsBg1 zoW9=hWBLWQCZ1h-^uHYmN54xcub7aFmo?UY42m*lEuhMBxHgh&WuHe4w!|riHe8&t z{E*h2Lo=`C=gdeggDGF8=Wq4v)+HeUX$dfN>PkNofqT87r0|EEcEBh_96f(d;Kw61 z0%>gB6Nd-0aq_|h{zPSO)vi~EglcAJ%UbAUeqY3c144$oKDBe^xqdPU2Vuq5pob1<($?2Sg%`4cyJ z(6V0QlLr{u;E&})bJsM6?|Bx)xq+S>?v%6P6PY}xri`ON>Z8VwNOy3Af1!jwi-vge zC^Knz{PNx$&A1#9b)hKddJ9KS$9X%cmQzXkhwdHJHKaw{u;k6h=tFY))<#I&#C{`J zS11@~PZIwOS?{bA_qGksA#E9htL##VVnxBkN~bwQQ9C<8A1s)d9%mDkDa!U(UCFQW zoU(cZQ9my={mvY(Gl!VhCgClwAN@g(q}&MnEX^hR-@u^(;zfzGn8nS|J{ z8Y8IUrX#Bn5t0Dy8+nMJcUnK0*439oPiPab-hei=*TCwu&w%KS?jI9TjmAF1iU!@7 z-pOFa+^wXx4!9LF6$9R?4bL#F^Z8Fj;VWtyV)=FDmY-?R7-AOsr(cjcuZ?HM5KkmT z2!KCr82+|s6fzsonmOUeYUmyJ-mpLt(#dkxvuhLATpV5@DvW)oL(+Kl9`h*W2uTyQ zOy4>}-m>E=pPAQmYlZD1#dYo25MvS8vOfK=bmlhm%Ln4)Z9(j*$Tw}&jTY|OeH)6n zLA3f-o|m#PH`|NuE{p)uIbTj6@awbm@N;OBA7i+$2zjbOBmt?5YBc|DKM1=d9eEdV zLpjjs+{(*b$sjXD_VAY+nEvP*=Z%%II?~w$r{S71V-Fl#t)K&8CP=}wUwT(`qej`X zK6BJ;&e&#D$aP9Rk3$v)K>PaId6au68T6=W7X~{*4rNei=}2g2pXY(Zn0O%0ksC~! zw2+B?h8xCKno_6S$J}Kpsas3wNbblfuL}F;+Sui+;B2Qc)e7NB(m)DmTuwQ0X>;@x z_ZKNE^hcfDgs&=M!`Py2Gh@48^=UD)WoQn;&tDL(*qq4sUQYLAkgyC6aixE*stfyM zA}1XqGXH#O%%Xco^MBy`B33ewqS4YaNkR^ll+4yG#ZID4|A23n_bx};_e+$9%zJqr zt$1UGE#^1NwK%ji%+IP{@~t(JTa|!D4VTe4Zy$dm#yp-h@HgNSg&~r9vVyAGaB{Jr zOYY>aea2}G8gw+DrPi)f_RrzUJa()-nBS33QpQv-m&sF`@;R^Q{$+DPHzz+x{@*uJJ3JjY1k>p%%Lkx%GC3+k1VQnoTrn1vM)e}trp zpDQ|MC$p;>{SV~~&dTAc`0Gmc5wKx&ciE*pgZh}ClOpCQ8cza;YO+deWV64B8@7VP zgBhVMwpyBzG7n5n9y5bLt46kU{(Q32VIQ=Go5b?%O_((F5FJe5x7v1>Pt1blHUris zN$W2>`M%xwP-1k9(fj_m1INFQ+A!-yW?XB(`s{MkU=o}GPoJI0ZrP+ZY`nRdqRfrS zg>jQmS|#CiU0w`8ewrAaUHA~O89;AH0c$FPvGIu_wETVucQH~M2j-sTpyXViNyT*- zlbX(m3&sxfPEt0DFdX&lkA#VqiNO%EZeS~i16Z7+24U$QBqG;9t5`H`ioX8zOQ?l2 zdH*a*u~Bn7Am+j}DVz{Qb!&jldndr&_>7+2cj@u<+>aR)s~zeH~c)(6+quuieU z7MNcQT!ya0W48VzD(?=B`}ghdbQiv1*87pXAiD0#$8uyt4QrE-r`G5TqlJ(#-rIg? z1r%dP)|u8zUEY3zwnpR~+Inl+@~SeHF3zk?3p7;2_5ehU*buN_v)-QRFtB74;w)P6 zhr=wRriU~I9~Cxg?up98s}WI3D6FIR=agZ^>&i3-a+N(|Ub3sLnXGwxk<&6vi`wNP z`=n}i2izTwTvFvJ!OXWelr6eQJ zbz;WrmLU|&%~M{&MXfEa%v*cyBep`lrk9S#l(WqroO*s>68yTK82;{P#v)Ay*}cj8 zYu(Ms8JziCnt`Ec<SO$0IXv3S$b zAkw{8^21i@TDB~Tgjz#IiD#AUj>t1d9EpQE`KksrOrDh!w~?L%hv_9}S}Lf=9MTV+ zZyJH0cz`2}*2N9Boi4i+V@TIb)k5HQ=jH7mmFM^5m~TqGr*q}M3#Qg2J7V~u4Do7_ z&$h5hJ0lojNz`3^l0A#32w#XQTrl8?F8-6E7tKnpSeA@_BeJdVhWC+EJwh%Vnqup& zQru?ySAT77If5x0>?~)`Mdjv*2^{U{Zp9JKQ4%*Fy_&P64;k1x(3UJ$nmE721`773 zE%B8O-+-W6?Ak95S|nKOM3(2SRgti(6+ySKA82QKMWGm7H~&{n#R~t~bfB{(W%tAf z@5g1Pe_M*YB1>~)o};Q4AE}Qv!~iKOTl_=*(Y8Tpsh5I3m%J=nE7i%>oD}ouLfe{X zDdZty)Occ?3S1j`);kwZ@jxCGQYsYPYwG~*?Brr5U4Jpna-tHSCKH7y zA@w@>3WsFQ5gDgC>@TAe>dFS~l^a9KqiI`wS)MXAjCr!rzJ}olp-zjmAQn0k0yQ4h z^yZ7!1kFHu%fXtOW`zfNyRl)@pShHiiMn88o%gia%@RAo<$!gI7y-z%|F=)~Xoj!f z2$KAiKc7f$2-by-G3%F*wye^$7)3QX8$r-1i84#wJ72-X`lN@zG&=6+J*HcmEca@L z!-|h2G-jsiX5z1}l1?8k$iaGbx)f4}4lw?jFZ!#EvlfLj zpUv;#{zmn{xJNYASPeLs7I_-DYHb$nfc;}UvteVcUsbKWE3xKn7` zk7e2OfgZ1df5Z%_3l5sUO>l6@Z!X}t&kkdKp%Bk~bvZ3_J=EKFWy;N}9)D3y?6WL!dfDu3oc!z&a9bU==PN6eOT!UNqv3jLHPR^*u25lp1$A;=0X1Nd zyM`vm`@vi1a1Voc|6%+IZK5c(B~DcdrT5^*n4xtGMM3?OEHR!$jFzu9yQ@FE*3NG< zyGgJdrR?mFc!jdOgBLOcA;09vTe*Me z?8IHRpm=w^f zbcUKO%)?e9c-neA0&zY?o%Hg6W#T*MGFe!Q zJNMyEEW=|d&vRnn9q%!@i-U9G)XuCh5!$NudJ=egd{8M{_A09oPf$zQ)%x|Lz8%|= zhr~Q6XSKh7wC46+3vHIHC;RS65QgFF-H|q3Mwew*4xsl&33Q8B|5_TU`D0IN?BxuV zpJ5X&Whx2~8p!l*CmUF>i#h@*$UlF3ym3cb?26bs)>u09Hi1kC;<=GGHBblm;Uio9 zoRB)sChu#Tak(<$b!nrMJIP%Zg>3LN)zrpf7B;5GL7Z!i@H9g6lO5t(^ZOx%Ip*C4 zDu6nEHvewk-tNMQ2j>9_Tl2b%do;T(&6CoyNhl&2hx8@A=gH4xDa<3}jIyf`nI$lw z%C?N*rx8Yud-+w4gUQfTL+;D#ctSZ7NHV|&6m5JA9Mmadjx(m~xjDto`q3C*+E4=7 zl^;U*&Re<6Oq!;OvB66w-Jg1_eFVZ^BkSt>x$-n9aZrs_>zOz?a2}X7G`?d)6vPQ` z6_v_=kgtYDUN@#6dMuS!Bj6a+o5d{PjHYcZxCay^Sgs5X?fcooIL9Y;x0`c3Z{ zv}Pp{OM!|~Z63VI;233lp}I4zn-5?IMXC-t`K7)hy|;=-r69`I_4=H` zp(Y&6pV-WcZ#Mf=$WjM)#L1~Jl0Ha7I2(!4?bkkO1Xq-;jT@`_^l!PM5X*t8pTHdC zGG>!XHW@{3A_tQZVZ|9hwy3pC&PN<#9a+Omx+P?b7qlhUmkTpJbw*Vjsixv z@*^2u<>X;EO)(Uho6KnS@XEAjRm9Y*jk~d%rH!PtQknTYEbg`OpnTmR=UDAOVKf`K z=Bdqh1V6-n#c73l_6B6FPj9lgdHG(+$2~ggE@swKV-T!!0IT%kDQ%>SdE4 zdhY*c0Z2%TnCw5<9x{`~`mq(0`ERtWwK2Bs@Ru#*am9}NR+ZkHOWCWK)( zJ7R4`dks(GUZJ(jWtE;L>x|qf%&Cy{UN>{8q}WJFYq{jSAycR$73c$8atE4I13@ft zRHT^F>fpkVJc;Eqc_9chU%W?2zEIX;K{9hWVP@GKrbrd8s#EJlrE50Gm5NFIZ(j+W zxYSzWt#WfNb4Rh^I&OCh7_;C$?7`GQr81M~VG>T{usEb(BGO(ea0u3YNj-LmdrE4O z1^a~VL#|0RAQ0RBcm>tlS+}m#LU1MnrCGm=6Q{k=+O+>gl*-`CoMIj#U}pHFS46*w z8Ixh)q=lS*yt$$u&HbKB24(8iJHO($2uT0{s!NJ%SRoW{R9pLUlE0}D#USt5emDv%A#9Ss!-uGeL zMynUE7V(Ip)4R}fLyEqKaVF6Wm#B$gVXsR(=3YmuKL%RcG{XA3qr^O{(8#Bu?r-xT zYbz)BOdrv1+InN8gEE5}J8iO(w*`lo_nMc-UsqD(Dk}jRdM0x_19Jztt+Bc_2Z&RFa1COMLco0 z_yq&dBOG4^-SRpmUZKq1n8m)rSpS2{8<%xuOLc2HQ{rB6@Yc1|HNIQYCG9Ee8v?iQVmkI zV6%<6M$ed6+O17Oh#-oJ*Mz8qDwJ-X#00G@uFl5z+2&Qccod~BHE#5M>pOV61=%J? zqN7Bo68GBE6TAt03jfJq$gzMTcvHx1%GLEp!SV`qOs4+zMrJ3s{HeOn5*T+>y0?t0d{_kG`OWgHh~#;Ft)($*R2+$vZDB4itC zD|XPNEv*boh>k+oBtU==vQ4E*tpZxA7$AuiB}E{yhBYB%5CMgR2mvBX5)nuU*+@e6 zh3EA5d!E%Ip=#m-|Ko`*Y{Z;tjxVpdQufyk{g|X+Mj?^-d$i?`<|#6u@Rln znecbYCbHdmc7ZS zf2UB_G!T$2p zPlL|WBEbVCL=BK>0XypG`Ajq$Vc1HzE%0B2LZER`(k5SI&12KwFq!4nl^=TvvoLi5 z%u**BO;)g8s|2Mc>Pw$+Yy%x1FE9!5f_wyg;aVLEo8+D%i5EZDFb%>vkzY1G{;T7` zAQ4INBnniw$NMOYtAm8nHD|4~3XY=11Ta%?U0(dNu_%1o zpfxTbYtq^u3gZ4{``m&X$;^{b8I5DXc4WkWDY~hW;NgKt^#QYAJ=38C1|518Ph>)G@ zxTNoeHVPk87WLrGX(~_?C87(qDA>L6C7C4s?^T_7X-)MbF!LWG#*EAeHf9+xL%)o! z5zMJ(I~cd;7?KK00eAW3`rCj>uUufrqMFBDGM^)rNke8bn>?)!Rmz@zDvnO%wlM%Y5rbfMW#z^qjgf`)%_D?�sb6~OG>y~?L;1d>sW3BJ zK?+2$It+)Ou!Ypn{{HOd7j?RSt7AW^H=_8GJl{coR%|qdHJ%&d=XppYf0HjT0j-qm z5xbDE@c!{3tG&;mhxeJ~a}g*ECgZxDVzr^5%?5*cmdpELi&3*Y{Z1+LZ0T1qX+o62bi6 zwHkbo1l-Py$v3j4lnXmaclK-wyrg)KLf7=(W~LqgaJ;X?*Cxaun_?pIs6PK6En5Ih zI;#EzPbq7xXXbkjhWNG;FRzUcnbU0&mRDV1tw*?$L_Y3%*nXB0Cw=p|W~WZ{Mk_Y_ zhaH{z;1aw94j5G{wxbu{%qP5+4X}|ONX5v$$uyU|8>X@pnXAmNHc?J|9cxzQr*d|w zq>jPOEte-g+xWOFj^6Ul;{9k{?83XafWAqznY{iF!jN^~V2G0U)X8tI4cgva8Fm-{ za1pE-?8fX+{PmZvRy=>a5j1zHi-MhuBuvf|=l+PRPF@pv{Ij=YB%`wm3fY}+BoyNFfyzo;aH7wU;eN$)LH5i%>+sG|efkcEZ*hsDCUh&gS1sqPVVj>jzW2~QVUAH& zva#N!CH6g=AiE>^*a3CS|kxkH%EDPuw{^0a);QHWf^#9+JGozxc+gtsZ(mV z{--}t^Pu@#h}^M2u;>Py@pfj3cVm7jNPF4!mu{4_A<5Kd`V9ZH6=taO zg*my#%Yka1bj3J=c>nH&*kIv}R^n6Fy(P+ zE3|i;{-HzOjDF?Fr^(4&xQN`pYgFYcx4s`9BN>AgLJ~G7JTiwr(TH^j5p-4>j_U(owR69l*`mxaBn#Y|0>qTLYkBTb~ z;F&Y|A!l}qQg-GkBzmwDv^nh~g>^lQ}Tm0CWgjO7ltON_sncmXMp|De(3w=2b*>=1oM;Z2Ol1 zj^||^Qt{5aZMBHTrTimalSPnPYG?4-T1bY`3#eT;&uxc4J3`I{rZ!);Sv0h%cR5^c zA2BE?xI^tjmPLb5^OPLAR7uONT>*$d*a*fD-HqVe36}se1%=#C>6u|3O`4A}B$>SX z{kCS4X4Nyn7g5doJt!B~4XBWwP{rTCDZv8;RTCxD@=Am+XSp%+c)k72{lao(iHUs$ zwv>!y^`d&F{tyww*&?lj*AJ%x7ZFq?Lp%lcr)U5P3F#COM4k($Qf5E2j&Gx>-gf<(q;(rH~=>yb07fsf})nk z%(J{Negvpbm(=Z1zPPhZv3K&KaS3^|^yBh9%Gv{I>Kdd}u{GUg=oWxWgCrIT4NUrg zI^kbusNm!yBmJpXpfaM(d{&9Pq>$)7PuBq(;JNR; z%iMZY)-^1?Qa)_@$_uR$&71O#>sg31Dv^&_6Mi>F(nQ2^Fi5W@Hi25am^!i-8lt2D z@-*0{C?ZJp95Q|JD~I+5HR4GM=@DWL#R2k*2xHEsMTcTZ*N}wnZTuin8UZqdE!uRQAxMOKA`5W?!cG5*tpXSy9x z_(Z$WxR*Yq=GPC@ZvVbxo zUR^#W=S_Jd)!Gog5wbTBB2yd{j5g20EOQCgJOnpS2w7*F$~C3)2Lmh()`k;!AwxUe z_Xp4pBvLxnu3fxxo2924@{2f5+XE?a^R0hXIn2KKw%)0-vBBOiGSx@GB^@z_ zY1zalUWwCg<53|Q2XKy8sJG0d0PDF(7j*LFEal-296O}-_5`2fdb$Xy+oX?sr+uxw zRAjlJf`UjPlfH_MsA&GR#90e(lsU=(=}uR-ElDK+08B#RN}wpX{gNowJ!O1~+qv>~ zoowu-Y!m?K>gCaL;5klOs({n!0fUe-&-&xep6SxzoH!}QVv!vyF)?tY!l3!AN;53S(^goiP4$8d9oe12u`m!lu z!2d6j+qqpN_`(a+TiHQ|>qrIB5GbnDyt`R$6QY>2`-{5|ih2cq-A1^bOVdr!4cS8X zgH%j;FJvjY(m69fTR)xAm4+<_0O-_;3c&9Y-2XYZAGVl!qO!tipCe4ZK4;S2P$$k0 z2AB=sbT?a{Iu4an)*OiUC({_Rf2Boa(bSPg@KO4)zO@<+)=R00cMw2=4euh?h}ye@ zF?Z-W3SR;W<)8CNekQsTL&8BGS1E!KgF1rswd-Q}<0+yvdi(8N%U~5?(b_G71b1ye zn1FI){YqD>_b6so<mmi zl*SY~UN~@$oJ;bbCTxnSv3My+ybwba6SHJiSsNk+>;|-ck^Z!yCqW9H_cSccbM54~ z&bDEt)bqQHID&e@p`4;%J!W^3@n0t6e1C~xr2locrpP;xco;`nbUb6dH81Oo`KhVW zpq<+Xw^#@IRR^iFhLKBWE%&!QO06x&ua=!O?TvlO78wf)(+J+# z*FUE!Nih7n`DNx&Jwp5Aw{@ibYk+|p)qlHap_f;`G;#@PMO)**q?JhS)sCC-nFXCa z_O$7V{>}fMxWB#VJC(qsa+Wz?6Q&6WA>GfT#)t-K<>8(Rx`v31m442m_S#!M0Fj3h z_THfKI7ja{U19t+uzNO4nltI}E9nax(AG}EgmV08dlvy)x)S3W^yP0F=l%N~QY%LV z`8RW(H#xX!U;oY&OCd`h)@5YwM8zx?m6;Si5~WB>V$yHSd^XSLm{K{S)cKNqr4Ps3 zJOwe(xIGKXLLaoqx!eY);Au|~(w_uI@D-B`-$_K|_811u|0$@czR{n$VIKQkrgBeO z$5H3y7_YblYHz;d9DdXa8!J;LcVTl5RHK3Z_U`UOJGS$@^9R$}O*{?=Kmf z=sJ*A?AquPX2OzA)L*R3MN}XArL?Zbxf0cdAe*A+8D6^VJACZ^1z^EGod4zS)x#Bw zuB<=JMO`Wja0q;M{>U^Hze;4f2%H*3C#pz-gsdhJR<4bQbQ`HYdW?>JW#W=#S9%Cq z?#?1VMHAQK_^D>~mjNW{OpQ0wyv&0@t{?MEt-nhn?_~Mu2)F&0#r=pK;&G15fzLm) zO|AmqrPzaH_bTP-!=1P-si+_^F@wDzSn?nCbYQ~IxH%-O+_5~OYLyS_3#aHUq}@y| zG39P@P72Xm7CT3qG=;}G&KP{~ z(Ha!$!c5~V*D}AYHaFgs)G#ZRB0r(RuHv|&kYh$ZJvXSM=I zLzQ`UlW1~tNj3lD`q}_hN{RF|z#&aq!|rrS%7PZOP=7K^gi3#zIY5EpY`H z1&3q?|1MCV!fm^W0p%e>zQ$z7?k_R^=dJ8zMw#+n%rasTz>DoxV<@bn+XFn<+{h#{ z5L+<8P}Bv{w8#`L#JX2+P<`4uh~ZkZ>VgKH@iNlLF>-Spy>mDviL<60kTS-B=fuuUCdb-ILM7D zroljP-*|zf_2x#K#srjiP-sKNKLZ z5luSCQ6}2o%d&3*y7@bY*`~@LJ5LSDtYReeOs2QzeQEX#e@a*pIJt(JTe*KpctbhO zoT8Maa`Vw^S@Y6u5`NNPVrHgUeIl&YRvdY~ql|cym4AyvOfE3Jo1X7U3gbof8E_1K zp^rYql0gLhJ5>EMrkyMx(ZE_5SNe?3(ken0GaxMRDy9n37jQQ2`kOk?#;zD zfS10M0a_%wEGqDl)BYWyY?9qPG?pS_a;)O|#1nfweD=4({jn^u#7VqdTza?jjw-Kn zF?+5q)|-7mmt;^udnw%{yI<%YW|o|(*yiqY`|Tm-Fi(;~1;fNi|3!P;%UOw% z+u-w=zW)_9wt9iM7y&lT?c1abFE8(+`V<7p9D{VSR%SIeBn3n0j~ne$5(WD6IV{lMjS${m+fN`+KaKUEAQ7Fud2V_6?%+z(R&2y}QCP5-{;*Dv;v45$8ceV-QQmt%Wb=^H zW{sq+uwft2j`$nZfD)fI*eNoxl68|134)IZ=}6d_2Ty^iJ`c**6o=(ql5-a@=^ch4 z%=ujIn#`ZXL=atVGojXn9gYc)2|sK5UlG66|G$oZh`g=-q>=`j&Hr@l!M86~V_}!p z_W9RyUg1mDi;vZ*C;Vc)`?kmMlPP>a1{-8J?JWwhkW7{SPj`gsuD1F&dR(ROho zo0bcx?|h9?HQm>l^NPvgsy&V7K0bmDtPQ`ry!)wo`sHL+Va=Mvi>5|Qg)CGs?2aG??|g4Z8*ctOwxaNQ*8Bg~3Do$P6&pz4Rk*%$e^VpuB6|KQeVyB;LY%jQ}= z-E|`K*JGoHu;7BS)pT_^o_vH&gcM#UjMRkIi=C+0w8t=XcV-C;h+wt5Zfvgk1x+4~ zt8kzou90*YSB+aHZjimLF}C(I40KE!N#HR^%!3m*SVdq=E>3t*}~Y+*tDDR2hh1+Ir?(>>SH_~+WP!R>ZYj>-DSg0qlC{6mb{q70!lY*j(n8hY=B|VDeUwbvUt>HHf))hI{5DmIi9{S!T-DJaI z6%SbRp8`xqJRmUm!2WoLDI^SS4_8sVNAH+4H-`6>H`l84`+Iu(#&DZ-AM}VIw%a8P zP<#$Zxm5f{QY?_(s2$n0p@pdphPlS*=QX($IaiOP$n9^3bo$DAymqeJb&ve2PyE@O zI#DB|@?TrZgFDJ7H@DPlE7oinb8GD^lpDNV73+QDwp}+bb{YGlBm@Qt4Pfnd97E~) zg=X8N{ND0mYMZh$COf14A;L8{ao4&<@>N4+Vs~>d@MG^HEb{?GXM?Gcv(!8J*O43X zDnUU3cHZPe_5)$gj^jO^E?Ng7I1J|R7$oIj)@A^}x46I*mO#b6$XyaR5Gg9T53 zPublQ^$pJXBx}xlXV%C?7nSumOc@y7CwOV)8dYislxZ#Aq@FErgs-As_wjxccsXC( ziD5CgO3Y5gY0e?Y9#?^38y1lcOhUz4)GYZ(Y}E1&btJ1FKRt0*@q_z~Nf2x$aIbpZ zC;dtGZWLw3B$z|Z-`$6QkK@zg=j3x7;6XVOU;2fbVxcq#!beT6+sLyfv>|7MVd7N5 zG+Ls4`PG@XvQhkaFg=oiy$S^B0aj(-_aj8yV@+fg%p~+4k0pJO-t73v9|1&wk9_#i zY1Pj;dnh-Rr&+<_CFAzRRmle3@bgv?pV`j!tiFM{8U&9BD4jl=qqCjFOz zXEr~I09&O-jY$y}Zq@h9E%nA?bCqgC3IaaIk>_^JIx&kT1{zxlt1(J>gl7SA+yR#Q z8AgKiluMO}7&~xjF$@`J`s4)>`8l`p#TT-?d^Zy|$>nseCH9AyW$#Qg_8#u%-CvBZ z^p-o>ZdenEPg4V^}XSV6+_Y> zy@y?MHQz@!xe~n;u24k1rMaznK>4nLwXotegNQWf7c;Dm>vdC)@)GE_nk2KE)Z zuA(T^mAZ@3k4KhZGxKR4f$~O@7r<@+*3du0`b}B**Y2sO>G!X;UZ-K*GChw<=Q^|X zm1TFu;>Okxdc!-@Cv9mNC--3Um zsL*+SX)X(#Dv%^lXlxyc&`X*6C;J2b@W{!vReOKHz$28-JsE{D2-)iCILYtF%C5F->_n zy}bOR6#hofG)}tor#_Gwi18Kj5mgi|%D?VCvY=g`7wqvf*n|bmvx&D!)qx`b&+CIN z4Na87^E(w>8dhsSbxGIsM*}UNHTc(Fa*&yx<&7JNtWZ?$#k&r@YT2>xI&%cFiX9c> z2W1~Qbi2x^iRJS(79q0 z6yS2#|0R<*`gAi7s2QTu>C&OS%AY$EX_LbhxDYN~|2`To85u;$LcynG!N-$3iq@sZ z_`1IK!qPa1ShlJ6{|5ZRQjLF>Fe%4kj&6_{6ZK+A*+vrNqGj@hA?6Ie*d96hga2!5 zX*gP1uHw!4XQJdKk@nYn6<5N+)^S`2oUi7tjjMO~(S9M#n4!840YXBn*eSO?sS3s+Gl z@4D*m--#c;^Ic|KkRjMeaFV$04p4lpfN|V<&l4XHh$(&Bsgxu9bxPUbixuHyxQdt) z%%B0=ZeV(|cX0l1f&;atV1)+E%kYjTkXLkaae1#~>|S;r+G&?jW>m>9jsr~-OTclz z2lV2VjiVdp2X|UbZNSiE9vwZch$&N^lg{sV{66C@t(4~ZN>H2D<9Uk7CSFdGb`aag z+B}J&2=o_1|E^7luf~W|S8F|fiEQ#yx#l0FNs?deyxcHr?GK`nnk3roR?qSXF1B8( zuls1fFb$k$ZLwyv_{22qrO-2v3F~*+N%JTfPhD>!3Ey-lD8UHD{YD$BctXF3Vb1Kc zhc3Jj#HREbw#IYe+PS7Xt(9K&OXh0*U;yP}XIJk*CWiWjkSg?PU5VC#nGEI$Reb?P z{Iuo#@!ls$>ORm7m8%WWzf5_C(*V1$PmUf(?+j9C*W=?!54VY8K<2Q`QI;O-nFm&& zT3mphwDcw$6G^)NaIwN!b}=f52^5Op7abc=+uy9u1cPcVaT%Ad@m&T1X`xQ3K4Bh+=0SE-FWTZ;yS;4*Oj-dCabV@-Ga!85h}u#R=6d#U@zIXU7HM_@0e6!ir3&HW7v zcAisrBqcZe>T}nIgl7dpi7v1%R@gQb(=h99bsPI=f`IK~LHcsS3m_j}8UAX{*kEF` zfGcw7TB2kQRVl+Pw#HHgwt?~0Sl%>llkLHa;@K?6qiPW=HRMJmPAAS@_%;c&tcvx0 z4pR17-pECiqO6J>R~Q9vn2qI=FK(I74S0~iP50T`Z{y!MFXxmCknlZB+lUA3SNv_; zT%h8F%5VRrDJcL&O)h5ix(!RW<~vV65Bj>nrd+un)m?cYs~Mi1A`-avOtS@<2L=`P zo!<5#bF(xV=KxwPR9--$vVNQ!mj7!M%PiunLOr$tV2Icb`>x)v6xjn%k+f!oF9|~r$)1`kqNac_Ju$%TM z`+Ow2JB*CYmSv_c6z}cfq54 zE!CRYUJJr%=ucDyvjrPQ(Y%VF<(nRts9e*Ii2d&cs=hgE{6v=CC+GqN!2);AvC_}v zs>a0`8{>%~K!Fe{qz0|Sv6At||5|xqnq$6?`03zV$53P3Zq4$*JE;+aeU9QwN~&@k zDEclQ5IZ3}$II_@DWIR|e3a>T!0+n!K}*fASGa5vb9(fdth3vZHf`p{tN#U%{Ur_W zG6Vyw^CCiRH`$YYxp;tF5Er@!+!xA0kjJq;JJcE%78jWI;DvtrG~}X=#1c&Cjq21^ zv2gA_!WKeK6q&s(#EC$7}b1eNzuHB)YNq8>&-R{5|}gNPz~vd_xe>B zIdov3XSe*s^+3zQ-F@P25uI=D+dUbcSR_czvoexMZfxb~R zt2(+F>*^HqNYHsZ&)@2$QcZ_aN=y%TV5@Ucrr7MlD#I;CFM#5mnoqNqzMfp#BY}kB zHII}U0w}A}yYXbVA?HD|Nca+XQW>*Rv?DBlx8X;57pcRW6TZ?}6_wY|_N>HMvQ^W( zp%VfCoS3SHtPhGwEYf$H&lxiQM#mHJ`N-MPcvIC-z;3XYn;IGbA# z8Rx$jBW`5v4idX|`5X-j5dij|5=59E1&Vkog9x+fH-x{;^XxJOT(tjw)OP)5Xh1aE zk(RyA5X5M;UlH=9$YAmj_dXbuXd3lIhlIm+*2g)%D=z1M#$V5Io)YkCX{1!d0Vi zS9xLJw6(?!_;0;blR#iVQ~wU$=?HfU)&v|_W|+6zsjzN%VF~Sk&!mKWpQ$2bdKnYU zsiVNboI&srz0&8rwEJrT3U5e3XG%J|uo6L-$~f6DGA4^zn>IIe*UjKhRy3LXkMcoh zOvF1wDu?q12D$#ONYE8H!mT+Fz$(X%eYUp>rH)|~V*9b}GdoX-vUVC?%9d=`C#*fR z$ewAPN84g%C|EdaD&tb1k2pyv=T*EpFiMB5(%8wk;j zns3c*2li3c;D&7=G@k5a&dP`_TqpCz?U4&Lr(;jalUpxU1xMfp5gsLVxv{+YFXL^Lqh%{&-)wPB36K_dRT>$PX6Q|tuGtuH&9bu;Dw z&&$ZLCM;m%z@5&*NFc^#Xqp(?YCj!9TRSKBGNim@tv02iHutK0e)`mY$Q-#|1)obi zAYHQo)+dGO(xxkDx8>COf);!PL6@wKIld>&DZ4R#BOHo6d8AUKq-;8xaFWbtV=Ayx zS+lL{jtWYV4$7Wyiz-sa%WhHW9W3!QXtB z7K!lw_u^!@jPgw3xUwEcKDusJuSzacINstUD)ff3dfZfhEKMF+x~4q~P%1E*12)34 zAj)aMj7_$l5N$%S1jZ1_Wk`ZbO0fAazSLE4oeCXYgrBx7`M&W}kuK&?`l~rTPN58& zo9;-@Z1PIp;6-9k_9}#=izh%b#>gwx0^JnwYJp2bZ^%O=w$epgTyRU02v1u7!g$bM zR#XP(ZyNo52!i)rk0(@lUE|0Tj1IT9I7XK zB=4Uoh+16F-0+40s|T|Z8E9@-X;jQ^GtVFIkvw7R6uF^ijOD-m*)Kjf?WzXsH0xAP zs`*%w$uq|cf0f+Q)Tz3W9%u%dQ5-?1N_*#Eh%fBZ0Pm|Q+UvB)vvS|c5SXY16+Ub?BGv3PO)i&BIvbK-5+ zxt>)ys2>2cP{{Fdb8BZ10AiMSWDODA=(B7CE?pJw$U~WZ7SCalBlzQKaJaV#r9erO|lh`bh;n=c86@ zBF22QNgGQ+;@9rc-6zSwVdeOt5$sGd8p{j}FIyQ91Rh4{dt+bu%Qg{qqakT7O0cs$ z!vrVHDHvVznzyQV9Qb7TTH*I^-@3K`PyhMTM}PTK!N5DqJO5nxmUnCK;)iv=ySDAY z`wzam{`R+jK7TW0-~Phlov)vN0RIcT_yQr-SSm2UqoW?p;0(X2smkt0Gu<=YB8Br- z>u}?R>W|gdvlNmk-EaRE0WNu|ja_J6b1YQ#;#4Z@71ORjjPtN`8GF)^T4K7EnVAk| z!5yl(S?~WM8c$na*wQFR6~YN=G6Iv?F5oeH-o+{3V~EeC1CG;Q}Y^OhyT zTtxTBe4y5&VRo9V!-k+)_GoUpL7I1+#hWQPEczHPU1Z8GPV3eJHXHl0|U6gI3&rhf9LtoH6jo-`RIkV4eUVgWf zggp=>zZ;9aeSHbn$jkyr|K*F!@2+<Dz*4)^VTOtiC&zU%e&1LAiYd^z1Xu>HIN}Z;I2C z>y2!MT)dN18pj{*ADgng(~Tru9I(H>ycUB~BKO_Ud?l=3y1dpa@+i5+-q>V1!Faa6 zktt0%YY{YWd!+d9Hx*_}0ORoHvcvo0N$x>{6d|+$y(;F5{uD5CpXqNCBD;E*b^ z7RD%U<)ZilP)NF{QnvS!HbtFbh--d6f47|?h=t~5N% zMV>){J%<&$Y3;OJ)tCjt7xj|1B<)iQ&wIX#M&P^L>*R9(vTnzp!oN_t%lIZzWCUpqiz5__fus=2vB0;A>8k|; zJ5`gP_=YMoNYNn98%^!H?9QA z&sgKbs7txdhJ-5AFd#M#+gn%0?so@V)o9%@KB0h63N!tbyp!8YvLEUs$|YB%bn2e6 zvqEz|;-{a1;owhaV|mv)oa6drK%>U3^%XhA=FD24WQl#VDtdO9S9d80ZOxPb>`h+! z4xp|T{;F?}a;-**Rl73c>dzsqShaVYc1`DMQ@j%)8^3pA{%&%v>%0_DP+nhV&6 z{Yak&n1m?l!ndRshUcN-q3m9IJMISV_G}D8ILYa`O;bN0)G-$eZ+3mm%XM_uuzf8} zg{#;a+~G5iHM13vcWt{v4wv7aCET8F+*5kCr>_~8Gv9PIQ8#X!!>5@N$8vv~CM*Dr z8l^LLq`tYz2LCt1Q>Dla>BlCLgv<*-{JrO=^QT*7=g}y`olP0bzp>~XvwN?vIY&lY z;EjYAOC{`kfG_;USupV1DSnlNzNLYtt8m85QrCK?T`ge8ZLR|po5nFIy$gl%NeP;X!F8%0yk9O z{55iOwBW2c6-+KLE$G%f2$(LZ8qWIM*Xz%KZ~7GB&=XA46%im06GZA-$Miv#ipxti z)_YT{O$D|aMfOZ@N5VcSZ8LcvqSk2@{kr_>_P&Lq*54nc5^uI+7uAg%?8I_MlALf^Mw>Oc+EP|eddg2XSmVp&3tmD!xI$ zI(%SBi(xVU$b47hcu}(XntI(U<6d(E07@FoA>VZQSVr4+DT~DEr-}TqU3yIt>FjY+ zeVdFxak!N75tFlH^P?>2N@nSwm{E*i!{;g%hS}s!9PY#|QCm%zukH2;RGvg>WfgyT z{<$DlIz>}-YvTM>RX03Rozoj;GhA`{8hQM&ZSRPxBs6yoZETTZBB>T_a*T)uBo3*q4t}Blf_)+)3Ty)1*UXK962~P6Fu3rCAvf*<--`CVf#PX z^W5b5hcq6@#SFAC_VjibY%a{?x;{g-`ClJLJk$S=FfVG}lIs7n|C_7A$0oJ0mXycx z)iE`{&SDP2Rkx%qtg%CB@+Djl{TE3}U3sXZSyO|&G<;niuyS$6w~;wR zh4)yvN0ABDIC3PT{n%3Wf(1uhhzLGd#h`bWuBF!Pb9^5jFPbYn+o)nAjid2)*xM?^9Dyi=;UE({Ym4qQ^|hK}|56cKKh)uCxDr;fv#2=<78+H(QvfVU~;F37Rn&_6=~yvS4yo39!p%rH)D)M_c{Z#_pnd=aI5Jwf_ndS z9}@%M3mZ4nL3+;vj4Np$&ePPigKJD9zig$n3_=)jxEWZ;gKT}8_Xn_G3#OUYxlPks z(X#+z#ge5P6E6o=J+J>?D0^@`K|%PqVb193Ukg$oOgAYK8%mMZ01XUx1<>lhb=y)t9hmC(awDijd)NM_3eS))|;Z$TBM=4Jw8cbma_`<_W`7`i}@j_95e6hre{)Bm3 zM0ljAfm6ZB1)U8uHxSPQ0M?i^9S2W?8f4w!Q9D9Mv(vH%hX&cr!XZ^MiAtZ1f<-(* z^mlu3TBLRX?E$w$K<8$CbX*gi)KJ3jN`3#N zk$d7YoBqEp0OR?HMuBX;MU4_!qU7oRd$Q!kNvkv&TXOi|J{-PdfRj2Og?kKhGaVsK zj2J^V>0o?5wqvC4*Um-Tk;d(W7u)4gn;VmsF`$8W^xu8Zfkw5A>rDjydDa*UVq+#_ zm5$OH^_#^+AkIzijwZ&)Xqi&eL5h?(cxk#Fby%iYIQXh0H?iSiIztR7+XMOz1f{qG zjlCnA16yw{N!om6(yac`+OZRR^C;@_S91w|dL5ii!DdP_W=QNV{8S>)tA81~mSuSw zz?R;q+=8%8EMAmtnVzs^*UXVuwgxdmCV+|2EoNsLe|!N3uNRfmGQm=0jMg!}(S7!8 zF2B0eF5?nvZc~dojs&+fHOz?*j0E6pzyf^h_0B(D%+ACs>w0GZsgVk8*H4EOiS~s? znX;Xq;*Op#<)@lx_e*fC@3Br`_z3n?`osgJTMV3Y;U)#uEZl`WDpI5sz`jo@m?NMG%0)W8eq(AKL^(FJ=%}AajR>9@^=YtS|)>`N|*0m zNvdS$hL@Cq-=lzlq(xGF0br69Gl-_smz3mUq&jjjCEC|c3a1sBX#YMXt2<>{K1#P; z0pmaSMp5TdeG}c$6cAziBa;8864g>K0k$G!L0S=Y%G=V9*qR*PZ6$Ww(qaXfaYA+6 zVU3&HSQ}o)V~dCdwZ|imH@`5BYtH z9eg}VaxSwasqDiVT+wO@B$s(ue*o*ppF$l+$${|C)H} zCiOnLDsu4+idDC#YlNxhn5_fK!?`#FX!+YkhqpZus7bJm=ysZ0=OX|$B?U@T4IcU^ zQNh#xY&f0fiOtOc>lW;6ql~}a!3d_VWl5ZqQW>uoks|o2!O;(+>70X$=QCq0Qbhx6 zjN_c@kS?Os!0JFTr_Xf;Tn=5`gDY~r-dG~B=K}u6T;(ky*?;PUy(k9lBac#Wm4~D| zGzQ7*=lRap0@To?Syv`lb27M<_=^sGT#(ql(&59NmUbs<1C9C>5|jwrwDsf#OnE)MZgwrt z#Xf6XW+SW~(EIBss& zDbDffY#+I*eQU)2&fsxs&*XQx6!*Sljj_rx{`V}wt*now5*0&j zoiY@#7x$M5f#egO0(5+J`rFsBngy0pAy#burJvNW&oHX$7p7eGF^0M)Utczl3$%`+ z6;vK7voxxv!DF@)N<9rI1-P^A9;~N~uilCXMCU#weunFs%wM@u16SV0%yjyvDa~@E z7XW8xH`0W7lCN!AbLP3(`KvRS+h819TUhbjyi zC?K{U)vDV_^wQ!3o6qc0y5~P)NUCAnD_J^A$W=U2@0g1VLSEWE-n;qVAAZQ)uKDcl zm8~zWYY{GOZ2U=6bRe+$?D6YMF}%8O?V=lK?%YnPk!1EcV5H`8fL3wjQCa3!zgnch z2tzxSkiFTL>yQHNaMQlQUJ$y8F8$Z|oM`gXh$i70^Ae1f%U0L>ypIW%Fu6}+OYL9x zwy>$=D_2#Jx?-3q)`JI5gHRO2amCrdnS}aS%1+#RhFgK_R0)wmeS)Sv79jo?B|5qP zf(iWNt}`I%W4E^~h4%l@^!8y%-}@i``Tjb~vsJqD?YqkI=4_qi&Pr{enK!^%XSuDE zZJu=A*Ga*9OjHB}&gRN(mDXGtD$ugzm^W0Ys0d75n#qldilRb`3Nmq~n^&H2_`wmAK?CMmDVeXB! z8I?ZWitK6u9B^9Z;pocAj7x=B)fdf0O+17wD8??9azS5Deh#+sAqQ&>A2~6IyLd3Q zBBE}^@#FRpY8JqgKIym80+eY`o1_i?^+m=_vCXb0{^!Zt|NHSSrn2gV4~?iXolcXU zjamNUP#C>^4fA0OI>EafOV#LMWW|6Aal#6CeA=7Y2B4Xt%Rqt*N>SITmY-#r2XVwI z_IXJmkc|U^@1SNB=pIJ)NSnu70U%F-fN^5`#Hi5O3uRC`9v@C|E%~>8K>dBr}#q4n@dytX4dG9$uC%2Uzl@49eEQh<6=OAX3Lzh<`a>^Qi zsN^|ftTCpxWLu@Svk~bP+PUc?!PkIp4dZNdkG=vft3pCUWrrT4a(z<y6=uAoI-sj#)~Qb`*-jE zeS$m`oi)F_=;A%PdV&_l26w$#YXIxxP$5DPNaZ;f?K+xi*vO!CIVTIa5_XNQ@$-<& z*NKVTm2~t3S?K{x9fMGT5vkVE6g5Y);ps+YL$om#wh|P%N?kBsNbHvi>lJ_@rBtI- z&7%AxPFHAuX5WzwT4>Uki8P)3=`KNwg$Z99uNb@Q_4xeoL&`9&I($Ji!GE6I*l?zi z04SeYm4|(U2h`C*^nWdf+Wv);`bI-)mm`G+(7G@e5+70BrN~sTSbz*w}(0Ln$K!c6|C*KuF`QkJR-%`|Rf z`mn6lLTI+4fU_;k6wzcN{-P!*>2Q=JS^*G3tDo4_#Q0rF=r6B_P^T!9q`^>*I}=6} z{`{zxzj((#$eNJ{gnS2766a&3MfIvqo=oe_w5l2h-S8@WL^*$P$u3VONGOW#ttIa_ z+)O;t8c|~dUSmSGRdW$aYnc#zY`m`^U?u4%mOAe48byOEuuk(6!`^PdgrBv?KBL+s zDfmaYXz$!c&qHb3nCIuByVIOIo{Sk)K6U0!PDjD-y3#FZN~bahP_1i_f@2FtOceEvqTujE!N!(l@;lSsCBWI7 zJ9aKSUY0k%V9Zf{KlyYQ|?+HYQ+K>^+4cevw_t`l{ zH`0uTS8j(Sh4HE>YGGUkZnnokdPEb6gv-$|Sr%k)u5)01Yv)|jb=9suxBxdF6zQIg zq$^1WkXh5ypA29Z`~lePB`rKb{gSL5HQ4rC9Re7U3)Pm&gamBBkl9mR+RKfOLD!}a*?$+bFvd+dCr&)8 zzSL7-%_E)yjz?2B&{wBdpNpbJvL=CKCILd3cqHs#0I#i9|Kw5g06Y6^L|4P&XG_bE z>jX!QUAW>k`6bydri9h2I!KIQI)E|!-q@nGb_x_}`V#vCHM%3Z7~TQE-+xF)1#ix0 zc#j`g3 z(dJr?aoRsZ;>#VWOemuzREKetdY-w`(Hi%(se^hI!2GV?JAE*EMNzf3`TCNr5LP&M zvwh`x)*@+oCg)n~(x~87;f90&+)4voBw$nHqvF+(j?%XdLfszNmfA2>2c z2~<(q%=S^$oOMn#(k@?_nN+2({39!VWg#;2vJ$g+o5ZPT57$w#i$K4PFMk=f#2KLO zoY@&Gj9X}$1qwZIoJXx{d{@E>XmN8NS5-UFzY6qcjC|7Ot4`H$Hos8)n#Xi)>FrGA z#AIEIMG>Zh`cpUgfg9f6oLSInRTSH>Dfb&P4!ir3Iod#apwul`OS$rFsM4i<9YtIP z*V4VOSaq26e~f$oJAP+S_dShd3;0>dAWa5 zA%b*k#%S%fRJP%j;B@;H(_R%gRv5MbiiVfv@oIoxo??1awrl}};eXm8T;2uPp2@*= zeX8o?AbPqhX^D+RLKB`C#IEbM2F!$E;F2NBe&r^f=qz`YC4E&;*+GQ& zaM2a~9k{!LR2fg@qgbP2|L``iB|hAPO}I%Yb_;Exj(Xg{x=XuV!b+&oHUs|IcL-Y%kR6Nb0? zz-EP>8H6uU9`4?7+rS2_ZWHNx!3-wYd^n!XICCKSXa20@x2<@~MhlVq>!VfxFiI5B|HGVv$gQs%bJQ+JL7Y>p^+ z8%?pR`xF4DKjJ)E28v?fg3K|+H13C_z zu#FutEr$U~Rv$L~SdMb4*w5&OQ&w%dxOXTtQ>X)C90J`?UUj8y(bzQEE2@5Oocgo+ zeyUaOFp<~8bhHK$HX{O*j@+qG-w+_PDqDG_)u-&ILDEGS*IvLSb&l~QqR5rYE+A*m z!V;R!qW3Td5rz5RRqJP+Re9J-zAs0RJbA509gBNJ%jCBKiCW!Na%6=il1|}V2=aYd zNcWGJq_n6P6&Os`Y`73a4J)@=+PqBk@B3JP{~i4&aAL4uaEnKoLdYoJvb-rKR77+Y zbKJtOyaU1R?$Ics8|TN}d@6&uUedjS{O7=@f?excbevT#^pXtG)rwjf5D`g6Bdf+9K%Jdx zgSx4AOEo7;*N|cv>(rTWRIiK&Hr20$tCGF04BOgT7Cx%i4iveEEwExj0QELFTLVT$ zBx*~aSifiN2sWK)-DNP{kRDr*C|UX&N<>z952;;|I_H9)Hd8_l0$JSB^jc4@Ek*c@ z$)!>Ss3IVNex7L5oTZ*dv1xWdwL;d%fGUPMnxIC^iDqErn7Hc)N)iUR3*zJW!rcR> z!!cdD-Ntq?6ZVIm`)#-emUyCU<3Hk!`g&-EAQV`bLqj-QQf$RkqV1Z3e?gnu^P#_7 zwfM3vvX)JYuAVB?r-)MCUI(eV7Mi^8v2wCM8MP;hu)@bAz^ z-URNBcbA_XgMq`p9W@TqwnKzri~aYV=1#+E5SZ8vAY$oWgPi8khxl>rq;N{I3%FY2 zzTS~w&$Ur8+e@xRI|!Hex<4a#%49G= zRR{U>i8683;N99?k7J{jzW@pb_XC2Z@9)V~VXr^gyCgEJExTl^fM^zR+E2XPX}_o} zu#zb%jd#gwS6HEOIpe_15M}Lvc(2lz#sBck2D`^bqpH_eYPoha1Y?WmTE_hL{ZnR{ zwtnd66$`!d?H;m_Xx{{RH(ksyyp=iR{XMgT<%fIoxyI-xmW{hgFb-@I08eQ{SVYu~ za~=wGj2ful`i6L-tc_?WsicsR1mTeTtM3)f6(Q%dg#iDeTOVF1NRDPBI+Q4)eOef( z#tHW7IsvZ6@EbZxB;Uj*IAX#X^N4wNAb|MDFlk7Q6q*)@ItCDMa*cPa!**9*H8ho!!2qV>+1N|MS-hY53uts&^l<6)TBOSL2k%27Xu;*>9}Ks* z0%Z*ko@ZvW?gL?1=q?oSD|dq6QUX4rT3%+GQ@R`tw)fdzdWO7gq^m1|>d_euCDpbah8RA5 zZlxA{S#DRVpw5hU)2ba8Rxs`CWKU@#;_5l!QP8Q1>26!P%kl;}-CeDhcqjwhSdr*_ zMD5n(f3^U+nw*s=LpW5&vgo|8jsL9yj4s*p|5(>2WWg&JE-S;TVh#}IMSByd>ol4w zlm4uVZ+e>=PysKntAU%xX3u7>(^=P!Bg#abAN49cj*G4nCMD2I;_3ll6j{$6wC*`c zEYM4_XGKP~gaE-mL8bIAQ{C0{L>o9-jbyW}YqWx&V?7Z~`oyE1bmp()*M z3}f1?ltokpp}<}MXfB(gR@LqQVO9z{*W2PNt17fj=lI+d7|iN23c{Ze;fp}LK!c^> zrbU%!PYqHOOR*KxIYH9hiO@jUaUY=%=v*=I)f3@1^3uPXUgUlIK0EH9tBVlb=+d7a zS7l)b8?V}HDP9JE<@ckn(SBeVnVw-brIFza?F4IZu^^clH%vCSKkKaz}+4%jEis z#T+)UcZrr|k3HHOKpA7cG%ywA!H4%KGH8HuTcH!TflzBhJq4h8;nvUk$$`D z@mfzwS8I`0?rF5TyLM6hSmN?6|n z>H-ta5x3~BWjTmzd_Kwy_U=i5x^~D)ZDtwpL#|gwC^j}xZL=yrXl0A{oOdHCknjoz zDaU@=LWIAk+LayW4gE^2No+$9SQcC!*>F51$w#I3C-y596P@lJ@Tktd)|Xs~BF7fu zzYO|aT@zi|(zFE+=iSQ&ADg@j^wBl89VSKBJI`LHR$yzx-OC`{Vi}^o5sa%=6hKS# z$ZWA?YCQb#;H)?xy5|oq{i(Hs2B)jktoVAFu}|ObZnQM1DDG6WED{`1BX|1ejI290 zyKL)ChGoIM7`!24u1gEHU8J6K>VAmNLfMoLw9DN%YiI6xAUWuGmDSgBZcw0g=w5M6 zE(*Bc;c{T+D9wc4nzP-8MA<2n`DSHTe-2$gC7IQ~DmlR%GHuPYRhE`xKZ}|UXc9tP znv&^AS?@8a9>JExUyipHyns@nMvLgGfpwB=-|i(<7_N8St_MgSnX+<^%72@A(tX{_i}xccki^%U&%^QN&1`o)x7w!ms*-9A_IYbC z@dJ!|^V~R*A+qAfeSC@AwVW**GRHCEZq4XmMa3meQ+tKP!aIgLi1&iYak6O0i$gH6 zqe=p+5s7?ML1~}uHN2!^65(5$Z#2sQIM(lIPHKU{qOg?*6qsyg7t=A18H$v(2` zr>wd=Hb3)cjP9z5F&-s}jdqSs{y3kA1@D$chHs>bw}1mo{2cnN!A&LPc6%;Evo;vA8d>YQS@~*^iitoGZR|i( z`NW;#;F|#`%0XIMPN70KD-1ENC88$Q4{Gh;;=RbCmr&^KMq?{+qd9Rc zym~`UOnIF~Zc%*YaBpfN%>Y z6Gcx9VF zy-32;T)&%@j8h&jWF zEo4RR7iv6lO3TP*CNm3iGqto#-3)zGFO308*K|#>5AwMO1sKHR{9Hwf^v*TGvGo^; z^?u@NxSG0T@a(x}41QKMqxhz6UvNbVA@vY>u%nwE>j`^qfUXAL@@#R8PoczrHeiyjrXV z%wMdvp(1anm39@=4dBRB2qkHzL!I}UpAQI?!k0$pPg?sUY$354jv^X>({YwRIaX`x z0*#xyd1XiT7oQrBTQIlKqN0{Y)>~4MEAIeI!{EAZ!*`1OYJU$WMI((aMC+WaaQ#z? z1*sce^3S-UtY=?8kN$Z-;b=qKR&tk%?IzRPU|ePrK`S{*SM}Rdr#6v%`qnsZg4zNs z2IKz1oBDM2%?-)&gRzDuQg~SL-!)^;q>airYt7|%xmO+)3X|sT2%u{MIKBFEjRWCi z&&_iNhzIqyT@_dcv0e=i_SAY6;zXgH=zUG|!>pyYxT4X!F|OaalD6inPa^P+dq`3mu2HS~C4oXVATVproC?nuKcTi;st z8rm1y17h=lSfC%I7dn8?#_3YQGHIqH{4mzlxi(o;1mz4|IO5wUL^ZuZ4i&_`kOA8g zs^A#bm`W3>SuLc=0GNR>-pN=WXCtH7Y z^7WO|e&E9Wg~ghzQ(*i6pbW{DMCg`5)jHHNAp^U@p~gcrZm1ep$36GT#U|R)Yq@1E zW~lpR2*GL^Faw(d;@=#*vavSVPqwS|M2pD}MjVf#5Z|`XA~>bCLa6!aXua1I@;h}i zZDofD6yXM2RWesbEY#1aHc;RXgdkU>BW2k8K*(J)2rp`l24Nv#--^+B-oDvmladGR z(dP^=jOX7D4y>a+we}Y(bwFE{sWH*1^61kW&*Peq?&a7DC13HKTz6{;tP?+$8HepH zkX^0~g>m3f2|30UI_`VG(3_g1D&Z^o^f}?xJkLO@H3U{!6$!KIUjQUK*4I#V^Nrdhs zSkXjl3wS;D%a!jYa`RE`ng0Ze}(zyB+L)AxBYh3TTV?P#mJ)u6Xy0Q_0wF zwi=f%RfY->x|Z&>gl=~Pzx`5#=01=npr68ia4xv0M1L=aoeA8Yl4!)QHdrqU68Gd^ z`~wYB5F!*I1h$JkNyY$z_1XR`36d~jz&&gh9=A(nlEMPk109fN4PJh|(%#$Opw{z; zqRqX|R$B3HZX*jo}RlM=sqqQE`ndlDR@XIq}|ayvy&8lMktaSm~{8 zx~x6)#ZO}mKl(}L4rD=gH=Y6N1=hEQG0Drof>@`1hJa~aYeNg;KmGGZp8Nde&A z3L}yx_x_7{7JS>XpCI3#*t#P7_Jr zlBe~Gv0u1qChY&j&v<53>gUVUtY`1EpjUDE-G^-`)T+48G1`g_MWmpVS{4e5KL5bdT=5NfjY$aYZX!LvxzU16-Cwg7IjbH*MK* z<(wgp+6wu&D8xl`u zmcliPe0%|jFyQ!6`K6Rc;zUzD>!ZEhksbEsUmKsUQE|3|2JgAqH`D#GKMwAgbzxr| zKGZa-R)LTayB_1ZPs&77obx<=Xa*H9}Ui6(tR##j) z+I(zkMI;o$!in(hPaHYZO_7Z; z_Nk}PY7H`1pGCi@Hel>|7pwK6$Zq2mzy$X6Fr$=RLnx@?hgjlzMT-$2R^-v_Q(36k zBQrB`n5Ix@LinS|nuxHU zs4tL)7Gtwd_9I3GQRw|}#eA35550lbGLZb`+o?o!#|=xfB1ns_A9n<^WLbGctPp;U z(V^;ZPmnRHOd>jUfy8Kg9&*Ts|D8M!t557&d7OT9N61n)=_xaN{&&))6yvD{Mk;eG ztZA;O%u!{(aysCbz}@l9l3mth8;UNaLdM;E!NwuUd?&pB$L&=hc-efWrS#wg15aBLJePt{bTR0{E`t6Jati0n!N3{NXU z#J&u$Q0i$HqajdU5Xw;s+-LvhOSyw2Ad3t9k;$B=L_u=w$i&?@Q#`yOtaK4rz|C)F zNrJP1l5KkgxY=pyIL{D#zEXP)3JNG4MUu~&HV_Fd$DodjP=p!UO;FwZkalbNustkz%Bj&G-`xX8tn5M zou{~ypNH%ae{fx}Ti9$bfKx~@X^7{!eUDU(qxchp21(~Yx4p(T#$?DC7>Y^o6KEG) zD&uc3Bjk8Eb9VbXd=B3!pp1imMNGxhd}A#4=v5i5)yq8na<{ss0d_55P(OE?25O4R z{xyK122tbi$8qF#TnX3J<(4~9Y8HInGtXD$b){-qbtmI1g|jCFFKZ3e#(a#3?kwTh#ZMnU(*{=&N5lB%^A zy3~R=pJ&az$Jf0X;$!^74ax)Op{X0_c2sNz8r0?tM_kdex=!^xoZBZc_xkF1|z~ z_)V1fus$(x6;O*)d|_DgWjFbf3V1T%Zo5SWyJafSiAfS3j*Sy`E*-AfX9;qYR`n8) zbhf}!CIlQLIYeE z1?)uMJNxUcAHJ&cnK=*bihj6DX$tGDK6rqA@a$ycz-0=j(8xT9q75lmm=skP&{pnr zl9VW{@}l68s@U5}XD1nY_LtMZHa#2D;G7U z&19&%mw>IhDYTwmTBta|MXqoJ`2XS03x%+Z z&(4kggldfXT71FqdKfc*igov&z%`GnKAr|x=+7!lT1?5-WWv~Gm!7L?Tw*0hmi!wi zhzKEQM9pucm`yM0?^1Wt>gNM5;@UXYcriuL;$Oafu?qBo&&*EaPu+!s_lMNK=2IXa zH2V6i+@uOPrU>|#mA8T+^Wi|p+YfKEfA~|Anz8VHX+$YxYGa9-26ch43uK@7Juj6a9F@T-Cu5$jUd$np5 zIY%lck5~0QlfFgJdiX+|89g<4VMVg~aQqF0yg3ptT+(JK)hs0~{gO7N7eBiO(w zLLb$=f$*c+eh<+TpMGxAe(XIm^xA0!Z)|6BRksj z)FQFha~0G|0rA+f+aY`Ti}_y*=zjtI)R>ITc^0K?+sC`*1*+J|!d1QS^QkcW6Jde( zr$S+RR`!`t-l83f|h)O+`$pVPfLO55ds6D~}W*QvR#BHdfh5+A<9~gLiA8}oea57pWgV#m-hNS^NzWS$M8bi?A@Zdu$_R+l1tgEH^q4Tu8QJ>Du4Os_RY{VZs|5O1163ATo(C%y3y}t zT8d`x3l+}cG7#Q%WQE~F7KsKhK^)>1SOIbt;U3TKu5Cs*K;sErsfORC;qdT?8Z!MZ ziCfho`0MuQXg(qSDwQM(-V^LO$KxAmm$mQ@CP&~ zD#-cV&u?q<^EkUE`UDkGrXN29F2Uj|y9jrtTQaQ}Alv6aQ4N88Tit{P?+eAg?WnJM ztj=&7a*mrX|C{s|Yoy2JF6`4*AEOyA0)b79m}t_~TTSEjEtk15K$EIObTVEj?&|WFyHGZPMyJH`FB;B+VNTv?wCgnL0N-u+_~E6$uWwSAVUqUi zCw;;VydYn~*CQg5Pb@kTxhES}I&5Vd@Z(-TRiiJR>%oeU7#+v>9;9)C``BGLp1s3B z^g0btS)l<+&GrTm7Tx}mhV1O<2-|#j0T$#29xbiXGtT6L3~+|Mw3>m0R0u9Zp^Ha1 zz$ERvVg0>Ct?*EK^|O*_e51M<1ir!1>PJ=ms<(iVq(`m#s749M;=cS>t0JL)g7CqF zS~bheW{=F%C%_Oa8ROiyPC>=Xk@QWl)^VZVs`1qmCf&x2Y1R1*FldiE)HB}) zt*9%q{o+hXU0g)J%nD~*6i~dtTm`t(f1N(#dQ11PLadzI5)D%-*pjP?1YylNfXP;2 zD!;{He65;lVQFPFI+~Y(R{RQxE7J8*D{oKk8|q|6sil0y^G}!H9L>e9)Gg^#;Nmh*%W?gVkXx#do{XGm^Y;)2X3_An_ z&TMslUr4kbb@NtlTJAcT;T1zJFv=%@ziPFJ`p#yZsz7uA9D=Lk6LZaKKC?1{+5|Wn zHm=a*TcNmQ77rMQgIs_5>t8R8d`+(-T}|3gfv^1$s8XjaPA3#w80(5 z|1!90(%mY|CptW4Q4_DMRHb)?9VTZ(QQgG95@iWlrTT1L9@uYa)nMnTZ+KizUmex; zA*{_`2y~5Rw~_`xP__Y)G0zJ6#?P0eC!Rf!ETklU59bb0=0CTMow3AFTt@j%)YELDKI!r)OCnen5sSk zJ1kStp>Kpf+r0VA0^w4o(Ps;+NKS92sPh!#qB5dXz@nPF0Qm+N*}`&wUUoX|i!c82 zSZxN7(*WaL`3^l0el*m#Z=S$d1i;(FL)|Nex@W5osZO|X?`pb^Iym3gC|HKLTWYy$ z9+cQblS$s8JNtdAH+TH`>wCLKc!;T?&mwf${MHFlD#GHDat62+j1pZ7`z2l$E2Pxa zAZb9;7jPPPXJ}qYjUsz>-WoGlYR^kNV!}bY4Yj>zq8_xF0{qhYw=5w;espxl3gmmSr%eQn65f!?#V)|hi5IQh>uS~RhYSd>-Lqnn7pT;K^2SYgM?+c~woSBod0PlRu z$volRlg7F8W4)fxm2IED>>@cHG^FRN)+ESl*P-D9Q!NnJd>G*ryZTwyryD9`KsxpL zlH6mA{RTX_8W+`K>^krGQ7AVEvpmZkQL;fR@27B|ECo$>tist0Ao-fFC(Ae!qQ9Tn zw>$$E0NAqjKQ`S#9BT$%M;NqiTzz&#QU{au+IttIsjTarl&IQTO2fK=eTTGxsDJVl{7^q&p zY+3s22KEkVpaE0JE4^7D#R%CLc$O~x3JRc;&r&)$~TjHSp zC{-%n1K{M#OW>HR%`sT(x30ILPgSI~^Mb_c(lU`)l9ab*IiCOmRu?H*Y^J%uct7L7 z&6p~_TesmN9d6iZspD`5TJAtIjFZ8C`?I;`zpA1+QAuVU?IQ`{3B`PMbTXwG@X6Bb zAY%bXh{FmdxJ^u=Q8i?CVV>KY|4RwY}17^&K zXM<wAkTh{V2yQ%a!;;tCTAeljXse!0@T&vce%xAn*y!jYM z#BG);U*1CvOhawV<8NO4PjOy??aoeM!I21c+cxqt9qo~Z!1N3klBOWNlB%{pgf!wt z=iHz|DavGBZoxV>juTlnXY`-|RdwV*H}zZ~kK}o09ChNCao^OT)0F6Dd=EZngqKqR zj`pusvg>!wXlhO!NKDqW@S4sQ`%$9_j?HI@!)PR+pL7F>6jSu^UKUW~axl*K8r8!) z5>+8oQ_*uix~uZ#-e^fF$vS)*1pWo!;+Ji-FqA220UMo3rR?6eb!YZoQZ|d4ePp*m z5OKU|;P4-k#<6?Ad=C4?2V_W--AgO!F&5d=$7LCss_a?r%c3wAs!#8E&$%Y~)z7ks z_2g|d$|+A!d51s-mt}flDynJNqKJVmo0`vXe$*|^K%RRB#>p!D=D@iu$JkyBQ1Y09 z&b&e~f9l3J&iWC2{vD>TEok-GBQ^v7ogx@a#F>pI^)j`L*RDi_Z@RIv9fh`97uRKp z!dt9CE)EHf*Op)i7?`}VVv-=N&=F!^Ytwuq&UH(QUN5g00ZVwENOcEXc{-Ibj(nHB z+z#?1@;z$q>?EwOMl>p|Z!IRms|GI?{$UKq-)v*hyiFXpCG&NR_2I+$5Tp;x4wUw-mPfRoS`{2gVq4B}L_~7mikv@+C za(i~5gcIzY-5g$JQl(j+jrxS!*D|$CZQF>{C`9yXO5s`y_77}InzXYwa+M>Ts^~||fzC~QE1}@Ka!?54mpyjLg4z)(6 zz_`z+r@x8Y`nk=mf0z4J*q-0Hfm5n`EL<_z+u@08)N>t#Aft;6q>TJ5Dt|$t)(ALX zR>E0mL7HcoF3i}|FdSv%JwY|InGY_*t-Pv9@5v9Q;g2R8w% zb!JoV*}#p48;$tn*p%gYcCzFh<{I%BS2Ep_ois7-!^+~@lys={Z+nQ={)+-$G((F< zD@0Lxpv;7QoTOy42fCf45o@6UJ3ddDSejetJ%7sW-VNVkr8}_@{0i{tNz`m+0plZ( zj9II1Gt5)EnXbh}kEyQc2fu4t7ln^;S}V8AnO8u;;Y*pOBpGSCDuK*VrIV5ri5-Xy zclj2Qe8DmcIG+)1mHSVDOg(S=(V&Av0g+s3+z-33=Ap>;VAr39m#<-f;z8rz>W<_| zGYTX;_DE(2()(e$Z%b3kfVF5qq45B?>Bn)Cnna@qVDy4jwe@&Ux{EDS9e@Tk4KxIH z4EPu0u2lAL@o`GB#y9{()w|=we(Tum2`h*UW&g^&V9e354u$9INPiG3|2Vbl4?>~ z#&Gys~3d z#wdMezo`9M1lRYzj3^}b-$_1l0|4Otn!3g$Ou|Gc^mh?^6{-2lZ;pxWWfE!=+<^tw z=LWC;4=0(Yss+;Js~M|5a~Z45_?5v@%YW4eS59|xB9Sx+%7mCUcbJZK2(i*^t|JU- zrc>A`5L1X~%hqY)2FC=-#wBUD)derh1@fZnwvk1@(Y2|~&S&Z96M?dI+t%q+AVqiu zm-Mi|R=d;psGyF$_~EEvEN6XAJqK{BNCP`yry_SZg4{#!73%JB=ETJJ<-_ed zQj_27n()`zYkXc_si{%}N*QfX*TDi|aGW{+8>CKNOhjd-{9be7AX<1I7nyUOI*O12 zdGBl)IN)YL3j`I^k_E>pA&mLQv9TGd$B3Y;vtRlq3YRFeaW{vaRJcyLBMBJ&FC4dW zuWkfs2OrLS(pwNS;P~6k-QYct1vD}fpgE@aPYlNcwvE3k_}x=o4Wcs1ToIO)La(-b za7Uq5P@;z0m)k1&~)}%FNz2_Ju`PHf#BbyXuijHsIfbs66Pu_3`Am zv4!QKFT=mFFU1-izqSd2C>ISg^l}|0cFt|*Bg{kem&R2>R!1z~@Z1_p?Qq&%aoZ}6 z7iptnO}DsK5DQYi=rKjjn%M;)>xuor(qasfz~Z{pZnPKfUI zbdYmniV5$?T6yFKx*j8o*n<`6tkKDPO*UL&Es{;{BE>K+!28!*Z$Dy=pZAO1A2PbT z2{r_HKz)ieA6N9Wqtcos+K4#L*7qrhFa zvimH~tXE$cQXAyR2aSjM9A4_m!`|fgi0**6KRSP ziZopzS|4I;G2NuW zhZgIV`N7@2nayWXORvMuW|2gHP6^0T?wfgoRVO8Hb==?uM6LpYVmsCSJ~w)34hH=y zs9a^zfc-MR1e-y%bs>(~^bijP4F*q3d}wXXoQV``TyFp_T^tY!-VJLUtna)(sA_i- z)XZmjHPLJUl_k?X1r;H-hk-pECmZ+r91?;u>41#!gYbtXmuhL1c{Q2Mqr4b;cywe^ zq102_SlM0q0?U$XKyRwbZ{il$eM|LL_wah&rMOJ=&S3pMVh{2W6x|nm&DfbP{9nG5 zc})rDF3ue(9Wu)2$nMg9gnI zvM2;RB13@|s$l|?XfWP@Eg)_yfhwffLGh6ArL4&kU$}GSG>7dtw*Yu^aX;VT3{=@> zNs6>dZbb-%$D%j{Jq;m1l{zIl&L;gw2q7-aA&6|;n{h?H6c1R$L1>A%!UXi(b=`u# z5LMvvQkG3G3UrV4JoV??7@$smb2RAnIB|!A$7xu8YUsQ+Jw0O2=pkRl`Fl1hHm>5F z`4>;j-hwh_6AKRBOBMIrf*!08j^M6R2c;AH6YAo?yOBH9`4?^7qU;#cGjp}2mNs!L zGITdJEqHnRpV}#!K@uS7oNwMbQ{4jq7RZ6p4tpNWXFu5=`Q(oVLa}g-Io^F=6iIf9 zUYXhgt2j7*A%v%n_aHosaA0=goiA|vhE_#Q$Gr_J_}AL#JrjX z*x5immI*gtim?3o%Jk|BvN^xXI!__}mAm^Cqt7L`&sknJIR{n0UKQ(s0ImK{jB&MF z-WMmgFEiM{LqxuW+!v7&AAhLGGaDdlqv3+mJ^R^lLUh zkCQyb;JhVNu=K(}vDN7QlsRJoO-o;A=L7SR2TJ<4?g5G|DnCk0%=N>h>6Gi@e| zVjErMU-|+qse}V{(l~sUt}vlI8fYI}POY%p)vuOi*86W-!Xh`EeX@*1ZH~Y#r`64O zqQBRQK+a3$6Z50e{fS7aJySGeJ!XChESUd!KK-nc7fO<=?J3u>5cJmRMF*)Cc(*-m zl1udqLWA?SVdiUpRf&7vT3atTY8^v@M|o?{k@n4UV4clH>55vM{7t|DFjZ}ls{&`@ zeK7F)M)oI713P3CupgBa~PPNCz+h%)nWM>L>kthen1 zs-rVBg8T${mo8NdWOwd@aaJlr8tcYG%|Y9ua^Pq`bS|P?9~mue-zCei#(9ICm5iL! zyYIgd!}{RbZ##bb;eQNX$oaSPcm8nv0dD8livZ<{I&f_aqRMh^{qR}6 z{TH2LU_Zto3pbndQ)CT(Gc7|D(vbsXyp0L{+lkG0ecvhoCH`d@-kBzC`oY z=igkE7UKqqxOsyG68D%FCD}SY=Yr@mQlmn;H6ocJPvlXULHmwW2;r$-zT9f#q{QEZlj7n zySoumVbrXv^RV*(S4g#4;y&TB^m>kRP*tVsIUTYa`0K`If9{R>+~8v4DJy0SwnRF` z;(vDvm!B?LZqK5hm+0qoUp2pB91iiRjXFnd$Z~(;8fo8eA4QY1d?7%CA%v9aEjX@ny0cdQeH>}xCfBZO?LFK(%D{r_!6w(O#Nbu6!=Kw(?_eMe^}8%rg0T$U zC~JR0se6Ult<77%h(H&|m*YaDdGlwMs>S-ljT}%qBlbaTetJl{pw&H1KA|g%$8^aS zEz=ePiTtQezZ!+4J1hHQK#_)};J5v4IaT|AvG0_Ru-@iBxW3^#m^1y5VEJ9vE3r0mm<96^?39by8)+4mOY(b2cfyuRJRqiP0S(6SbY7DVwV`$5ZW}H<02Ea0gXnXHjT~ zV?zi85F6$E|Cg?JjcfYK+kW>J-yjP#S_sjh< zA71f4tp8fq@4Bw9`&Qi!yeRGyZqcdHA%+Kd=I~{~2z@PQVQA5%c;8U@>xF#7{bI|Hr>G?#qM7iPumXAJ8KLlA2fnoB zw)clWSTG`_(V~yFaE}RjasV{S zF%S;raW3x(>9gG?`3;(N-JMOIw}3XJJiB;GxT#_x*E)q8Ye2xPFgEDSoJq*=NYwt+H%Zd=GwePbxRk2s&=ewvKab;Wg+v^ zpCU7jV_nC}vJ-kwl$Exd`azxZVo9ZUh)0@JtWNJ78-DoQFF;zIqJMDvk3EOt63n0N zqHDH=M}0rHmDa1%&LOjAz5_7rloDtLXsdau={?8-9w5=N$EkVT<;IVoQ13Zqskpm- z@5vf=U|4z~F*?B<*{G>g9y9169?wNwFmWw=|sS6I%oLv7>oReT6 zp@iHDbB9Y|BCghUHu9U-hbhN7rk17v!ktRIWuIpEa~XU`8#*M(GK^lO@a_M73h~2b zRdsE)Rh^hP$y;tj?hbfh6c{D0DQTKLaU6$>uI|$dkZhgkVeHn&Df)>PayAMx^g+0v z>QvyRL}*jd7b

@z{D+tM{LISAKS|P(*oGdOJMB%if~6)ivQ^ zmbUjCk9uJ1$jj@e4(#c!p4&2ezi+JuQiR6ToqpHX#dwnFt6s$6$w14JWX167__n1^Xh}S7|2-L_Rcq0xcdoI{d?xg+YMqf<5^Wv~ zAn4J2in|!U>O4n4S;m=~OHuRDDDJzRh+Y+j;5}1bvi4&2{ju*jD4y}xclB2#RJ*k{`CBnep=@>W>oIEXryIAe;S(WOR4t# z&$1nKb}OJB`&_R3hR{Nu_mT?j)@|yJYT(L@(2Ng#m*AW(Hn@%}X#33T2`M;s&(9?y z!2UibUk=c-T~G zw#|Mm7N&0NBYCCoFtFUYK?B9D95mue&`|wPQH;3rCHx-#aO<;7Y>DqcrsjTM2z7_7 z3Qv^V>)riSD(#!>3;K>-T;1d)cb-B&S7?mVXGZ&eLgJDC@F8jlm?mmbT-su=;YUm% zwRy8GYBtA&657q`^*Xq4sNYT$nIeGU4Z&v{X%=fjjFjz~l-IKNyu*Vl+2vd3!S#&~ z8GS0dd|TZi>W-1pzZ*C917XK~tho^!pON(`kqY>Kjw>ig0)P_Boo(7zW16XcY@-V5 zw#PYg9r$Ebpnc41*C3s6^Z(XZra6!!yCN*waG7B*TEjFE;Y}q&g~{6qtn`zCl3de1 zi^s)w!MJv^c7;fmgGQS(M9v;+>k0O`@-+ywy@7$epj_)Q-JbZEm~VDdCbo(^8D0Sn z!m-ZPyDGw+k|K9q_V7X})^40vMorycRU5Z0^DW32H5jiRP zxlf2rcz9uq0j71A`eept#w{WH@-Tc&kuV2M367Uv+}l=`U1uW7z1D{i+Lj4t2Rbsk^i0$rH|D2`~qQ1IeU_d z9jqm-*thI4@B+aoZmBuqdwm>y7rda7qg$+ebcFjtc0HVkU~r-wi{;~h;)Z4;!p ziJ1`EG#dk_c4!i+pqq`U^)%3HDZZ!m4q^S=!zBBM8nq83B!7$=H7At}Jwng-V|Ro$ zGaz_NW1K1XP9K{idziaUO2ess?rZ4>zY0)!s?pA^*l}KbRCuc*!GDPG;K!QsrD~yr z{NjhV+s(CyYD6sB-gg`ww;mbKWvwlab3IE_>@sA&Da2;M_ehCl1&NT>PO@^R@zspu zn7u-LaCBYgR^J$jTTS(iRJmTzvx!0WmzyT{L05)XC->-+wd@Wwbsy~e0Oz`lPnO@; zmdsY7mM)goJ1HK1L#UE}`eaE>3a%kMD)p;70y}1h;8&=QehoQ7b@QmWk*ngLtG#UR z#i5hb#t^Q)tk|1D?l?@)y`9+g@>K(>AS}ra46>LI4)7+^be7Vq)zR0o@3~b9HX1$t(#~3q9>w zZ)%9B{~s=3TY&TK@d*=Lx`EcAsWEuJE$ZKat&SK^SI{G_T;jIVYJ1+x*i~@ zF!DP2f!2IaFQ!h#bywFO3FkZKGm~W>4FwEo;x+TCeffl{l^;Nr(}-0*WDdk4c$6}=YIJ>x%FqYs_GI#D5+!c-ew?XE8{A%!jKfo_dt>(*qUdiPS_`+MnT$2*e8O2*N9BfhOJ4B4|NzP@! z$q@kaaWxUZkV-+Bz=o`^L)jG4%WS-*2`PUah*lb)ejSi=eGfjYaH>~=-@KS26QC?*)2$K#f)AhY) zdRrIMCaoQ_)=7<3e9!a5H?fnvC~UzF6Q5M81cZ!!fM9 z{baq@_P~~5`e*ift@(x4B6;C@GYc$}EOmAz&>z;n+Od6`wmal0?kBUAirrN^%a?!D4=5VTy~qvo+!mS_(%GB!VeU{(pdl9Vzzz~~u3o4#in&3KVIgfiR} z-i`P;q>~EFQNsAR;j+$5vJ(NgT(onDxPt%|-TZpgxiP+{;}$K&_Xef>>^KP;7%a#v zHN|k(-nLA#1-dbtLLh24vz zUA*x0B!cNC#ru*%UlUpVt@ruV%c`>3**Hhm#O)0J$*ocH@V+{9%c~L;rbVW$fY(^OeZ? z>d1`4xW5Qpq6sW5tf4uOLmHaviKfKx%hS9w1L-$-m-bK-E zrRwGer>Sxr%OE^KT6BxMOnP0C+C4vF7Zg`+oG!4dQOY2$`6J8JRI2I9sJ^athy z&mZl{O%pnG*4_RyHu(@9^%nM){HjFE8#-Jwq4sM~C=4?n2}$sIt@q#L2a|oIuMyE& zgd1_TckzWE{`o*6xh$tL5wkX2Kz^0j6P004$X(W%2&+8}vL`O4G$^+`Kwt$0So-gi z>8bfq+@%(M1A>8JNwC5c1yLz16CB1hb16KSRJ}X|vS)@LgSV0G-n5{C%1XBR@^Cx| z?(yO(-w>{LOwzE9b@QpfZBR8X))Qi*b;NrmmBNsOmAoeWR|i;q`;fFAmu_lb2@ftV zBd6G(M2YN&wkpf)8v@2Q_BeDyH_uqWcJ3T0Y-k$x6l?Mi$Lr079ShZ56dg#R%YP3; zG*b_RM{*jERN^U$SULwRl4r6@s7m)>zQ5@-RBeP!-!~A$le$u>^gn66|2+5I`;}r* ztdg_BNR4*iWZgnGgG!D-(??;Q6xWqAq9UYg^@#=}Y+?$X@OR2S^KVUzEm}6SZCHfy ztbHmBy%tN*d8=;5dNiGu#hmqG7523@6gWViV$hI(Ww5hiG@r6(;;K~+l z6yEkr4lq4brM$sL#PWk>#O9R5Fe<9TDcPNRGZTd50VtyLOR5M=jDCgm!JqwF(i&|v zrGlT^$@=!mwjflXhU219RtW0wui~) zY-4q@@+eR&;KvAymz~z>>SDm_Ye~f{!5E&3xDG9%lBAiYOUY$)1=a3V)7L$253>#E z;fLD-AQBZkIRTwhvU_pTjm6v-H6q2a_zAJGI@)B2OS<`*XUCK)E$_D(QN6Nn6WcP9 zoV#~&)(Oo7*L(kU|L(_>^<9_z@u0~}I)YPMRwlCO6SITbodFY^(aLu;`p;(l-v~Vn z-1;}rFZD7p3HMJ1p4Z?uoe`5?`zAagG7ypWk?_?z1NvLSP%AR{525f^DGbSuqIasuE%$njb-DF_9EQ!laR3chylA|qg z_>1r7E=s`Ag9z%?Ygzw>w5y6MYA<)qRWjHx?v;I?81|sQrL0`3GtFHs&aIeV{1mj9 zk@G>*a^`x1ja~|yn~}G^me9;1&r-nmM{KhzH@+j#c4`5HPYDZ4Y1*?@aFhHai-_^i1Zy$N5JoP*RYCqeBnxXzj4wxq&|STZ&=D*doKmV+#pdRo zIPNFXEoU3uB<7h%+i=4;fAfccq5$Cn2x(2}yb#zx=8V(8+?a1EP-}7|=XLF_H;2!5 z?xxu{P_#y2ACnwOh6YK{=W5(iJVGV=K+lgkvB&Z^@w8HVzN?`g<~NpL#0dql5wy;Q zOA(~YWq>Uxgelpub>PQ>H;pw*R=ZYiMOZ2_{h9+V%gE;>t0rEq>C;NJV;BmFvCl&j0)hH?v9+*&YMBN04dka+8GnXuyitowP?y zePl&mP|IoY&`ZLg#pY(qg{ii8E$*Teh9{w4M~)P7RoKYV@OSdh1M7h~8&OqToSaZk z9-d-KN1)wWukM9CqD=n;=Nf<9sKCH&)73L8#h*|!$}J7$YrohEJ*U4-s49Y3u{fV@ z?3ndSTp3hRd=Fi>wD??Ct*guP=7<*B{2zl)WSr^NR>v-UhQ#`cZPA?~?LXT>C4ybI zWNbr_ucV0Q;}&q)%7kCpb$oU{TlT}{S5)0#pXz!IH2Ba2!x3-eUk&UFj9|n<`=io} z`kFQgtA;@={|)31S?wAo8yQ9*WDl4xnVgegsagJK2OBDsS(aVKC!@5~dVHITxYL2) zklD+50M4jzCu+!gs##moO$F+!@AU5^fBNL5;%d-aXCv^4dVOB4&ovqFj*w=*B!!Zl zHs646Bg|*B3w<7}Pw#Wn9|<2IOs@Y-lkeRmJ8XqMrO%m3c7^%o$UM)kHA0o{&{`pE zfNO*N&HjiS8iMXVyTKqk89mEm!^mo0|8Cq8K^&LcT$?PneEkF4{sC0axD@qqlG3zA z3k^&BJ-4-0x5Ank@>_nFBSqLu@V*wm5MQZi4w``p=HD-wGPL2Lzk5D4q-gCO7R35j z&_Ut?(Xz{BkBm(*#Pi8pXROgHSu5fof7^0fH@Rt$2LcrFcZrPn^m^Flk{lc@H6L{H z3d{A7?BDlst?uyTXQ@T(9NMcX5hSk`!=8&T4VPR&nO2UuQ|_I6llZph$$)Fe~`NjR{zp z4Cuga9U2oJwrv1q6i!DORjo~O=A!Fuzl8JXc3Z=vK2Wg=1^f2=@N>M|j78@sC&)Y( zXB0q(+DK4-8AzNQ=de zH91o!B|~^JJkOE*LLQuCSNdB~3^N zs`XOTXKcOg+8OTgDygFrl@1+Uu)I?=kA@?qiNnJDyCI&_<$uO)qxpy2*jt7$7SsXm zG2_~^b@_e5TS8$kPDP8Xh&4K>5mEBr5(e6wL-Z$z4)O9*M%UpqC0l2zbiMc6{(ChQ zpWeyRSgFb5WGBjJFopfS*H-$iGWzh2Hn{o#hir$u>K z5_I58mJ}pspf}Wof)(|*3hV|NeSt@p#a*VvvaU6_hvPgq+y|S_c-lPX=dQ3-Vu~sd zW7}VuC|@#cn7y7ZU8yoK-1qzP@~%OZqFKQV>L;K)C%ptrQ^dINPB|IH*rbxxF*|AjhGMSh5ZmDWzr?n8wBFN*VCRb}&uvUTz(iQu9DvP`%BL)~3|xtvH(kW$Sv_2thu zW4Nh@iOF8gME7pZbi)cLO!F-mSmr#^)rKn94V#7fG!EhuDSGxq=R+YUR>L%B)fi6` zW)kf{V7QPs!AIH$ZyezRqxk!Sq7!cO!|tmW+FK5~JJ|8p;HEKynJ zdZC{q4kIi#c;Uj3Y(s3Lu)AF(VrIT^EZrD4GvC>QCt*KF7Ra;2KO%EqpiQ7zIz^Zh zDM?6-Y_n5_@r65cLgCvZ?pkbqpEvI)KbcLuvI!L*2g7#O9KFo#AjFU>gKb9=wI9O| zV0F|9C!KHe=LO!?A0g;Mx}appgF~1p#4Z!cLooG-y;B3!oziMTaY{ICcdPzpezI1@ zO)b?uyUgE{?r-kq`ZSm6J%gd@xSOk96B+ zl52#RndO56UtsR263W6{1esryF^+uHTNIv@kJETZVbGJb(#zO88)vM6%>Fn`PwN=_OXw;L9 z*}-Ht&vh%ekzc4knU%YfOJWHuEis5NAX`4VDmGaLudW+%rOj+M1~knZa~fM3LRG{U`?iPL zsHTI}gR!UhRlNX7aFE{N(GAw=^2pHbtHvs?%!FS;Ok$pAfQnruCA*FoY1bxHx$Y14 zSrohv$c`8NFtTg3s=rF5-5H;LlaVhkA4vqN);O5tI?p9%R}mYO2BSKsT+`Qb{#uit zR3V1via;nuy0||ojgSlK?o+V7F`mOVBu_8!Up;&d+NO8w0>1y?`qg6zB^8xZwi!cC zQDq1U7TkCzHcG)NXYy2!Hu=6)r; zBoD?j__HW#QJT<51&0_~tMu?zW~g#!Sr=nJZ$G@?;8axN<^o>vJSb+M#oiU!DW1q< z!m5etMlBC^_X_~4+Jgk4`pEC|feFM=a;MP}PjvH1^*Yw!vm!r&?f1gg#CL@IeAVsL zu1<&+`L21xdGUluzKhyiA0%w%qItMCk;w1!>3HqFGJEuD*$E4EFsy#_bEY2ML$)$# z2-xT`SoPA1?7H~$HT+SlF1tM5wz8=S=6Eqdciz$_s1RIZo{!*O!+#RWA?u=nH}r;_ zIM&ftpw7*7Nvqvb^y9fRf*{ndl1cB5t(rrndYiy#HUvD8CH8wSag5I z*nzL*l@`WYyKg$~XR6&B19Z^LYr?9T3duaB29;D(Q&l&dogA2OdG!sN?A%Aj5MM@u zl5$)gCB@}X4ouqH;8|-eWk9ccwsUf_`^os;aQY&ruplqawsvX90eFJp#X@OzWvKhQ z>y3B*=(Fl)oJZAtib_dyfPL5{c7f&K#rCVB1^DM1)@w$;FX`;ms)lEWvCtn~5Af63`n%wi;s9M=jA*Ds~xn}uuFfLkF%je*E(bPXN$eiUOcq&PmDSZbOPb!+wu5M5IB zSj(4_apm9u!!tGpEu*C!EM5bkE@9sAk7vkVhjj%d5^g6pIoh9#+!0vM@N;Ca`>VpI z4Nu0i1jM6h@1~ZlPrFmRy2&6cef(klk+1}_?6{~zRnwTX>u>h@QPaf4U^ROWt*H3o zTM8@NIvf*3#9T7xaeLTsa1*{;vQeKUs}?t^wWq-Iz?;6&k zzb%9wKxhUBUOe@XVEu=?ygw(o&*-7Jh$Lt)G>+v#6RuzArAJjKU?>s?Ipm}1< z0Xdh6;?b0+14QC$t7S=(_;<#y~#DwStf`WCkirl0Tk{WZHp#`NVw2GRrj+G>-1CvE*+s4S^`k%3aY)DYpg`r8eupo}EJg2n@dV z2J&uTLFwUh+47Axah&%zpYm3}@j44qbmoYX>}Umo5}OEP-VsK33t0jkCo=8=w?s@F!5 zT0~^fY@oo?f9ghln_3gS3mh1qb0!tKf58IkxGWqZk(M|Zy9rW;K& zheXEeqlEMM98#Ci(_m8!l?GL;wH(7WZd$D!Kz{OV7e6cFhfqIdqh=d(b0kh*$ysj* zecJ7QOUtQ}ct0Y$Hm}tuL$38qyQlCEjsu@~{ejog2wRo5&p1)U{IO$Y2`OcIJofGB z$oHD*Hy>#)_XcW7CGXgyQrr==&RnbLQ7(U&Yq}?5#EK@~!+$sY_5hv42BQ)sbu32O zHdT?um8cbP zE3N9xvB9XVk5|PLC>)NQma4`b=)esYnCDlS$*_6z6MU3wMEszdLaqNlN@zuvcHwPj z58O6&xx=8&HdA)DN=!&&6G7G8N?7nGG{_8`GHBIuj50YFWVmO4z!+d?CyM1$nHkR( z8>>;ovSsXnh*01PMJ`Z|H=9;#OP@lY=a-MwV5JLTzdP{1o_}0-YX8VADsAV-1qk3; z?0&Ln7(F~acwuwyx{aX?mS%3}TX+EwuaDON`R2T?$yIL}VZmp1W}qEyixQ|lGbM#2 z|9y;5>K!ByF<5S__tqM;d_KrHPXesy$OC1*&Rd{Jf<1s%1Fnl&a z+`DBNOS&^HvA|YJNOs{-Y=L6DxCw>b%Y}|>(@POJuk4#d`L1o+i8V=%GE$%DBA}Lb zm+Be<*KG&fl-!A-Y}1?6If%cdZ5I+E~n7O zNB-1j7^5|w(8i%bRKGoo3(g_CljIj)G;a2DSb6;m98?Gv(Jq}Yt8YGWM2Of3B^zO| zDt~5_$np7w6T4*n!~0n^rK=C0CnhQ1RKs#}r^3@<$$;4yT~!f(GMs=XeszNI!iZ`v zisQAPWkL9(41A0bkydt)o>SD4_1q%+lIZYzIe7Q0Aof!iw{NTBc-%2>jsfg#F^nfU z#mVfZ{u#0NM)|-oZ__=er@&*Y55UeA*i72fGJ*VJ=c5bduOa_1>*VSl_h6|ILIbGt)em=|PugBUWj)7O^@69t&Q81GpteqoI`F zs_w5)(rH4Y>{dT2Oj=oaCl0%k=(0zoxK_b|u@DI`S8b`x?nvN@d=>egtsY=SJLB+@ z`OgC(f|)$TSE06o8pNqwWG8pY5icS|5fh#{Q12=&vLdVhTZ8x9KK`pF3G}^%;QcIiYA|;_muRM(@EIjX;}5^({~Uj z+3a-}Z_@HU>(zxudKmxKeT&{4PLC!5b9jP2?xdAuw{A3l)e-kd=F1LjPou#qBi~C z)Ee>+ea#muBkMX&VQEeZ+g^(t2tk#w$N6^!#8u;aNZd>>+o5Ls3<<03ny*V3&R}$TJh~>IoNW%u*xn}Wh>~CL zDao9$^uQl6+zZUEjp;VeU^@CJ*O}3~$R%y*b==<`f0m1}49_~IZ!;YgT4Ph#JS3sv z_=MRRta|*J)~IhB(7M%L;Jb8WiL9*~y7(xoI@Ge!)>e>lq>fgOFX@f98~e7YfbDY6 zJ^}pMIb8?Lv?bjB!}ZDi4tGk4cN+L;cf8mZHm39Z^XT1H#Ej)~+&gC=#=o&0VS=dg z(ZT<`w_s;to{_SXG}rC3RIBTd5jSmrFbBHAY`74V>tYR|fo@}a=Qr&C#XeLfGmwsY zzp&V_R0N|N%!T3{AX{K+dM~yEUxv8~&UfB%xmimnttUP^2Vu$DLup>wjYpmot2vKK zZJFdbhd`{ir<>c_6<)8k_`dc|9l%X^%u|ap=|jP+p;FUL?LE<51^p4AQVXdnQZFSO ze0>(g=G_*-uELU)ryhWg|BH*FhpM{a{Z&o}Pe1+yC43j!ceJm(GZx;-0cHL;c(!z4 z(n}kjY{yCyJwP&r?J#XC4+$YJ(b`u_EAI9M7M5j$ZQf*+9Lj^unw)=Fo=hQJ?oX`J z5g69tH%p%0d(J{K^w*vY>VCrfpPN6Ss-ASCg`VH^7jZt{bw9uE)G9DNScZ7TQfx%X zgSzB`%`HO3u=cz*yzd#Zh0tROE6`Dw`JzldgUB)_`EDSaHRK^vA6&j@wuvvxI|Otx z^fP}OK>@+>%?#}jH@3tL9I=o;OfMt#A2`Bf;pak|O8sZD8KRO$5S%^|@ zViBq|oKzNOfGLSZzoS>Rq7Bkdx4$G`1x)qa0@SK7tPJ9;Jmga9)tFHGR2iJZ+|5+PopGGb@cAbHk^U+O}W#(HHyh|nDHGjskw5unX z-gx76lWt{M8ah!fbF<7q&Oe%qKhyG5BTr@vBzoGe}rg{eKEBNnW zY6w@6A+Yit2nL%wU=jC(g-LR~S2q^KyuQ(mbG$Wc-O|RgVO!No>8#ukGE*htkPlV4 zX2<-_HmN+T<_{(b3yfRJp9-bzcM2lizxQ5L=_4u$=jCIjhWc^zF8t2PFoCD@R8lPp zs;))W9C=649Yr|Jx%Yy*c3oqrd6MR~vj}2xS2VDodL}dOe%VEg2VW^f6nDg)+ZhsF zWG$TmbIy~B^M;b|LH^SBUymc>(<(R;bp3?WO2KAVrW@}QZ7YfNZE;d$i zj<1`cPiUP|j+i- z?{M?g@Kc*Zuhs4iOaDq;)fLx*f2CffSnJp0j#j9~I6;aY*7z&e8+lMVw%5K9yN9os z=zW#5_OoTls{?O@ZMZx_tEO&DQ@_=05e|`u1ar$*87}%!3MhVykvh4Is|?ESkCPAy zGh=S&E7@0cH@xw>BAkn)vCl$% zQvXtITv-@#btOON<=FnU?vC#7IDUb|c-Z%%VOcoj40b5E{7RoZ$5M}&g_bey^{3>P zMr3OP?1;u;pjmO_ZDjJ`a+UL5s=gp(d&2~B>cv)kzXWKoeHaYm*&16br$3Trkv~H1tmms)l=ie zGP;V8iHuBg%}0kbpnVtEs5F87o@aI0pIZ%6Sbp7ZjHY0Sl^Hpi#V^VlxT=3amuRxT zWQTD@*3-!wOjk0m2t#dZg%?Ba=+$y{su34(()C6QyH8{Zt?u$zPU0S7$>1bNz36k{ z5#G_N&RhJn&>Vlqxs9sjX_zT(JL}08B?!=0x;XkY=GOsCan5{8q;0BxpEO(X3ZqND zx%v4HyZqmYpA!4WhW@$30HQkfEJrf;NcHomq9VB52C03Q%<`YakY4x~9`3H*r0t<= zVdl6nH;~PWn{-p{c7^)<;n}{mxvaPLLiRc1uh#(VRZ6&bl$BF$yKx^fwGyUjwH)ne z(r+Ew#$>u|mkP-G;nwW%`W_;&M>m!*ILSSN*$f!n&-J}yv`Q7SL(4yhJbu)U4fT_b z*k=Nij#6L)Eq*?LtbK+PhVI4UvaYo$=<5ua+7vryTrT4KMlI-1gt^Vvqc1&o0b_cr}#{9S)^ z|M0$chR{|xiAhx(}GtbNf7*AgdjOc<5ME@QX_9US=J z588wSmy&wbSKHtzfIEnJ3mR1FW)nAe{$rQ6S^`llU)~=Ab=Cc-@|-ZSSaUYP(2ON6njQo zIAAOVKH3&M>Hf2K?GHJ9rj&4Q+004@Qu%_ICBbn_ zv!7Bczcn#fqu;K3yBSE!Ei4#XezA5Wv9SU1Qz1gIfCmHLlp2y}tvZDix|67tFL%*t zCwxzkoQiR}2LCsUcnOi=U0C3j&JX;5T>!Bs8o|eH1C$+Mi^{0<;O%6>Sn29)e0U7m zl9INwkLQ%kEd)T*>vg5k$I^`wQF|LKmsPc1UK-g0=nXOO40+(+FpsWPJ@rJd1e1&J zi)X6k8wB5}lMCq%Q?2(_=H5&E_(j=GL~pt=>j?rhZX99&YMEb90Alfif0kdR>J$}N}jdNxv zO_3Td#QiR$;Hma{B`Br=W`Pt@5g|T2N_7rFpTIVqCboH^fw_607TVptn{$HuqD&h2 zw?uY0&1RS^dE8=@*c9)Za+n}AvkRS1x7taR2AjB^(+VML|l3ip6jab)L)mO zpJ#wBPFCS*lYbpSzF2%m-!FWeA-vo_M!6bW&1YCvfD+r+X^cb3xn?T52Y3MqHZW~^ zvt#e2_j(#MhMhs4>#+gNe%!+CYRz@p5k9pu$#YAAm?&Nz_U$A24)AM4D>d&~PiSZ5-LZzO-4Yr0JX=(=TfHsr( z384}c3Jfzzah0k4t-4H#5gIQKNrdF51KMV`j7;A@gAHZj4+8faQO__wDcYzg8L>}L z!>r*Y>=#zA1c%H#IN(*9d+dA*E9Lb+FkKkqVp>b9X>R6B&m&`_5ZW95tM@4bqZ(`! z=+TL6A`~~)q19;4C1ZFXKw~=N*QWovWniLA-;P&U0HWf7Y=UP67mIzrfZQcyXo+Cc z;OPVes`z?MK!zIW+BkQ#2Fb51o3uP<^o^Rn>wZL15M4$Zf_$!bxqPn|~pnQuQnQ>l2#5QXyp~RAhMe2=VJn z7hBz85b_;+h>P!mZ#4QhxrWhWUE%XT+yAFSdpwWmYLpAPX-BM%9*qrVBeVLTJAx>!s(`iHqNv7jqQ@7qnXyk7G(khX-QTMk}#EjC<+8(8zeB{Zq@pro9|As%i**>poYY4xG1B?^y^Qu-@>-2 zw&Z@&$&DWQ695&rbJXp80POBN`eBzGB(ejJwP)j{s=!vNDxxtBG2s=GpKG8EUs&QPa?#hWMuL~ zNBSF_jRX5&aQ|lN&Aqt68RV)7bgng)47|cw-G^s%r6@3WA1{{%{S8Ct?bRFYS(~ zLJWiQ%*fFA?%i+Nd>>Y2lk)}t&?D1cBZLTHVxCYuPHQB&Y>Ad&^0P?*bXufk+l-Ft zxLOkgDmN*st}75YLH|O3n;eQin2_ZD)dXs1F5ufHQY*ncGG~%eNLCKR#Fp&BYyVGC zD8+FFbc5g87-a`;MWQ$ix3GjC_>7o*iDGBj&tl zpG&DxieGI)=^vb;wK5%qu!wi5hPF8ry_#SW5RxgqvIQ+AgNg1Bo9SV&$IP?Lnajk; z;HMr&Gc)Q4!Ic9$b;2Czjm}SUH7P~1__5M{4FtccZ;QL^iHO2gWJR(9Mu7Jux|Dk+ zOc+lyWo3AObN)9oQFs49STz&soAP%^%o^xeh2&1tN4%D9Gu&#{zw#T)CjTJ;P8J4O z)llLbzs&cOj2APwm{A}MdFt_c?rzc=8PJW++-3i4yP-as*wnee6}rb_x6cOZsIgYmy*9(3ZGn~h#$^e zA5T}`<;V@euv*(%zz0G9+E&N?Z;xTNGpc5dgB#YRVM2kOJ^{JxNHkuYm?&EtAuli+ zG^-73aEsd|0fuZnUDXC}cxJkl6-1V!V*E7@^~0FenXF&-p)ISV*S=-%au>tS-M2gu zRp$DSFcfCk3CiwzfJrBJH9>6W<#QDNt&$B+vK*ToN<&6r;=Bt6ASOr~Q=vf#&#_o6 z$>e70XLn|8V#$E?N&Mrij-%=OV#e^vfow{+0EjAfw?RyH9UeQOQOD)_2=MPc#630 zNULUdWCwotGDQ`#F#RJ@=al4rQb&9y{W0#PNV+95A6^+6oM6spGDPB;Q`qo=Hs^d( znV!*S>3LMf=Q=u(Mj;neJv;_w{i^vlA6^s1X28QCS&J4|%#g}x;w{d*+|2yLBJqb! z$L%UU38z~#;Jy_Z$CR3gZ_$mI}oAS zt(q=|r`To8DEWkk>U&(_(V$BY=d4m|+j3FHN=@@9$a?gitQAp13u7Yw*AMTt#WW2x z2$!--BTWD3O5v#48u_~U?u`x)ebASii*pv&oR*2^DgqpCc(m`8tj;WsE?* zHeXLH*LN{v#28(vf8o#ceNi;ob|q&W(P7*sC@P&X*T)gNiY4D6I@)S<2i>84QWl9o zTYw!8DJV@i7Dj@jZiX^y08xEz7a>$iqgjR@KyiZALX8(Zy|!45w4^~X<(a<}rnw=E ztGpYGE@`JP7?y8WD`U+WntRQ{KG{j?|4q}o$0dFD|Np?#vb%^DAXmo!_?k$iCm8}-g=a%ST^nThI@#*Clzq4OpT6X0A;@jKe zd<2~5)<6N7S~FN%zkwD7bei3R*0h4G!Be_s*1A{uTKlUB$lB%ZrAEDK1{wrxvX!}- zPhsxtJE_V(HUG@ZJJLiU9@J)XZHT8ut#>0|?N!QpXHDZHD669_A%xUh+ zb7~SGM~haVvpa1o(X8cOXP}62ox=76ELT!7ooAS?B0@!{pl~TqUNc|HJy!#QOHpil z(>1w4#bmfF&6930Oc<;pPbkb*0Z&DGs;=wOIs#2!5+7$K@jO**7T4XSrLT5J@H~U_ z!U-JLWf7n$8CrTHoFCPkjIOMs>@{yuWnoGVKIf(nN-|gU^cr;M7Js4NF+6zXbm;$x zkQA?~WA&!#XPmdihQllfPlt}!g0_(t<869G|3xFH*!iw>b1lRMO1IE&Q?$4^S!Ua) zhCB9M*u(I*?H^fFlw^Fw7kG@0fQ8gKOA2cFjz?~^0S3z(+aFS50c7v}Em^aVx68D>ZrG z4!1AWA7Vobsh1}0kP#x?dxTz9ZPIy=y@$Xet)EGy*_KlSNo1L`S~ z`^p^dHzgl5I;@Ye?n363^t_>sY~3d4);+0fTqdjn?!oG#tgV4XfydfMQK7d>NMp^B z=dJw>>o3nl;3U@$yqIe2{U8Xte93hQN^Q)_3fx5_onN*B9d%Y|V4QE@h+26aU9(0W z;nGOkoW-kjTM3u8IvIpWu^uAsM;IZ{lb$CDJrYbny6-s(fEiws|H;*|15BH$Hhc9; z1Afyl`}{d=&42s%=Up!iAC3}uKduiq;&~EyIg;e`zNY#7i=o|kO8Lv;l-+_-Al*Ec z@er&7a6h#VM$y9M7{B3A4oa_h7nHO|(b5j72)Y~`ZOjIh;45hiJJy|mh?`+u4;^kSa3LdV0r(c5sG-TDT@@Jo92KgBS`a32?R0Jpj^>l35 zsC)Tx#euk{(33Q!fgJUBrFi0-)1}NP-Bz?RL-4xm*I~qCHsowd@NZ7cX1iahDVm(M zUxGop` zAH8Kbytf?Q%fkp>FlVFte-?%7i7*bK(b%7Y*-kE;fElxJI_Aohezuy{e@|qN!Sm8R z431lnW8;|$)v9|9Ik*CRreV~_o_15@$xGeKKIc0z##qS`NAVUB48e6K7hcLyrMRXS zOa)n0e@B6~k(U&#W zW+V+=t8VCMDs?Y&L{1796dY{}JjhL7&5P7H&*2_X6W9L0K=-QfLJxoFA{Z`sbta}N(^ zG*m!8c;6HutR7Wv;FKF7Q`@tc-AaWZpnEAH2)>P~DjqFNh}3|_57|oB8#j7m1yuJQ z17+c57S@bZ2Mo^*y?(wq9G6=dWV{&yN~aG*#KOxpR5$t1sy@wSx~(gbW4v3@xNids z(b7#NcjA4ZIP4LHGcIkswj)wodq_d5>G7cq-Zt#?UBN!1jijE}1W?Dpn+Q&*jB7ja zFKpz^Wak1Un_9D04SzK@_r*oj>sQxzzO@l*k9Eij%+{p?im26(;Beu|oHl|Qj`mOZD zsOFQJp7BYg1nh_gHLct9NMyIk3z*AoCpMV}-BaLzdqH!4!H~vvwk9wDC|rFiXKaXK zU)5^j`Eb-vI>G0GiPx={j&3S3lx!tCvjce_vfC)$<{7r~0b}?O{|;bvE3IqRKg+a- z+O9pzoU9&?aTlN$h?TSL@ZXxt!B{l)hTqD30t?kLf1xmyTmG&zr0KIH;{QSNxGkj; zS?8R=Z{$$N_2t^bcx3B9^iTEcgJWQ-jWvfnf5f(=yV0lKqQAXvcV^MO$$b9{1)fEk zo7S-IE7TjYH%Qh8pYT55lBRx!ciG+P z&(zc{bp6;0n0`DWW3Mh=sYnl))hDiDeYvTANDN9;C$>3t9Jce(D_1?iy7a;xINR1F z$j}VhXkNY7?$2<(fj`q_*QtB2{wYk7#?SD`Q>GqP7if5K?alfXNaQuErQUgZm0q~; zGP!6h!D~;atlZgDR8%P4!7rmck{U#=YVXQ!jUK=a8j}@m6ivaPMFS8B`%`W|)qMH` z@!Ny!7P%Tu-R7P9M0e5E)%3M|fVSR6Q+xfp{KX+5-NCmKvx{#!cdse9lMzFrW2#2m zHmdhEom=+)3kX+~BuB)Vamnf4+q52Dor2~KS;=>z-*@>;r5b)Zw5bPFfz$}IL~Q^G zH)OZ0B+PqXN5m2TO7L4YEiy#IiK?gxmo_XxBr0*9 zAK%j}IjJ3PGIk3#E;O;wmH|$>2Yw?h4ML7-k`^U>^JPSq_1xt|Cr{XaHJB=8q1t-N zy-uFjLuBV`Rp-6J1z|`WHKQVmZht;&bAs;a-kGL^j z5k~_IQ7Ys4?pKrOCteJs-_zlQ%*z9xm4&+RJt@OgCY~;Qcv8yGGlGZ4>%n=oUhrhm ztR}5O9?ti56j3_zZi<@v)6Z@>`uny2`209cKKQz9=bMq||Mk)B!+yi--|Y7OKLK~& z{G!(PtseseemioZ`OVkgyYl*W#QE1N_8dQx-1xrdtN!!nst1k-xAZ3Ic(xbjXenQg z!m>zGq%Atr_?hn3>1*~bDC+nrrz+W|Jq>gI?@`swPH36)3EA&=@>&l}XdlFa!GkLp z@^n5)v_TDv4nu8En-T5BR50`m_EON|-}LBlbsN9G)>iB8>#`4n5zwa>cp_0cU1H3bxC%I-v4CM`QK)BK2nX7f`+~{p?ED z#?JC<GPt%v` z?h$X6EXJD)59Hme)OoxY@sq8e^^BJfWT}7!j4I!tyCw?PELpaQZ`%#a-Svr!X~&h$ zv8Cfia!3JkONz345i~6iZp*8Ga}PhoKcB0km4w%tYSwRquWOe1e4_5;;Awm()6WC9ocyHjj@7NBfTzg zqzG_TpET-)i+UO6m@QS7UMe+?kM)HDQXM2kIZs7f+W&~A11}?`kdHK`kGU9=JEXw- zhiu@i#t?H-Lo?8LzNiQ-eG6c}^TlS({NsoiA8}FyHcWMcI=4Q8(2SGL!WT~m{($A+ z0B8j7&<0`U#j}-?E@UH@;>jd#&2S_8#e-Qig)s*uv{Y5`9?ScY{rS?&`Kqf>03#qx zos^V&8z2k_zfbbyh@?0>4h#*voH=Ehy>9Fc>9V?U_TEUuc8!Q@~&KIX-p{jvF#J4 z$+)4q9(qL!&@=jo6ZKg(2=K zHCg&t*Mr7t%vmC4xhOo9Cqc|d2DeAKz|crqoVgtYI`TsY&%}yHV|Y=8*2Vg^(;15; zcb?uuMH#P1gxXh`*heE7%)@w-1f9%nFaopHXc(hea!zhBGU&$JRjX99t>v!CNqV$1 zbz#SZmXB%*6nZ6EcFwhmcl+fSO6j(in~w-|&|jk8NVJ3|^JkVG?!;-EYJ$I#buwkI z*XtRnW^>%9p6-yhW7ijKe*7$Qrnbfc^e>b}@u2e*fLAdQnaaNj8PMJd2vt;`j;yyk zH=ARdbWgjZlNHSH9i9>X?b_Y?panCVtc3?%^ zra1`(@7cR%j*VmX>PDOpafb2%dogpb!Yo@FuY5<1$OPl%6Q8}RA+HV>sSZaAi($7F8QPEgVluL+H0n+?Bk%ys50;{T zERIZF8#^x=?382jZvH(TtW;Bys_RO;k?F?AZI2eu^ygmV5&-xlbigNOL;YeDGIs%m z5W4wMDspLX$khEulXarcY9z5C`v?*VjTz{inS&mv#tC5p?{f@s7Gk)kmLIqfs3gxB zZL4U}Y*`ZwJ;(>xV(caGxmBfpkI+OBQ9;tdX}=MW?E?zkVCQx_8*92nfecYmiQ@7e z>4Wi@-tB|s>6>PbDX}JfBy3ifm5aSE-sP>ssCER}xg7&H)D`cnbZ35_-qO-0>wz6x zIPRIPPi06#{dm*xbYo4|j)@!y7GOLL;i{F_kySVqDHM)l9%vtUMI5N}SO(H}zHX@= zTCKBPxLLu>ySE->TiKWUX1|M&M7bC93$V7!9SI9I^YSOx-Lcs(qy{ImeZ-0gWuXKm z&_b!iexVt0AM#wbnUdz7Z?L9(sz||A_-Vsv8JwA@gaAYAc>Yb?x=9S} z$?_X5>eOOOVez;aZS@$HWBAGdKB*lyGujZr^Pk?%Mkkp$J(?2BNC=tVZb&}|N8 z?dPq3v0b%^8 zt}PtaOvryrbtYIBV+2kWa}TYgv*vBBgEJBQAjyDr&rMBxET z3tC#oQ*V4kT*$0Jk6@p@rpH#MYeub}$fG#lvm*y8bHd6MYgyY8fW)BH`UoRf!OCB` zseX$o!&K&6kF47kE!`Z4Yh8wl6Y0EQBnIj|WWS#Am)mOm#iz(5DPxh@S>0cB%? z6O7X2Ya7_m_^6bLU18j=I1t7BLmKXpd@Zi+bg%U23=VDjXvoZSn((O`!+cdICiPO@ z2>_ZZZ(0YZAx_>F9l-junDWcI8nC*#N++HT&M#>|XQtcQhK}|Vc1XUJ>FqLNZUqj; zNbP2tpSL?%=f8Y?>mT2?jF*d^tbREfJzjs{Xv67-@@7Vjz0eL&wagfJ_n4RFH73k?r!A=i$}5 zd5`fp4;rB|{{Y_?(!v>Hn)54+zYCedn0e;F`YWrNiWU zH{&ddVotMuEtI=vFk#xi7`nTFdxHpdgS zKVPk;WiKx`vX5l^g+)-p?6-WzT&1_pg&%7#DJ{Co>fDoCbc zpf;SAE9e(K`CyX59X_J&1Si=&Y&?v_)}!ALUVt?rIHrjvvGTL6?SGWsRHk6l;sllqziurb*3fzPUjw@raYuDp&zQ3eLhi17NfEV#4CKiLWuY~-gfIm#R)!TBEArd+rI0f7Tl`p+h!t*8>?ZEu6)ibb z^9>Df0{e+xdJM3+t*wpy70w2y&HUyzbr-hXNA&Nv-&>b(^)c_jwt?;S$qf13qBHB3 z4~3`xav)r6Icx08~$V4zTxG9TE)*JKv>!)%v}JCdE8htBXsl-J(LN0i3>L_^=!nKwE-oJwZ7=lI%LC;VaOmSd)` z6e;Q)M`Z@H1L$5YafEO47LLZCDyePt5SoCjMP&61JPogD<1DJWd*N7R&}riAnc$`l z&eJe%eoth9{(|;l=Isuq?{r!GBs?7U1T*NG?|RESFa>a3eI*SBeU$X;$u2O~ zd{;_m!bt!rB>lkeQAUEf#wHmYtgSpihUkK>0Cn2LN$5%htB(y$$%oc)BfEw>w{W15 z#6of7WK|t`p5NfdDUK{uHqA+{X<7Za@~%Hfx5hURlTd4+RMknyc&=rPq{ZPD6PS(H zQ9gkGF^As7(gXiNx#@ekrRY_B0!}U?Xmyn7n|rFMD+-hD zsAP&avsb;99%=fcvcmee4Z1dlgtNeKX2jY{z z$1R>e6isW_S7zMnc`7Rxb<~$G@OgXQqXwD>JM%t8skCR01tTjW0873GD_{L)Qpl+X zRlGT))zW4DexQDR9EhSfY|ypB6fbPY1pS!;lBU8HKk%9nA0x28g>7(mb=S9;d-nkN zh&*M1z9p}X?~dNjL|JVqf_^Zb{`@tPk8ei9@53q5(ZBHV=Gq>)=A=5J?X)il*`nt6 z%=}a3{>PzPCpDVar$=TmPg`J`tPAA$Not@_5apXS9MviMAi;Mrk zqVQ<(JxLZsFJY3t18Gmv1@X9=_?2LUa}bc0oy&L{_Fhq^iFCg{zQ_7J@^jRCH0(T_ zz5a5qctQ}>8*pYmC=TP0KnDMDw5`LhH6)7ow>mG0a(ba;cIl0?oQ1V4?C<0KU<3G` z8=7zZueA`l+9Hxmee5S8Lk)E|Z1!tzT1n{D%bdkVMNAbO*)Gd>JrCqxo1NdT@3~i0 z{IWuqrJM~-J|DWhejq0B?r;zNsQ=ydaSS?TSavs!Q5?0ehM&H37 zEn?mOavHM=*(Zx8nx6F@9zc^+g9)pnQmVtCe~?c;6pqW`{~mq={T>pdh;9YloNa(g zf|~S*Z?ML-jrW(;CLw>@JgblD)UvtQMl+Di7lrqpUN`sXK+Cwy2a%(zH+cd3h_Xbp8U6QZdaLzgGqNKfyLU;{}_+ zhK#34EuE;V&XV7!wkX1bJINzG^PLTpZ)gt-9`@4P1p7NV_MNmav&S)bW@tI0=){^8 z!`OO`lI@(}-6vtO9l%^*lC<>e^jm2M+bHo^;(j(EyQPGdsC67YxLP_d>H7}Mov&nPQy%u~i?x2ylD9U()$m&pnkr z|9xv(+R%=o6AD=f8~(UM@j!+UG`SmRs{aRE|5$DS62F6wf}Ue=Y@u5dtQ5Js4zZyt z8!odqEY#+>ErTgYnx!CQOePadow1x(=UZQ&oGh)8H?cYJQtt!(8K3hHOEOQmEQK&P z-urg=k4rz*O3zS!Zc7FzD{y%o!! zxEX&U{g0JGUvA2B(ckoj_A-T60}i>qK=H-P`|*U+#lT~y2igzgHvb=3Po&hYTF(RW zu(KBdg>3L!-coe~PS9jx8J>wf5w|ds*;0&F&n|L+M{-A6Tt3tKV#{^MXU?+&26x7m ztg;393-yP@{{Tvk9+AFD&*s=iSEdIv3VwVBKMKxvXTv>x0Q+|#+suG@?@;Z)*R{w% zct@L~4@%!cv@Fio_hscOLMMBB)GtaS54F|FH5VA+$mX2f?1@xP$2B=YnJDYoj_OT~ zmleGm{AY!{!}-SU*H2$8Z4-XhHYC54&Jdo{c3C;m2a}$2{e=2nXBl_W>@Is)rn zAa%l3?+W2+5j`*tc*2Lnj_-nu|-hxmJ`taI!W zRs9xP&TP29_ZwcPzc(8z9nEL6Y(u>YXKnh~OD#>5eHCioG(@KkR~cz~6D0bYh|7~> zQ7Jh^Dy{t_Hm$!uT4?=quI)(LPylC{hm(Vg?z9oGJR(iBY^ED*w_DAJJdNfq%QFNB*m?DBCALppc5=?f&6Na&!k&gXU@91 z%yDejB+M(rxaxnyNwo3>; zxF+Z2&9RSN?nJgTC$|`6+lW7>A88dgom!l|JP^%d5|2$rrt%(@gr8#!o?Oe+y1La> zH+E^h`6OSGky+TZp|5(&Y`9Ds&>Ws@{Dl%$U&1&~ph17CpDtQ9nyUG_8GdxmlloOJBDB85w>pn2^5Be=sZ8k%`}1iT@4^ zyqxnx2Cp?RqiHDB2jl>zBK4(;hfvereQ71wyL`hlmQ5IUDiMq;q_lVaT z?b%dJ`}RWMWmX&XpHfRSc|VHqZRJdvc=AeZW<=ULX1Y2mg;XkRnv7UvuuB3{)SDH= znsD!1z$|WFRXPHjaa6g>(w%<@^nb+5*Q2|^{BCES_@P4N)-01@c(@5`=i2Dhh`TP#uxEO&s zww-)U%`dseI>4Xdg$Uf>s7%V-DdN`!_|Znznfrche$ti~-a9@n?E5l@Q>3$`vZYx9 z>OI7jqcHV=ffw=TqaI|Z2z=JQCZvCndtkVyxv=SKEX^VRAm&7IxcYv&J|o!cTra4m z261Qb9c<#Fa38bbhJ?sBn}-%pIeUzSh&11G3P_ytnQ07eG_35gL-3Az`?-xgzmK?_z#QE=i&I0y=gPm;9X4c%m=mr*J6z)08MCmpdBT@?N`eq?anoWa~@jx7CY`lDW45+6;n(W>zOF1|cTd6+1V7q6U5Z-? z5Wb-FJ+%vvS= z6)~OiXL!B)%fqkM0Qvjsjj%eh!^(PnwaiDJnaC+@KWVbOaALpfDwt4LXNqUfE)_v( zuCPOhQ)F$UE-N)7^i)?tRvAD~)Zb{JxY{%G_u=rMl-q@%ttqdd%a80ejDLNQ8Vx*! zo7=~zQE(*2F-mvdIuw}n9wp4BIp3I2{^&e=112Z}88{tRHVM-^x1cKh(VfxPP9BOvfNvZu;{gym-s^=fO_BW6VQbx`_ZM$5FYS9+04rVewd68u6 z4zRDOG4mZ-hBJ~_qc4dd*=mVBy5LkPpB`W@0d~v5*b`=P>WUfI8rFa*O~osAtqT^2 z#+*-(R%eboxV~i7wEkC}XZQ=Lj6awW=d|w>1s1J4rUT08EF)h-guNg}PT-#T0Bic7 zW6LJmVgh0DOsq)RoO(8Opm`;KX(BbAc%62yyPM7@J!0hb663<`XRx$8-E5&YE^MjB zZGD{>qk1y0q|FI3&@^n5dIODlng>%$7d&Ed4Q{tGT>3TXA{^aOHPg!%q5fpr9v@DO zFHhIpIFYxXwWryT$r)}-Q)UJYo~!1&-q?L)Z*`~T?cuhJ;1uy0*6(ALV^rHm<7Fe% z*{Mp}mZ6qXnhFdXE9N38ew2thCro+M`dlp)4b)I6E0Z{Na8NWzZ1-X_Bv{Y8mFj_PmQmq6%k8=hXv*N86^zkt(xNkz?QrZ65_NGjUj`^l<=mFWBF zx!_d^M)WwJNpir=bT}UoA15vHNb3Ex&o#&v8`{`~B<6! z#rjy~&vE8hAA~U&_AZ`%id~5%-s!tBY@1`>Mr`$^4n-6hJ^4q5r(YSFWLQ-xVaSz4 zBXO5yOJ~#Z)|n~TO7~G}=QB{rVs^BF;iATftHQ++Xs}de@6sNkwvX^_HyT=$r@&Dr zk5*j1ZhAZD4?(V@&EzvDg3lKP;jOPEq{D=rHqhEY+@+lhKr5dvepG z^aj9{at#~V<@&R13`$+fi(SR@c|V!YiiGf`T$s7^tK_(gfzAh{LN_iVElh^HZbE z_w-$yWUlWcj53-7bh>jx|J7zNP`v@K>Hx0LATIATdvbXhThxcc?7s);rxL9FTAr z5qvyIWhs4$dZ?`}WJb5CAM=O-Ciy?T?$}1dHrnSjEjiWWfev1=cOAJ>RR!g)oF96i zTK#!O(?YPW0c;aBfe%`AlkcPjuobj8O32yIo=mIdatP^R^?Cr4(&g_fmTzKS9^ZgC5N!%OV-M=-?L<98zT`MSKa`Q@;1T z;P(47Pl>+5j(NxX3gI(3;Xq)~@14-L3iNaKqpFC59eRkI)WN71%0sUD_4{%j-l^AQ zrIbW9wWSV_ABfbLm9?=~2=W1#3Yjb;h*~(wvNrznxv!zviXeQ{bJ=^M$S_3@NH|{_ zu37HR9GsWc9&WJ!Pwg9bE-kzp8W)%U%es-zlPHDurJ9-fCH?tBQ6OU=uMu6D4|ts@ zg&2Z<9S@C|($`QxSqOr>^L8T<0x~7EHZgOOHCR%qginU(%6@hW9qwZ&sF!b%lx0JH z)v7`MWsp!1V#sleod;Mi(pszpM#&;v){_b7-g{^nzO-Lp)yQl(>IEJY`q+Vc%T6d; zIB*scv!C4pd}&fSwD7(qjj%sZn23#=dAG~4)B8ZiwP+X&UdhBC2#uB@1EX2?k}?7I zc=`(LtcA%z;E6Qil@kHypy9j;YmC$nd&IE=AyvAi)>FhJ^G+D3XTEA}e48sY-|{Ir zDLp}*8kM3VTi^E2MXkNG)Gp6!Mq?B~on*szybL*9#*u51`27u6Bf>Wc-7Du01%haA zd6z@p_v?1?D7PJaCQlsM@Ot8}e~hmAJ~Kbg+>zq4KF*wd6x@ahYt)Y*)=v6{(c*{s z2TMH(_F#k5c`VmIMPSq49=CJ*e%5~EGX2v)Iv@h9L!yhUm0dKCuMUyK zi0`m+Ncu?^=3rFPi_*@Ml71R<3R3hGgO2x*d$qe!(PIUq(WppJ3x?q&SHb5I`5S*? zGsrx@>W(f;t%Iee2tV#+>tfmPu<7A+eO3tS7Tm3wkC&cCt12vDR-Q6(I^=HUUIJ?z zQ)wUeNap+$t9jTJz`a$+cw77?c zjjf#8L(2hK2f5r23Ftrg|Jo)C1VO-aDc=@J)lWKE z$CbCR)SJ*9Vxuuu6jiK7OxY_#>ra%vcmcnsAmQ+(Q1gXkjeTn4%A!OIZP-nzallPRz~TQCJR&j4~kF*f!z+w3ke4 z?YN44au&^jKA(I+aN1|T&>6DLSDH5Ri<~8AzEn(T$EtzYJjce5=>nU}AF%}K_mh6- z<9UlDZtBBrM2|Maj*KuU8C5k$GTx4v^l;Ljglw5OOT&%~GBmGZa1ZDHJ#psGUE(jC zk7d(4G1`h!Q-2pFw8wl`lBJ|~c>8>yAisUio)J?4*x{~JyjwHe_XGn-{B+_8r#@;1 zY|XbOUhHl=8&B#}ct$P3VdnXul{O*luT_T9RhvRW^RZ#&2<6okI8ia9BVOdu6c{So zPn{G#o2==Y{Kotq$6F_H>nTzAg~6gOyK^hI93jD=1}b? z+oEjrDa%l^bzr*VVsrImigUTJ$-R$)UpPaEGdCI^Lw^xK+)zr|6d~vOZz1PUup)==$py0uTMtjY-{hlc5eRj<(DsSu$Y&7O)rNZ z5OCQ>yVKqk^rD6RC%~aQ#~!Zct2V>j;na@&xn4qG1@4lm=z7r{t1g;cpkqANz?~D7 z)HUs*s?R&J;`ZJP_OLsv__40h2(m$2D>T(tQ4>nR+SRm}@}GNjpmJ?aIuh3Y2S$rr z41_fY&=D*1k7e}kz8D17h+%**VW20hijk#gRxLM2-me5^xu_CTd;ftPjKbJ!9^6V@ zc&sba<)Gl6!PV$jheCp@8xN*C zkO{WpAaUJ2=|*ltC4W&e+dUi(lLSSOxj=l&q3l zUke$|s*mb|a;PCl7Toa%>6o~Uy4BLclA>*`Lil6!*bT&Ic9>&GG3C;uJ;n%{M(r|) zdr^+twW5{NqI|Q+g%$zVjh8Q4-4fw_n(jJ0*+e#(MI~mImxv~sQ&}atj~RcUSIg9; zW*uz}ffH(~bm@V@r4Xu3OIuq`@3c3vy#MIi_q6LOdBr^leRx%{kA|uU?vctoK&6M7((hp?-ib^~1Dl`FYU&M~CH2Q!LVWJ=3|`5u~5$1%3$C@ONYxNOZTU(3Y_C#3}J-gI7yF#J>n> z!*@1pn#NLd<_*y!6KFT=Hz7-;uCf`B#nle>f6q*)Zy9o4{VI~74K8r}5bYf9>?3;b z=Rk7^^y+f0*MMI0)Y2df#ip+=H@JsdyyYJg3db&&n#e|DNI;}w;f|Z@U-9xm^CHf9IeYmZvUJ#tB`P>YC1>Pnp!L>>5o+PViqTF$Q>lj_b{Lm_?mv3Ate9613?XJt;-cEZI$ z)z_>9?StfqMakTT^4@N1d9r?ued5UJ*1~Rbg{w7`vyAb>Eq&x#;dB7(si!2`J1di7 zH9&49>*NsmU95U!!3BFeTG$fA8&H7FZ-~U7fZn$ za+p_!cFWkPE+1d5d5lY4wR->IyuGEy$DXVvYa^TNey;!eO_AsJK~pXXf>x~Mx=C?z zOj%BtQwTYQljy@R+8ph&hk6*NCHHM7mQ`E3&}68kyP(9#ZGyuW8M}AJH6@w8@VQTyHu{WFMdz@ewfl z5_n)0UOlYCUV#ze%{bRSbpeCy);v132XKvie2w_x_9jvx0VlJRh0+QK)HG<{1#|K zbNgrux@w)oL@QLoT-`8oK8;D`aKvXPzT9H4jgS}Wz;-k8W~}%p2sIV0{Y%H#E+i5D z%8BF|nllVF}Q zHi^7rGJvv^;5P9@8BEWPFIbo`BSEL_1b*_j)x}{s%J@1AVemOd$!JBR4W*h5M>95!g z&{nKEim)`>$8tSod9mK}2eVeZEz5O~eC9!||waiO~w3Lb?@pEibz` z0gh@PdEhcV^$D?yL+q5wLbLBaVR&Vu@n?1pWyt(Sz{Img@wvdnD$(fVVK#2?oa#m( zs)(kOo=XIZj~5$~ua=R472X=7(A5kcKLBeztu3cL5W$_C?2_yBGDaV*bq zr}0OtI1rY?VCv`v!C7+;3eAE-Dp~uj{E0Oniya)~-0dO&fR_ym({D>x-R6L(GfYg}4aOj1<4ESUCVW_)_K|8(fGF$`J%|I+m4 zQB7WJ+xV}?Q~6pe={cNAMIi05mG+>Z0x~A4MWwAmTB%ZI6(tNpzyKlhsZ>)OKuaw$ zB`TGOOtlPwgd|0fh$I9IGbCY5NJ0|GNapYHeShD7tOdzp?PouG-}iN2gM6L1+rK@v z%lSQg1 z(pq>-+^he+9%QtzcF+43fo+uT5<|j$@A&4LZqfF*6d^Oho}*<=g2P|h#CFXGXdSvf z&uK=~Tj%#O@?tEGj+BN_NsO>cQF+uFULR`8=d4LZ3_-75j@l||(NI9>A`0oc4s(VG ze1cH4I$ekDg!Q&-Ygq3UwK5KMTA#1)kWeS=tD{UA4{(cLT&V4dl&0TK23ix8c}vY~ zK(5c?{tKxH(ELc7aOoe5#HT}zRd2^}U7;a%kq;S}ex%JcMXBjE&V}}D45idHM#FmU zfr2}ywlKfkokjImwUCQCQe1b|dWak0ngTBp*db-8&3-PL+}m~cX7_hq4$2y4n(Jy)(u7Jc2P;& zFx*hFGq#uG5K|;ucdD!bIUF3MK!jG6cWIpWJyRU)D1kbd<9$!&bZE@iYc#+`OYt)V z6SbA#Uh*Bx^;+1L3)_)misf7}rM_2XpLFN^Go-GZwC-pNe8REaYZK!)Ps%uTrE1Za zCR6Xs98i5l1+q!)m^eqMti3)zeR{%nLuqaufmjO4;!$G?S%7}O;T1U7QZsxD^m=$4 zp)M)u=#w&JJ7pb3oiN7aMqmBR-SpLVs{e<6vl#UMP+tFhZIa`7yOXo4Yb<(zi~-2M z0b;fI@%7Cy`0wu+TgN*BSzs=Wmf2?i1ELqUfnp?z+_7t#2y})Y!?PWQcFX|Mu4pBK zFvMX*A(FK8qBF2T4z`PHL7cE!iBS>>-p4XB$gdSYY$%n`5Q-7xh+opT=~-2_*tTHM z(zz>VX`PVrHr;6@x(c9Wd=&FpWSZc>$h?aS#$a2FZNs;emS1=AX_tjm^Tr{#L<#3d zkyUAuLd49;dz!LJP-_y)dC9JoQCqT2T(IU9>DTj`ra>aC$Sy~a&MeYNGT&e)S7Po2 zLSUTRL=wjY(|O_N#VL|2$Pm!&>?b$j_)lb$fYaP3(C`k$PhacE$HJaG=6 z9;%9l1*rtKLu7Yt0~L2T+s^~q8481@B!s4KowL>tKMY5MG=Efs1L^1ukH{hi)zqi7V1@ETN)b)UFQ|mGTQATtoO=|>x zn26i>4VGT!%923PCS;08z>{Qnm-(#efrPDoSv~0K>hH8e)as1Z|3F!;(PjoQP-5rwX3^=E5m%+M^2lrF#s0>hCZ|%)-IzO>6))3 zV$f-bq*QDjX8zT8QbP{@5Cp#LTzUPb7U|7%TH`$dP%-#*CK*wp5>gSJxe*7)apoquE60^CALN~aaE zqIuVdQtwi;E6n!eQ8iUzJy{WL;)oAN`e?F4N{TB$T=yfsxHM_=YY)<%6O`G)MP-%X zTMdP%20(*pca3A_75zPbsE_6<0p^$m2QAR8Vul)u2Pmw%)23uzQ3BQq7*BpDY`Kz{ zM%-zH8gk(}Bj4+Ab@>rn#NjZsC9@$8j*K#m{Zu)I%e(Rs44Gz?$9B65=KlG=t_t=(%+kYUI9}uv*{ZdnjZuBo6lVSl~(cm_S zc<^nzM9_578ggnSj|vWi%V2ObaSR|Ih-72@j$E&P-5+wJ-s0P@fp zdzEWTnd&DE*L;>$Ajkmte22R6I*?CT35*_~-5(ur1Ojuc$fk$5OZ#?QAAYz~S`z-j zP4MBlsj4PMr&lJpECv~e?KwFAinG+e`f?da&J$GW;AEKSn`Kz~8cY^sSAZ#c}7Yc0QWlxm<3mjQEp! zg><-`PDP6Q*=#2B6iL=0ZB)X0b&EA{h&A>5U+hC@=#>h%v+YxYes3yD7YWOA`2HPc zMx}O}@A=m{WvQ5}7;*W$WADxan87p>rs)fK?9`BK?nvjgP~ZbT&QV$}TQSRSvq zJBN@GTQJFh3f34U&&MSvVdaSDUh)h`nhBF)8=w^Ok?1@0LdApjr!>F#f@Gg<{-Cbh zIAQC?@rb&1U9iLwPtT3x3I!6wNC{HK`x@-!IDMc(eX;r0kYN6de?WUO-<`L4>S%ad zGXCIU(S%4s39!ws3m035_^xU~gvXg_& zNnxpuR~m_p>|BLY9k<8KiIo;Tb4#m&f$d;>91Nvfoa4mjKfWmlw+@r+?zxUvPTNho z^K?(S1izSym!EZR_#<8$TI0TBlIn5WeK^b#jUWlMTF`*_U0zkYwb3WP8@_pwVIQ;U z5tFEymYPC~vB3Us$4aRG5^2UB<(O{*WU*IlAr}+CgpZkVm zco*Mh#%wR|rEuYH>)3SNa`_*qlmZSx-IS_&{7#X`v``W0&dz3h#0mRq&%p9piLv(B zvWrL$_)_ET-+4#>p&>Vo?!jaNdUrVgA{W?s7n?Hx3$6EVgTZoT7+`aH>`s1;&Cztv* z0J#8O-*Q`gH<}EpZV8zIsshO*NK$VKl1LQxHgU4m5)RSMRYeraenJB3cDdyxIJqoY zmTT8}@Mq0gGZL#p12dgGdSt{(Ts4wPf;bV);wtpNQl;j(hgz6RO{#aEw!!&H@e+7u zHRiT@$#qoZjk#qu?yqp8a1_#;nci=FBc%rwWR}O-8)(yGfG_4Jt!*!3i zou&*}-6^}Ps=CT%jKpghYJAn=78Z)W)HR$%-S6P7KOg#06=%A<${hoLoTK5ssAO!8 zkAr6GIKK~TkJ~CKu$u{K&k*@j8~m}LYQRx&_8)bK({QAzqpmbNd8%V^UbE&WJh_7p z2&YO>Bumv}G-ssS`u2rOmml8z;^A0{$w`Lbv^4vPDjzg`0;{Q9-^O%-Yv-N#nG zPx`6lO#fa55yJXG0^t8ZwV)*1-Pt$%256Jw|hg46AfC+Sy%n(5l=(gwMfllQ}ZTRmLT48zB zSeJygFKX_?orGfa$~9H|L~JmQ0*H6)vB3tZ8_kb^qWD7bnjH1%BB^#s>6wCgpVPmV zu^L3zEnGIWEbHI04+pokP)@NYqdM3Ry`}0jH@xsKg#~ z@$DL#3WF-gIJVYg-sZa7HM5g1cTCw{)r7Llz$j|>*2R$ihMtnsf=HNIotQ>%rcG0m zwOGxZMZ0Ii!GcLXIQ2LFfB2Uz^*On#JL$SP>aE67c#*;rl8PHgteO$Z8j@SK<`cnh zGUGdv0D)Tcg$C|Vb{zk9avlf*^il;6dohUXb@PZ-lzaQ+Y-xRtw>zl-x`_L&$NNOh z>@ycQLQK#cLXx^C+X9Wv>6=p{`Y=^Y;)8UYIgQ{<4potuTWk~b;HvZhi?(Q=#CzdNCLXD$Q zKs0Hdy0nby>QfR0cOMvAxcGZ;VrGCKb7%5FykJCOhl@W0^m>4ue#GH(f=8-=psJxC z__HVXboAH8f#ip&2K`!ntPjE%68^x8#eMJ9<9EQWa2NSS;j(oa3DxaYk;ftwwGXy9#DW> za+!lq0oZ?>V}1@lX+PD3Ov!+S!7@Kb;>-P4a-*g?X`9hj@;0p$$uY(h1!Sbp}iY;j9x zY<+q9WRpD*Qo*SPBqe=$1wDTsD_mPSJbXCfJxL+f1)P-JQ3#2v>6c!rVZ9heK9Ho2 zTg-lNn+kmdMA)j=1Tw02!>zzjBD@ea;v!2v>loT(4^3+h2&m=gw{^CblQ79dZ4{79 zZe13skm54w{M)ax^tCqs8?3#%b*z`kBL8+{Dwa6IY&O!w@@lFnJ5_l)oDWw6GSwJs zcreOwuhmX_fQZi`64Er8j@fGP2=2PZYKREmTCWHC?r3nbj4pcu82isnq?nDtCxD#a zlZAk30aP%tdvQI7cm|#pgP|_YhC+WQmG#ybCfc#d`e2?pj{%_09s9=ocoZz&s<3tWra|!z0Sm2&PpAp^pe61I9e7(NqSyC}&qH?rdoH3Ga-3!PA9O78N?Z zn>ouoq`5pFR23L;w3FHGRM4WSq{m(Q*WIkfEL>@PTL=J*kh7Z zAQo>>KdpQnndJ`p*MvlGx&T{yJ#dn_ay|;#IJUu86(u{{4XDIk^L*Hbu zvtiO+23f}YH<@5P#;1wPtl20a$7TlB*-ooCWCsX*euT19sNR_sSu&cj(G*}eYC8CB z9U&jG!h_w3M!w+|Ob2c0TRvCpkUkd>xz{9h7eC>=F{wSj)oM73R$u=AvD_^=KvN^? zj6LqHL5g!qeMFJLo(DLd+T_eh;oCA|wRpy|GW3(wGRV8wmp2x|Uw+W6p2(AFygH6n zjh>QZOit_8i}q2WG!1zNoEjD-DW=Rj@$ZsksVJvaCCge(6*YzK26*%!ua03z+oo>x z6*&NB6aqUyf$)O@=N&1%<2S_PczIqQ6y$jK*mke`J9@sa$!kdlLZY9C?8Z)4G3~xN z-NgXZt7E_50+eaifT)(pCP^Z*2kCcqneDwBd+%g3E$?kD|^Y(UUv*;5&d-qSx7$N&~pWDl4aJMIQ z&FYMOQJ~GfE!_~$v#1D{E@F&S^%8`nMu0nPS%1k*$(YjX>%wH!*z}q6B#VeB24Yk4 z(6ms=CH2UZk&qB{!w!UooHS$O^Gr zc-D$jz=Ahgk5!cS+{&1xvV-Jxb-CIxcq@(xWCJC;)%TnTCNzmtrhB@#D1ch)lOJ~+ zg5R1P+7I=JSl=D}ZM1uD2d7i9vT-eO^)>rNC2pH8*(c|U7`A>p7S}?$_bGbhwTbHr z;O{0`hJ_|8nKd!Bu0^%zHJI}toAQ_%PcBsmA}HvbGwE)T-oUli$qYOY48Gj&2r8Yc~t_ zl~JQy#rCVHNsR4w(aRsqz;OE;&VDN{s+$cL0BlXAInyHm$nz0Oyba?U>6EIpC<_qT zb*LsGB9Odj{Yk(r1wHDb9k9s3qg*1*HgP}8Fd*&WSH(A zT4sHq)p;djNn^qe_bClaW+&E*>L{DR?o=oWoOB0dY|ZO{$V#fr%{J6vaHpsVZRPua zOj4dr5-?LT_0rC%WS6_d6OV<|-)M z^#f4Vo)7{|z>Xc#*#(-Lerwj8T$w3(q<17E8quJx!e;3Yf9yB_b#AwKVcNO}d3wPF z{aNqK!NRI4L<7-r1hhL8G-J&jSzX!_AZ#+2N@cR{0Uej-8fJq82u_JCUQx(a*)=IP zECd7TT?wXQHsOARn22;C=XLEVI*g}38lMbL*8JQmv+)Z>J&ko4D@*BMc4$vgb?OqW zjHs3Sdzr3Ji9hWzK0nDkOu8$hnh8@ec_lf{t|f(v*MFRJ5(=H z-8X%u8ELBOnR#q45ZD1972fH}O9>xG+q~b6Dxazm)Jgj?);0iMFpi`HEC;OH@jgu^ z>dY8=KA1U(jI)m0EE(YX@-_{2rE~d!nDgU=HJINlp;-nbH;Msmk83K{J0Qu_#0bDb zb&u+kMK|d|E!m`wf@I-bi)KBqslOsAs3kewwgve4iiD6(Nvjx1wiiXEO+xVpy{qLQ z|C=$c#Ps8`QzV_@gtbNq;nOHsf@W24%BzimaqwhAmkX2e=MOqiTxtf`-|KX%mzFX@%6hT?3n)XWZk+Dz7wfocQ0> zIG-kKw#iepSQ1gAfrEK8NoUwsmFOsL$&M4lfLz=d;9D(yt%=dxx())+K10kDrBx*b zrK?}&mWRSS8VMQwaG2j$!2RX?k9{VeZx;k(9S$4irXRixlO;HxuDL-g6+8s;jV*&! z!i1n(MG7Gz#_jjaTrCjY5f4CM>~Zt4sBBQHtT(W(CSg0#Xsl8uPR$f&z)0^$^@Ecp zHWy;Sb!%51BrlF1Mcp?mjty7#Q2d{aB<<`sR5^H$I!i!Z!GGA)h z{iQL{I{@^m+I1iKh-W$DPy%kxa;B)U$9@Py5g!G9C4_GiA!z+ViT!VfT>jDR`7DnR zp*rccb47Cg%GP-lzFS{0%)9$m;>q?Uo_J}P^_C|28*w2@Znc|k(KZ2B$EN0BWMk;}o*4a(W5mK@=d`;7-%n+gnZ4Ny7Af?t=AY!x%TFLCHNFlqG25lEZ>{Y^- zr6~~IYd9ze@Jf()@n(ep=~@OZmLxbCg6m!^}{1V8L8+*udThT-GmUQ45_GZ z2)$TG{BZSWdqXtqWrs5n*C~E>-n+r}cB-TJ%JZli&`x!8h%<2cP(SQ3Y^G9;^smL5 z0D|n(IbjgU?`7J)lc2eh5?^?C@%qoZxa2nvlJ~5#A#|prs`0$F0X+g(h(%e=0BW1} zamhKC`2X%O{tXDmI_%?K&N?_dQcXaN4w3mn#AJ{v5pM||)xhL(otp6cF$EaI6icRp zh}Ed)W`wnWEfe^rszL~)7rD8KTv$uCaJ-IJm?T`&-FU=L!Py|c-7QFxLN2fC6~cln zXLhw!c`sEw962SLSu|IdcR>`BuYc+nRvBWFjH8<=S~^=ZRK6pINnb*I)g1;Nr=?z`N@&zqsJJ|JFO7eDd(G#^=%>$=^0c zguLzlwYQcM@%vY&AHI7!^Xci#8~5)_fBWrQ?+Sa~`diH44xZwFw7(h>!;frhn-Q*dL&&W%X2ZR#9MutVB`te*`W#Z@>Gfmu=oT z)}@|XFv1$M+;P;$Fge|3AA4nP$jxdXN-ecl(~mQ6Fwu%3-NP4e=R+!YHT+h54X0fn zep)_zOxJI6#p;t1lG02${^F4!>OBLv5@A26A&H>b} zT*WUY{2>nZ3iH%DWlE)ybwvr>Y3c6Xp5T>tw4*Vtofo_@cfd;->%ZbH%R@dc>I%!B zT4eyFWAViw3F?0J$Jg82l9JmtvcA22DqWW9KX5k*r~)5(($;+tp(42 z$C1513oR>p)U%j4XVafL02n1AyRFP0TbKsQgU&7wpwHHRCdlpL3ptV$KQGd^!<`Hkc)0 zf6*QF2pxz-S1~Y+i}I_Y`ekDf3?j;Inj{i{j*qZj6-H2OO%|1_XV{YqiMS`htSVqz z{k~9f0dzM&IQ9wEr*mlde0JWqNJ8Qszc3H)*%O_%+M$wcQ8Yd%_@L&j+HMF}PU|O^ zA0%i8Y}&!rLeJZ7DS`*^t=1f~p{GyDd`p8cxLUj}ZPWN~jtie>B&NBpSO2gxM(m1$ zCT~F#@!4TV+=K1Oas8jV(>Xn5;9n(veH4l9>}76C7*WCN8?JY6y5`n&6mLDfg9=}o zydls0MOMJVQGsZoE_kn&mY&WH)9sTX%hd0`u8H&|(?-fAepth;yrF!Hu{L9+v~DK2 z7wXFr7x>;5-1wXH$e)~uFrDI7wM;-HK+-?Dw{56!B_Z>-Y?2y46` z--uR2DJHCJmn0u&s9_=4+Mlw4`8g|jtvIpfek)qtZNN^`b(4jXfiW|0wzdsX0Ic7! zm5MKK{vylxq#+Z?bG805yTXKd-LA$DgC)(IYhSy4KU^NNBz2S2Hud~CkCfyyiu}Y_ zlBzu2+c8s_Ye|F$+`S%re+I>sGl#&uoyD+3Aw%tjC2c+tm`XKl+hPMWY053CMB+jZ zERAz)H1#aPL%F@lu#QAQ7Mu%u#pyh$<1UGroxa}gwSo_02nGiu20=+UnBtghS^9t` zdsluwaOuG`;EO*=X~EhO8O9FjsI8|w`JCzN%ft&bt53sNB%~LUB_Df6;p@oDsd7fw zM7vcnW{+ckz-;MmPX2pd7D&-z8x3s-MjVH)y2^(hj^BxPpUm5A`o=W zvp8LTFR%;pv;Qd|L!5QFXaSWmBijeFZ`VT4YMR6K;mQyXN2KO=E1ctP>-fWTKRbaSzn4Z)Hd2$)Lvn}9T?HECBE6vbEcW&-A-c=+glM^P`%}O zWSFCv|03tS@-iG^is9qk@V=hH8{9JSE4melL2!Fq3H)fahG(tUJkX81wC7D zJ^yPk_utnK32*F)dv=@=RS=2|>WX=9P6&GJYT_$T0=dqAJ9))T%-z|Iesa(Ay1T$M zWxiy?f9s?KEvvz))B~h!;38nXg?25}^e&(AqCYP-Kh#u~D&!SEu$J?R!vIhcRb5UG z4eIuH6*P}ETb^{%(h9rJWV6$tPqzC|@sk;hBSCd&{F);nI8C$vvm>cu@9^vWk(P5{ zL)!dPD68&fNmVA%vM?aRU9p@ZV$)d!%5DVl{V98O;){@%z96Yku)k|qAMvwYb_#a{ zDIosVYN7-tOSH?GantsJJFxD;j1u$4G07nqK~|7;&|`BT*4`q7`v>7=l&T{krpxyA ze;k0+TIBNGjV*YiJjJ&zj3r*o-!$|I72$=#$SKBDh;WDD4`g4&+X7tIUfWKJ^&S0It9{y#bIYB6I^FMCg( z>|lk|j#m8|Jqu$EO+2JD7D8-#;r2N}xH;0YWgz=<5(L7yom#Z`5P1G+kmL~f`;tX# z&o52M>CP=_CJAe-T_H<(DMQTEE07KCcx|3yG^u*{BmY}*k~Bg?3@Kb^NLxOZ(#>-oFoLf3)(a*6PqplZ~K5- z%fr?amZUON@5LL|9|v+??|(w^ZmEJyV9dq(>M+9E%C}&E4$^1deTsj|Jo%nuPlRf_ zr7q8tF~@eAW6lyif`}MFoYHJN$SzyGUCNBo)}RQ%3#_V9v?jSPBTO2f-x1i<+oR93 zSZ_3h9$EqD31j8kfeHZ7ge{HBwZYA0%SuQG{{b<+dcoMeP76`qJBFM}GcyZ5&S zM@b9=goF~LUp|l*f#;5G&ONqw+}`Z?4O|4tr)KD@@uu(Vb56AY7NLI)C`x5xJ0$G9 zP3eN+s`Ub)GzR`;Kk^j+)<9#>K5_MNx|SxrYz`Rq>yYZ!ZkLzQLLKpMxQvBfI)q@t zK?$10XGAc=I@){hrh;^f-wa3A!&V;Fgi=x=-An0`MmU6OY_sU+W3jK%5(e z(uWb+L}&zB+Ym;qeRE}_4^>nHxBo{?`OGpmOAmCXT-{sY_vAkHnvhxWgnaJlX@w>-htUyB(gPrP0ZK@ z;ZTm|Tl4W(s*Q!w@5v4F+U*VduD48Wd;OPD2yit3;TK>2!3vxOOFqe?hD3QgYlWRC zgE7vL^8)Zv|I%CVQ5+SosHorysrSx02e%9v>@;g2{f7LUh=6Sw z4EWO8gvX1Psqi3xL3P&CD>a1haa}c0)!%8{$ENRj$ue?T$ig`+9IIz$=5VoA=)z8I zq_x>*8U4FqeKs1;3jPC2s#>dS#0Bd_T}6XKD18_ZxWsr$4yZ^w=}w_E=!Ob8QF0BVJeg+iz8z92Jgw0SHiv+_*Wz;@cM6=JHgR=2_eH9 zU4EP6BbMI=@gF9qH<#^BMoM0x`s<3esq>ZghMU&Z!WDRn1e6ovIFqcpPf|}o+ZP^s z@OP&0cdoRuY9_2Zr#xcwhs+=C)I*tN^`SqtsJu6uvw%mZEZL!W2UnTbq39kQ0D6b1 zIRtU4t)EIUCh|3wEH=YiJ>XCr?HmZL(^2Ep&5QfAbh_*{OMXO`Ix_BZBs>#VqJwCJwh9Ib^`hN`eGCnWp)# zTS=zxm0~aYkzQ}r4w+l@)Gy(~ux)pj0t*79jqN{Uv4NE#p5j}R8((^O2h2tGr^RT? zCicwDL1^hslZ={TJO4f|RPV5ed;K+!zdK-wm2f}iRI}R=iY(T0G#)tGyo!VO@zG}47+G(XE@v~@y$wrGJ;kMeX?;3`F?<8bFY}nMptCoGo4QvMm>Sv{B}Et|Bzoe1 zwULb-Z8AD~G!p>AghERhjh(%8#wkB34v6zMWEf(4!&*L2_Gn)hv@9E|$rUabM$w!1 z^5VPK;Uz8gJy>ny)Upd{!)2&!>1K-l(M{)}k==)ud58A~ZQ>+Wv8Y|ZK5xhTmtAPzr zPOB9Y+w%G*W)$?tR7gXrD9OA_YW>qmZ-0I1x<(QT;%FCV%a!(jBFLWBzoVA;nRdz( ze-&+q)Kgazm73%4pv$Wa0egGyQ;SB*6p&3|5l5f>IgErTDWB_ge$nFwABBDT>g6 zk{X@4zu?mI1rH=&&MqhxWHDML(K+*ZcsHkKd0vuoG$rZEX0ugNZV}^0L*iQgpBI2} z^*>Z+ID0wV&msp027IQ*a#7St^le!y_@jTFs{!tb#@*Xv-CR)mX&)cF{HCT`#%H4j zdGHUJpO5YMr}rzwZP~w83d=Wt7Rf&+05N0`RT$zL9hJ4T@C-5PHpsaVmz2%)79S!_ zT5-`lR0&AEy|?lJZ(o)de8e`_b^0M6l<1zgDLErkA4oHw>0Nrg4OFA-R`Pw+_Ill^ zM$9hTx*Pw-4$`Z|y6Kegg^UV;Rp~*n#%g3Y8z2{+a6eAU1jJ9!k@>y0d03Lkt^Z8& z&aOc`>U0g)3i59#2Ujw7EBJh%uwL4-dh5r~#=qd;x|D->R|%%b+C&)t_*$s;CitWD zkFSP)kCMvoMl$5qH%hf|@4r05hcg&eI$|u;uH({(wh;?1^f}@^DtvFK1e;uakF`8$vpe>6`Ri z-xSpms&DnM1%zQtP1>3^+OXi|dC@mhreCnKB{{cEpU$)1r>rFipLyqvfM7jaR!?PA zo8TLGz2*h@QA#PIex>_du-kGXVtQriko$=_)>%vl>YsxCa%w31?g>dxc1O2SG$0GU zW34gm)i71ocLgr7NS62Fi;X+f?Om|^ve2gcAob4R)K>u>v7>oQW_5q+<3>QOfGuX+N+q zNr9!SN5h^a6z5O<6HX~IzKWn_FY5myD?>0bf(p$JdRD~Pr)u_6>!*V>5Q(c_ObFLa zZVF9)1xF2QsIxkOuPl{DvzMB~C+VFnN{5$e#7pV5PLZyizwX&Z!+lal1{Fyr$(mmK z1rOG9liYR(xbZVUhOi^fKZ$~K4aw&PCr|mSdm#Z00Y207wQd|NcTC=rTPdY4$>p^) z#3v&Ucbsq^sPoMwQnp~D_5 zu~x3CJqu_4wPCz0iN;&ETUvA5xe_Wa**w7j`)Qgbdz?42IU!+WpXq0mg5cse<+<^v z4`@({WM$%E*n8CS-Qu9!e|wSc?Az1_`?yNiK5#y)mwn7XGmb4UYkOp}>(^vxgs2Uj zb08X3iYVX8@8}-X*9*f9lTXOQRWDs85}UTGeob2Ka!Y+3#C7_{r%p^yg^_h24tHFIW9gKCw0PvR|#s z5{n}fYG1+Xh8J(7=Ieut4Z(S@2-HWR9lJT2n=4RZ)E;Pl1b?wc$rhFG`;21WP}SHQ z8gymMC~m9}!&S+Pv%)mp5HEPN%uDBqC7S5k=onW6{Efau`V+Dhg%1h$0oZ|!h2lfh zl&quASk=o)aY044>e)1p@>sK?UwRmRgi3*Zh%8GGJcpMdke;dfqhRf8@vx&8LbH0# z-lZL~&$gwz4#2-BD~1SpzHi(E;-K@t<=&K`;9~~evivGG$meWH<)$ggp$-r2`~a|T z!Jt$?<-&4dcZwn<<8xCU_-r{7c>(&NdP(rb58F?Cl78ep_}=o7?<(5vZ0|~cQ3b9G znbw6jDA}~ZM4g5vYiy^MhnZZhjxaT%zyHjE`KMyMA{2s?W&vlk+wGJ;dM3pKQ>bm? zSdOkN;GUEiyisP5qg$@G_peN-K1o%XZ^ZRpaMB6)(Is)DZRSXF>eh32<84;OCw9k% zZ&?vrHmRh-ao0@7YIZg!=TJUTN_XAQbnsw!=4{>abB5sfUQ zQ?vYZSfsaibJEZQ+fcC0%jS9|Mdj9n%mf*X#0>p_WWgZ%LOmOfa*8iCVBOmXQJfk% z6`CICb5@DT>g|*MB5QlsrgUxz-$9N9iT={yG)g~*dDH}x#83VCjcjbGT2t)*VQQCR zkx5HFo0M>!TD>9SEXOO^Ey@teM5%Nd&+O#jQj6GCa-SoS{y_o!lJ*fe$Uw%o1P4^N zI4l4VD?I5<;EHHz9**(#N0alnDg>x_k{)!0s8R0r4}cNF;hbK?&ln5wEVdBZt)=ZE zVjIqaELC8fqY>^ccxG2U(<-0MCg0X9x%{7PdrCcGHSGzX6h^F6Iiv@8kvr<6Pfb0m zCYo**WvuTmI?a(_1Za+RBjzgK3kPMd&3_(49S@69kM1jnxlDN<3d}}6@yD*kKCapD zK>ihu(&+5P$g}qgZT1Tsr@C|2-yp^0e@g{#Jp}DQZoG?J0NGpHX3*gUPP<>%1;<1d za6!f;MZ|CyvA-pB514*V743mH51GQeZ)^q<`Br@!>X3j+-&li zrMbYj72-7)R4cX>T@6%-5FhCJs}r&pJCCLBHLXt z`e6UH&{>-E81MqtVzFUw)?Smq9ZTjqEJklHz%g_a@zH*lDvz|u2bIV&?@IjR$2EmI z8np~w$5v)_n69>yL-}N8C|!b7rx(Hr2rp(hd&Q)f+F|sxm+*0dvYq=X)$iHwuh)Af!&8$7M54P^NDpg-! z=AMHpvX0KLmyjEMCff~503Gj1@QwQD%kYQ+Kx;>SDCPe$Nw`dWUWMm^L<S~UF7I`l&4IaJe! z?*BrX`>9$-hF;EY?3rq;2Wj;w-SL$)D6Y#VtPqdOv%HPUSZK5g>(HT2?B=$g25;=D zfY%m=-b$GV9kv#T8O3w{xrC(+yx-qpou+Cf%zA{>#sd3DdO@1YH>m>lYl9Wi5EtxT zl$zAx%T`)CUH|7O(NT1M+Dx_tuAAA{6E}j}qywK(7@?_N+UUBZI&Vpjxeowc4bO+p zZ$&y(bi!VurNrMWgPh_q45+w3&GS=kfzzRyMTM-Nt1^ z#12yvxY`Fo7QG|Z4JjB`raZ%y@@vCI%3It%S*~_}Po<~n*Xd-yf^(y9oZ0q+WacKw zTPs|g)%!T~v$tr#a0-T(uBtk#p%_ z^lnmz`F;yEWrHEDK`U$%?K7z$kNdlgw4C*@I@VRf?9^;oeHBChe<~w)m@X0?`YN6a zYp0v_!;9pCEa~&sn}(ly6&q!#Ki+@z-XH&pd_UNIz4m&WyWBgVfvc>i_ZBW?@E(=~ znr>LUwR4+yr1@lMIOUKs1<|&1z?%}XDmoS*(Y>Pj z{ACh0r#Ba}D>(xmaCZ+FT0jJ$QuX8ygwm5IisM-)~Xlw23XJ@_sE zYCL0~wA{6_SULJv8e^P~JU|j?uuGHEV3$o5WW1t`BrSfzonjWw%|6*t493iwKmjrRr;%arZM6xd5sZlkY_)jmqZ$a1et z6Y}LKpdtVGo&5t5hZ1}`x4HtG5<2vjzsKq3Bni*Vbv`KuTF-vPrL*7GrWo0mCERF@ z_k4NyyVAdQYi=S^8(?@2$#D*<|CU;+5+Yx`n6e$GCR$Thg8MoFquSAu=NM9PEg%*o zdlz}ROq|31Y&uH#&R4Mye++rf&{`dCuQ&d#&Uj`Yh^Di5&fs_t$z=GXh|C#nA|un+*U!8{(fRE%;Q7Cl(__8gkHtp zk^bi(gs*UPH{IXFtH(^Ersb+Kk>nMuXGJcwC#FsAdaXE58!Toz&$jJx^hy4jv<~lM z2miB8OhwNZCe>S>MhSq>Kr}^!C;W>1i>W{}E$pvZL70Y>jx2uT*mi#Z(6VrEr)Q_` zvi)8IYjNfFg}PtpFbpbd4BqDL+bc0+jrjRv)nWmDt*0S4lr&W>L{IGXR6T8-WQ9wS z{(cN2In~RMGBNR3iLI!%3Ae(Dk!B>A~qgGTx*G5kIbg8H1gZE@Z0!Rcnf0m zy08Wm!%C_{Hqm$YO={t(#nkwd>iy35j@{Vx$$EPCy_nlD_JFN)wWZX*8k13cT2rhr zEL6ZnKy^zaCokCb1W%UwmHnkICA}9L7ud6h(vl*SFyc{DA}}IGFh8|RLXG&J76H<_ zk7tqrj^lBfGe`#S2l>WPN?A?6i{a0>?i$^>+`qzq6#p2J`13>lFS241d5QH0yCaHf z44%sG?B088Q2jX%|3W^;Y`ze-EwNsc?+%xWcdGD=nclFln$g#crW0=!r_zgGs@35M}cC zO(Zya>a^gya6vBVMO(V~tf=e}O%-aHKP$G6BuJi7fL&SW9Iun+`}Qj1KDuxjRo%K> zkbYgKJ3bY(xx$oW5vRg)bG9fFMpK#9d^n(I21RS4*q@l@fC~O1NwS0Q!;XXba~z}d z3o9$wmzjoj@8Hb|$$zby5xd`puU{vSftFQwvqlzoQczYQ=m+}49oLzmZw}<6`|7Yx zv3uKmm*w&%wQ+Z2qHM|M+ti<>5uoFtqDQUh%be@0hB9A*F9ldvmBe7 z*DLnuAO0wxf-nF@0JzS(vGly@YaaFfzUhF|!{2GT?YOZ~AXB#O9;dSum#b~k)_6q} zv}UoPTw{4|ryEJ5*!{e*pHh;Iyx?fP85iD>()*epI>bbBZQTnu5)B=ZxEH?mWY`y{ zz5}LW(c1C%{>7ImabBQz%eJ@}0s0}eQTdL0IMhY~nX0^X*$(62N zyCa!@;E?wVA^8zQFNCP?!i5`sYK)u2xpT#<7^MEth|5%ujyG1g=;ZNBl)W)65KD*8 zGmuITo;5TSIfL`o9V}go39-$v5^*8K>`3`}AI(}DAWNlheQ$Vp$Y(k~JG_j;iWm!& zPzDmoK81%0B#kpnneNFZklit|@@S$0)YX+%_{8+?TxAH=_-R95f22KQtE4Fek`ZSg zZ-C8;Pe$N2$nO2df(YD8^Eq5t1NEiLoG{;-Q4%11$3GW&A;_^72CxDjWpcXn{h#=6 zD#|CL#9x6&=350JECvij1PB%P;jZ&Oh8IwUD&Fiz{O`FZDQL(YX`rxTzCZea;27kb z!b_+;KxN$H`l)&p)AQ%JaS)k#Tma$K>7ZB6EoHELp!Y4$BKPp3+8%`F8JGH$pH7`5 zPX1q--aRhK`~Uxczu&do-d1dLWh<3!ZMn^*H8f8g)>^sEl5MV7d7yHMhZGGJ0f8-7 zc34um@(e3WW*(?{meWklOc50oPe7hPML^_y{$9O*pWolyZv1g^T^G;S^Lc;XA8Up5 zdX4!@s>h6IOIxI7OZCa#tl97=UYP1Q7TsGDL359ywl(0Pj`f#4!bFIsb?@XVp3^aXQjW ztK;pex0J>0QN3-?mXD<^b{=yKu!CvzVY$ezXIA^CAL~sF>a7~*X58RBPL)J5?xbIM z#fkj$*Arl)emQY2X-O18d)Jp%xP2~Pm&F>L>)VfGKpzC;^qDDl+jWOdX@33PP!}U) zZ3UuM!`c>_Ak~-b!;CrRJa*I_Ka915=us@`9n+=&>IP2}IZ+jU>@!e@>u3@Z`QTOS z;B8_2?9$l6n=IgOOY14m<|dsXCTpd%5}kZxi>L3_jco3g}rsmrrcy05G-IiGkn#y4tjX6jhk z^#&voAl(#?Mwb4zg0TK02)U8RWB+!7Xj2IL-M^8}LO)c${koJyKCRIrbNq6)-S_6&~-)6$`Z2lzvCK;|dI{*=KsDQ=Bmyc61jsB~U<9>DDKMa5+5hs`gy&W@J-yOmRe0d+{PMx@E>({4~^_psc4ESLpu zlzsnd`S|I=<=23|!-qLbKofHU^3?JhaOkuip61XWXU{30(JLiknn?hjqSG?zeherH zLFF@{#R{}G&V%h9+TA5LJezcT1__#7@-R)N3h9EY4J7SBZk49QwFxBqC0uFCQe@_Q zR-j!kP?l5^ARTunN}YRowzZeHuUoKd*7VcaF5FJR!m9vwSdKrPuK&?pF52l8zn2ho zK}&DzxeB@$A838KSmV1Dq3D~=FDEbFj7X2ywS|Han1?7E$WSc`pU~N=I&USbKw8NP6bu7nhqJmEJkYWE3Z6W4e<5_|)#NgnyO6hI zyjhKO8@s4ouSKr%Qi#v<{o=%|&($Yu9VlDeqP;-UuS?@14E3Hm(qM5dixb$Hx1LA;9*EjqFDdhh=9NR%d9K?j!wo0N`Zx~2rPJ~ITVT(_%e z0rZSHa)#2K*WO)J3@%3~8#ObB(H$p2GFW(2nzc((!PfM^1hyVF#IQC891rI20sY## z`TSalLUdlc0&+)Z8F7Lb-pV4IMN#z+(z8j|#hjIo*esIH56_~mKb*e*h_m`pz!Xe7 za@~dd;ZA`Eo#25467v6cLNP5y~smtYAjo!{jL85yNC^Ek+Oc zh<88Jb*^P)V10mww~U2m6a=}3ob+sIL0qHlg{E}p^zO^USMzHdAGMy~jASFiW>Toa zNIxJG&JPinKq}+UyUzW5dgD&t#B`prAlLa43JYj1E#Geey3=7tD_fgEe$uI0OF{E= z_CU6&lY+pFkLy|y^zj;Cn9k7M20y|ShE?Dag-fe$$v-H=e4=2^O-KL-lMxs-i-EM5 zVN3oAmqqMRBk9ZW*4yFKpT5<$lIN8Hl-#eK*L>r> zavu!lA*F|Pv$tzs>xphPWYk|zw6d8#v*!1}$4n`O@vu;=uq=$o9lht%=#Th~v+oqy zBbWh=@NNiHywI^$^k=$0Lb+Rq`cT{qRj>9Ha11*ot|+0W%VRpWfz?0q2{-IS<{mnE z+E=czQ|!yQcd2@uaIb5-kVU5tUW=a3&z<1FJ(A0j6(D{^%ad$#MyTC)rc&HB{0~Rb?tKNvOW3Tvp`IyKY579e0z7%?&iS#foGiAA|!T0y4-}5I+jXV8I}&_ z`m7&me%2sVT=UQVn(g~&56DOn_{tf$fh1U3g19G+K~BEt$^Xyr2bmiI#-vm5TG4#c zpm!_y2Wdz%Fh^^#jyzqO>SZ|}55*VANzV?IMYOj}$sB+~)B@E!!l%?$#m9_pS%>4*!ttSHd+W;1Qfo>T={YJ7o_ztl~nq}NS@BDiA|JrguZ6?sw z$%7(Vza+D_V}+AtLefedy)%4&S%Qv@>?IoDArr!$Y2r+`Q8@J}Vmz9Em6&Gn6$(9n zPmBz<7_VB`t+`e$2hch%nHN1;?Giuji{PM2QMs&n8*|XDYFk&$jl`8CAm5|_O+h62 zSCE#;+6~<)2i0waGgbmK9}n#3W$~_IRDIcexb(_ zZAEMuaPxi{b$j^nAC@oU~jY@+tFUA_|Q_$%J{jKifMC0r)ybXNbKg ztr6IQ!$VSWhBQiIE$60Tsv7{L<&yA5Dl7q$|Y;F zG;ar59ImF%8r+4l32T2h5l@Y^PP`!|hyx%x%OjPIZraDVde=W27!R!1n}*4H_w;3j z-B>;yKa<}LBCopJWQqFwjT#-*wA%WiW6cfz#1&IQnGWWi;XjKMQv7ZgA89vXoU0Cjps`Rpy^f1g&X zs1v2#lj3-JXHDM-pdF)`#NbEE5S&x(nJy3E7AYo@-2v8%8DR?atX7xY;wXt4FCt$>@GhZSmuTdlq$yd4QRKFqycn4GCgK(% z&-5~1NJOy&Y^0bzm*JZ57kHjg1jyVP31w;;YlxVtJUFmrFmb*^@4uf14zS(n6L>alvyGdEap7c+P4=*TaYl zUa>%_TbbB{j0*&<X8LWVm2j+UJ=G%3MM%#=hFVBd1ADE@cg1MQdCrEN8pa7kX z@aNFJed%q4x4Yy$I_^=*IGdRpDT0W^o&EVmA`yJJ?rg^>ZlLo}^PuUn_38C%;{$&Z zb+tTbjW_T(kD@6_h3_^Z;%R@v+Xj2~l^v%Y;_$ds>oFQHr3TLl9`y_#UW@qPL_$}8 zzV*SlMPGfuF+4-#D?S<=*8E|qN2?Gdy%Xk}CkC=?&}-wx#)2^UHiY>y=d+1mR&&#Z2eC+Sg`2b1=^{5wwLQ_oM1%hf}qJ9!x=>((>n;&~XE#qO39z%_N1GLv#Ud z4gD|^FEeK&)z0Qd*?s+0Bz5`h4g0^e3a;ozOS)hxpo+z- zP6gk2ovjJ69THo%U9-P9GFO4;EZSLQ0r-WJ%U225e4Ue~qC3`A=xol8wSQf-&_Dk? zRu_{RYlJONIx?hO&5gljK~*Q-e;nWM!778_s4b&s1(uc~3oRE;aeNL^$`Zb2nFi+3 zf@B_MEtnacF4vX}m-VrT^ZM1iXMKWScW4Cl&E zDi{Xyg*`(4BSQt(@=viE_eIX~ZC=i@BeN`LZv}BJGt2>1`wH<(7Re=232anL97bzxYR#vQXPH0FrHHK=z;q5n$)f3))V)~chk3;sF9SqIG+_3Qt5!27}uOHAZ zWX>i7WuTK>v>UDepiw!1anT#E85Tv@54@cd_NCm5)-LH`;Z+s#hVRGe@F&iFv4!!9 zNr?vGSV{suJXrQjeFm{Za-y!6YX+%`rpAxjf%uXflgBDo^$k8rHh%4W@F?g=an;tb zGv=h_uJVJ8U&6^Ky1LXyHJgvy#0q;58Rem#bGvf#>r8*~vr%Tm)~Y_hZ)dcpHiZri z+=)=l5ES-MNLh`7^v4kHP`I0pz^ho*cz?kL6SoStz^EKQG!9qj18Z$JmgSdo2e5n| z>Z(MxH6*+YBbILIEkD)E5xVJTa#RY_(fX4;(1Z9Y^y5%i7q+LSl1OCau3mWL3d^?O zwhHNvm5VyI(3vuBPx&fm5ItR1#Gf)qWNT9rgtZT;;@x(g?w+*B@!WKpWqp>$aNRgc zH8Jw?Ov7ll!|hSDZLcO*;6!}_*R^BtRAnzbr&lKZ!`c<1b7FYS(bRyWf^$6Tsd6|( zqw&ntOgyRFDJlxke!|2L`N7Ep54s|%?oKQddsjRRTaYqxPgY=OLl6r^>IP;5ZC;)7jL>~%CZ`4m4RRD9#1FM|6KOoM4MqcAQea&A1@v zF>@Otb!f*`>=fC$idO5;3`#$WYhTq}bNt2E@8>_`!OABM2>wiK*lxqw7L%L?TB~_hRkWC%0SK?y|zE;T0gYqg<8kp zJ7myhSnJ&C5`lykj?d(6Ej!&Sp@DN~Ku4WIq=Z5Lhit7sqlahr;r0k=48XKw>0T}Z z7MlY*3+Hbk(dG(ET?`TED_2-6_QQtDQ={780JE?>vH7{Utb0WO`~q*?-ap~{%qu(d zyXdk$?M9m6p~@)&Lg95?Y00EkBmCPZiq~^iqb|k>O&>!eG&9;7Tkrf8448W#=NZW9 zG~%TctFcyjO!wZ<2Pz_M&In#r#!-o`=qJi)~-G#{A;tj5kXSu5ye>rXz{7})@{|Vb*`}VT} z;%nuRGo}*jKv$?9f~Cv6@i#Qz|KpmoQHU;Cdah)Ws+*0*AfQl#9{AoA%5@PV)E01D z!QbboZbaXB4q3!zge?|a1c%s;7r2xf*NQq)D0S|t^m&F;I9m(x8>+(f&QqTC&=Qd* z5BV9d>BMHi-LAvsAKeM3z7u6svrC>36O2ZCEhgm0m}S=Oe)RSsi~(8`EF(78o0feF zmwymfX*LuSqfC*!Ddmq;(<#AzVa1(l#dV)0 zB=}N2qFoU{6vh~X@EigC8Kk+diLKk@D+I@LKQ2sS*enI|Jc;E z80T1&AJuwfIw*F?>j@87#~W5Or4Qaz0_jIOgQ92rJ zDb%vn2J!FUXE?)vwAKKTm8ZP&$`?NFz&> z_{LsfEHnlmTZ>1U_+lTE641I(1Xp$TvygDlE_Km_LkmxunUe7yn@(lc1P5###B44= zRcS&Ch%IP@6u{CT)4Esu4XHRnAY&VNMW$Gst40YurFor&TyOYDIExDX)DQ{d^*6f5opCCh|ycQ)MPHc(TWJ+W*R16NeGpi*rA9 z-M>y7nS-72ko%j#%Yk zCqVL_i)EH@s-jO8;fH8Y#2&B1Yp%14-{mx-iS^R{Ys&UGEHA3>kOT62Jy=eXQwPZUC}rZdvRW z6=zbyukvkdJ_#!-%0Wu4pEF32*J<@IZ)OfKMG2V7f49RYVQa&@+<4!5pGEx(l`N~p z?H8ud=pT)Tmxx?$hlIO0^j*)xFSrQcP!AASICdhM;cU|zDJTshY)ZeqYm7r$gevw^ zmE8r#<+2@#cSB0%eG)bGR%sR(Ew`s~HlkMcXYwI;iBUTc@2L5`#% z#ensiD7d*>?&i(0ztU5z4_bL1B$_4u6qia&0>H_$S44=mFulC&R-AR{HN#Od#bq*W zQ>}_9q=P=XDN?|blUAXR{GS>`3y5sZso-$EnRgT9gdAsfPd0Zxx+&+sa=lN=EZ0?Y zl|n%unO}Oc0v6O5#`n;LiF_&J+3)5HNpItit&(yUnQzFK4zqog{oe{be-twr8{90p zw;9Alnz^i;JbE!ShICA_njk(sI9jXAmaH1H>)@oO#4%4#V5R+otCz3ttq8%~L6X;N zuH#pD3KCB-*8`+Mc6hqpPm_m4n=S`)&Y1eB)=QEiB>bCo&R4?4^p{s9%v4jW&zfczM<`< zauPq}iRoJTS{Kf!X5oDQ3%|n19Y7c$d=vtFRMtH>6SFsOD|)x)zbNOO^y~ACY+aWx zy@RrqE%d2hKBZ)9MrFY5y7TD28_IoKIC8DvUL_v=q$56Y>5XNgdh~_iE|6L({OB^_ zSvPH@RMUhP&{twKAv@_~jrI0|HhurSP~jjhb7-JDr^^l8EDE36;?`xtUA;$K_kw40 zPAOty&7{!8mR7~N;GNJy#gH@b<_Vwf&Wyx8gWuGL?td_OUC0Zhu{&$|zt)rJ_B`r= zWXU}f5_}`R?Y*s!`p%?6Vxqt^b1^ssz}0}ZrfX{yZNWRD>XiTkS8XZq#;~OIj9Pq^ zuJDKX`R}_#f8i0CO)H)1;XKoMR_@$tKYyiW9OmBqD2sugtNLc>Y6*jR` zZ$2k7;c9it~4YJ2u*%m*N^cknpv`4X>Sa;`M`dq#ruj=z_4 zlt6owuC&-JEkNs~lt|IsvDBWz1W=s8!?dLM+8 zz7&e_@xi~?Ol}#2Ei zHAVB7)IcnS+%g`t2*NKLIdz4g26}2wX_s5f_428t_3uH~rorHNP)N3Uo6pD!DCT;k zkWKkz>EM1~KE9_uTKSBb1T51&!e$Kzj+AcbQhGKJ=)gT)Iup^`29keOJ~?XB zzEF7XYUwE^HiR*j-b>7ZIeQluqO5Qz22n-I5A=w}Ptn-m!0-uMSxv*Zj=6^vhzY2$ zzY|L+i&35Fjkd~?)S68*ROvT-&p71b((HaTKLL>Q7o;pB6Sk)>Vg={s^kvNU_NvLw zlS(KI!w6MaN=VK_Y@y<=?kO*z>^QplS+|J60ReC7uG(ydIwF``q=Bat#TfoMmbTtE z{H0-G?&UcnmI3dzt4ehXIp-^Q3(?2~Pv=;8Tykb-p&>ao`KjO}R6@hAB+s36{;Tum z`|wRie*~=`F3M95Ma2aGv){%=MQAq2s@UD(XPS=+qYeq1JMgxFxK%KGr_C2_cteJ< zVg#`h2Ktym{SAxvXc!6})-71_G7eTKG?>j|VCCP!y)V^*%VY*=vK0fGGWzlcoCQsB z5O(`ON2nOT!9)}nYln$^LRrT8kte=UQs;u8-a4erFdrE5_IjfkdQi{tsXj zVJcP}XCkuP)LgP%LnCR2W=F+Hy%eOArixyB#% zetTUUOqlDncoBKL#(EoIfO;ZcaR^JBW>r^Hsp4+!P=h_?Aoo=9#4eCMXF$D!J>hP^oMxJ1fAbj$=cC>-U}|l?p@C(? z|MI5+G);Lf#dTQB0mgbGzRwOB`cHG@ZZs7umI6gZB%-T8mujd z?41-s1|4V|&M!yOJ8*Tuk~sc<-byGJHSK~#J($HZrrrl_agFXl-iRWv6q!n`4KT*M zC3c+$^2&Qtm`V{Ih06NJ{fiAkp52ORiTlB$7U>vR_6e>qy|l=6U;xjZ@x$(m@Gi@I z-SAWL!1tn70;M@AT%NX|*dkwhEmPo|4krv=3un#bk>3PFKr&LSps>YIsS}tGw(dh+ z!d>+xg(@N+2?MC z$jVLhIV5B0g84KK5~Z%Q7gYgnxiX-VU!RTAVhvaEgZIXQab;b)7RF$@-+8W2eI#v7 zR|hOfdmFuGR{H?HEJl?9H0ug>roe;Bc5OeeN_iYcqxbnT$8mb-VVSe{Beg<9`lcd0 zlb_P*#nY{(@QGNtl3tnuh$y1fdYFn5+~6e+)`CfR{5&WgDu}xb`6% zt=d8ViqU{)(61{1Vt6m~Fb1CX7#OFQAm)wNNX%_wL+>YaQ!z$ok1;7M%L^X!8lM_p zh5NN=kFE@|J{5fyVm?jkk&D*c$~|0WIMgB5Bes|GYPox6h{H+x6GG1+vY9y*uwwp-7z{AD+^&rrHQZA}g>*|mhfb(MfE zoM1n!)QqrCFvz!&$O~i?u`wFgfl$8*G*Sj9oRV7Z?EI|q6$=z)YO7Lgy`~#@wKzi? zpW7)Rhd6WBLr$bGCBWW)?LpG;158RE`RQ;? zCtxPV4(79erFcrK@M1z%(?PdjoD|Sq2YN?@Xif8ZnKb(eSh%6rQHZy`qPH8P-xiB zpyyQqtL>bon+LuIWE*2v&o5W~*Xz#W|Bb>Eyzz}?j8JKLNK$KeOa$L3YC$_Da3cbq zSwCJC3PCR|Ma`hqU8L7@jw<2PB3^g>Lv-fwpokn^m@X&IE$-v&s7Cho;gUS?aWgvv zf_CSwpSVSw0x!+XcE7X~hcq`s1>4RXM3UYOgp>$-Y80KKBfBsAHJGNZ1;{I3V^Mk{ zbEsA%MW;R&z_p>*`5G)G$%JxBSuJ^{X{u<~|1mc5V2=Hw%jVJ-u@Slr2(}QNZOrch zJGfYxqflnQEa^uZ=U}Eg3a3Slbxri^$MDNi2E?$ z#zfs-hE@8L!K<`rl+UUS=LH%HYQLr*?Oazw7?y#k(&G7$_QG?y+Xe_400V)EsC0eh)83&EZh5sai5KoYl>aXeLh=^aJX z1-Zi%cU5A`o)M-1r8ZIMIbDw*agW%*W&!=Jg(x!|M(P(?J&BwSgqMDBMzJs^N1xCBM%oPt+@Wx;5CQ3LXtK1 zW0S1{{%jD);daFVlbtgEZHfT1C)h)t;DPUDzJ^O%gB-J&SE~@CkSY7xS}T05{kg{S zvvS(?h{zVGG>>&eMeA`IRnL=IuQ?78sZtjHlBwYXdQfZA$hvlI9u?~Umtx_z=^n)G z2o3--yrw=7B>f-?Y%WYruJ+At4y|e)7VsLQL?t2Q*2D+SFGJ{jpt+&|v;t;|Cec_1 z5y{dMwL?Ve%6DB&{gHqVG~M+!6! z#ZGuu?-SEJexwN4ejVSxck5*_!po-@pAVF{>M2S2hoFL@n;Y(>xOTv&RZvOhvSXYztf3UBWQDDZ)@JX5^ov1Cd_kAN=z;ZNVtC3 z84V_`d=Ry!MIrzTO21GQpJ$vd1%MeGe$?m4=bBV`ZRP#YMaS}MqT2a-=`0!Blt@h8 z!-(DM)VS`cOd>~*3dyLD-wtNjFXcMdTKTGmUN!#x%iZdc@C(HkI*#~ob8pWt#Y7fQ zjSdHoG`(8ebwAK@vd&-pD`d>b65^6WBqA7svF)SguTyeL-u4H)LQxJE^Vet82|$O%)Cr=d9zt(SJeNk*uC{(eo}XsSIG(Y{7hHau`L71k zE;AF}Obh779HjKjHnWJ!YEYgs#z@^h*WMWJnAW&{iuCz*m2&3pQb@b0C?oXcIw5@%De6x%Dh?U&eaPY*@O#9a^JUatHEV0dGgp2JsFsa?W$5&$}(Mgq?x% z4#t<-MvB3MK3R#IRKefh$l>)*rdm+|4rx3pNk*tQX#fFhRF4gxp#(S0av}`$D^*(O z6mz?*uAnMzjD5EwAJj0ooj)SY0LeF<(EQwUu6(bwx`xFo-V?!;J)+ZRlZ&qJGJGvb zPWP+k`VWAsohD~Ji=X7Wg|^M9g%p=iO#!e^zT$r)VQnjKzL|}ub}9X{-k{j?8B&LW zs%HAPy+Y#HwqU-Y-qWJsn-?WiS1~o+B&0YSJ!iW9Yo(~(^apFU&Fv&yoZW@t1klN) z&f~7}hO@ErCuHMZ*DO_Ub@h3#=)Qa;uw^3E?->ZWCz_X$Jgf6{PpWAM1=}h`|5(1|pkyG@iCM-kbiYir*>1zNdNa_%dCyT|<6^eBdqv2u=|P zHc-*AO;&a&QyBVyT@xqRG9zT4O1o(i!+IR?UCsWMyXir@V}V)7dV%JUXePUdZ=4KJ zIfZ;%Kij2pLo~VUT!y*ZpI^BwW;pgnx;pV(-JGe*R{Il!U~HG5?Xw__Q^{Ww+4v_v zAuYOH!xF_R@Tcoty-3$cG#f;{WvZ) zuj#7cJhpeGUS)|BH#%x_7tzZtZANVJQ_-aMrt#8uI1o9YZA=#-&ff3RAEn6a#kK9- zvnbv;o@+4&P+t4so54r3ft7xmQNS{}Sp|J^xO-^E#o&@?&D?<69yslnh=0Gf@PX&H z?#QtZu3Zx++&`?mxFHj>_gw-@knG8=iU+5+V)Sc9l7L# zt=N6-RKPDA-~Z32sP7jFRXcGiA+eWYGzBYSZR@=9$GpDSdBQWuvs|7oxb<%nJ0Q~E zJ5a1U$gAm!Fi9y;KjFSBx*6#1ow{f`IxwqP3xs)?Zk59uCq)M-JK#RtQ-cG4;4a~v zZywAyvB4;gUmP@nqYn@-SA#ars>a9lxSS69h@=ect$3L0Y#*z6YRmJwOShn($rKa4W! zZ&}PfVQ1q6@r2{3Leafz3pFHYm4KU7Os<1P=cJ~4d^P^P>W_>2Qk4V$=-ZaNgmvTf zf%4LtqTy^z&XGXC$_fxhy7mQFFw;~43(kE3xn??HSD(gwr)sc9t39@GN!nS%!SFKn zBTb?25aWih0Z45ZhISm9${hgw!?c1@#nKrZnL*dwK%vzW9&Nef7={e$*%sG;1A?l6?-u%G7|6K4Nyns&A?JppJNsIVKijA_m;PFkP4 z8YN&cJ}!!)z79&pIPV%S%YJ?Sv?L+PBWjKFQ&V7RHsJQWK3;(iD5xekB_8bk%<7fo zlomR?VAuNu7Ev9*#cENIo(>^c^ZvJRRNTh?Es57d~Fr2wO$k29!oIL-e+6{WfUwZad>A;I}%PiMju;2o`$gvW&A^>q$G0QKKz4!XCl zY*ci2xpkE@)gH&9gwqkqIX%>GZ+gnPxLFwTG$3TA&%;(kkNN>f=w?wpaEJWczofYF z#RJI;sJxhb2`~1TutIVDW9NGgv#s{3%DkpRaCCiN9Xau)=ZMiO0{1#7;$S>4cPo>_Y=i)b4o^&F(@$>y$XxOX5@7Hgg?U{4FF+CDJHR>6c`Fg+4;vQ6WS zvSYcclhkd4;BQ{^;qMy*_AlDP?Bz`Igg<|SmhZ&7ENa%E^MWCQyp(SeeoB>fBA4hn zcTIh+$*vr#&f2PWot&^2cI7uLItma(m6P!+m&N#o%2Utj7!bxMztit}9w|DBd3j=@ z^z%LIml*9pZpnOV1shU6GcdJ+(9P=v8^GC4!3H5EHg94w;4>kg@UqIpAF?kh7}Q{$ z(D_@0dVRhMNfFQK;ETgHu%9!jg4EKWv|m4CTGZCbb?YbF5pn9UW}UNsQMO)!2U0Ka z%nX$~{|>b);Jx2io4+It-`yHOYYnJ4wLMml`S*x$XN0@t5cN_p{8!2mxNn8RYqgYE zJ!>IJA=yGybH!;W(J9ZYJOnP}!{S;QG$w?#LQ=eOo_qku7Jh2Cb51nMJMM-!g?? z5E2rZbm=mevBLG}Ku|5^IY8!n8i#|~G8<2M-r_=XI#j4JP8 zyJoL5+H5x?;2EYjz?LBg!cxZ1atxr!uT7RJf-pLu*|_^tLZ!%ZIg4*)ICD&OGJ@ff zn)j*IqSzXPxND`Ud^?myu&CwiSeq{AuUcY!ggCi zwdzQ~lf!pBLvqaWUn&3ARyWF)U(oV7>j|I9DrbUy^Ik;2R_8S1_Mrfteii>=gDd&G zGxR0ZkxZL(m5}<(@wPK>La<|K*MjgJ zNNkd>?f83fsU7k+fJkk4*&WPE?%LmMTH>9t z!o*4neJ@{P%nH~o^=edSYCfUhO_UZjpW0>U(S_T7F*0t&(@g>R^?C*b|GKPWu&#DB zNCK`sH)5c$RU;zlwAqdzb@{U*pbKO?2x=4GUT1yIZRc&smMPA$oJ@(!PId6v1>}D= z7=bKaYI_)U<3k~sx1hljVERtbge$!V!CS1vxXxL5wn!1Vb(G$!peco43&Kf0x^2%A zdiC=tUWPuJ2^twzU$ve^#AWmY2Ke~HvhR3F_TQWxSf5;D@5>5>%c8^+LM=Vj=r3mY zPXDi*4_U2zon15YRXN{R`!15$Ej5CLlv}s4iMePWVXfvRq?6$69E051PtFbf&Ijhr z+wa2-d%mHoesBx_my-LxDY9;cO}GIm@zptl^QC34q$_ur?Mq3R@#9p7$8(&n?({n~ zq-wPyk30ga^r9af?M!&r{Fu)WP+rFXTqH7^4eF{4KdCo079TIUn=J9=4d$ouQ@w-zk6 zx}AF&3=rj#9mxBjHpKNmVUjvd$4BY%ZYExW?A{4~&MYwZ&#jlcIcH^Q&!Fm6{NEMD zbcZrNMuCP|ZrQNkmJleWIUZaW`cNbMMq=maDzsmTgV4B?CHQxnSW>StCh{&$>wYD) zNmF=i&7C8JnH@IIM+bo_1~AN_KMVvtzQAD1+S|BVzFF&yp->NF9X-$c#fir*=}v z7*>i?DxP^E3P0sn)lTZyIE<1RCdSs`>?N!~G~w999Tl@cc*+m>n`q;?(#=d*Oi)@z zGhcx+s7U`IjOz%>Gc6W72}iv2fHp zY;t~f#iHAIP8dedDaNj+FsJXb|3CwsdT~;TG zh;Y|-Ru~x&6gt4R5jySM99G6wzosi~C9kfvJ*t?L5;*Qq2U(#12c(mv;| zG-KNp1P9jz@RG1iAc5?7CN4d1VU>mf)9S5aom zsigatoFobEMDcXf>vL&4;Rlkn{S$^(3enOToo@XpU&sLKD zLvI%Ty+1}E`3Lg{uNkh~7U4Iab6OS&8}`9}E>e^s&XSla{g1pcfF2XK|Jh;*9EAwt+MV|_}naI-A0 zbKW#%hh4!qj7D?=)rx`Uut@Wh!NCJEYTK?t%+4R#D1^8HLff8LjY5)B+4OMJJ;UL6 z(uqk}fDOjq@RsQAtxm7>OLO@^5b}WSyte+EV`5N{7iEQIjiLVM|MB(iaY^6(|M2&^ zT63GF+s|*g%EP+)F1O3lO3hG#tGRN!N@??&emznv#Y2gSih#hiT)Adx&82|?l@&8j zEmTw#GD|Z#sHlhtFd0rJiV*{rS)pX%nWi>>mtV|kGCC!UnRYoJZ%OQ@}M4sO?6MBSkDGa&4J zd?j%vP-}$#MZlr~oV`ggm6T}iEs@4~S~d%=WHRz%S5iQI`#^ZlkW_33rCM#lRmd5~ zex|)PMf!U76Ha-QoJs{pC2Pk8zPtXCCWMx*l8*gX0 z>gP1~0sEPr*6eeHYY!`1)duwZBF*4FL>ANqJdse}2n$bWxu3 z!;(Qr9ccnZJ};oT?XM1~kB9D3L_5S{I z6LZ;S-ZB;vwytb1whDHHyC$9gGc8XQb%u&Ifw4jz+o8Wvnis`u1aqda?53n=z_r%p z9>q^2mob1OvMAyB#I7 zj4iFM?gp_1h`2())r?D^-tHG*`>1EfGm6 zh|KXNS8g{^NtS*fRwDw)!{V5m)bL z-wog-2h|6VeM(o@Pm}VCvO*ZdsZzzw%)}A|fb0ypvTgO}I<0@cMSUnLvihW+&vBE_ zOl+ujORA80cdnO}CYI=;eri!xdPXp`{^&7-{Z@I6|AwJ-ieTS#%*ge8003D9hHH8p zFLGGSv!5Yv1uVZ+)N?vCpoF?`ei|6K!0vTdAV>Ic593&5$4bUn1=mP#-TL=X((G`#+{u^IXFQC$?w+;V{Y8T6n( zgv?#DzMbqw)BY{U$^*Z&`J4leG-OyFb~pa~ifqWAT~(jIVLqFg;^emSDVV>~qg+mV zL4~uv(>`Ze4#38=D*z!Xz7!um`)+T~Us1*=QRscWGG#ba6y0Ntqa>XDL2da%F`|o&RLYR1f;P?=z8G)_&RFK<$g?Z zVAO7RZduMQS!pisUJ@WbC<8q+@;dygSno;{Ysj1TX|YH>=&C-cUr}=5#TuolMv_E1 z2XUw{tH0E+K@r`+(T4Usg9^PQ|Hv(51R=q%C?=ljAJg6^(*-JUrmcUn7PkaE(ZpWC zcIypA)php8+yVdbnJtl=kjZC;<36G4)BpMJo?@MZ1J5re4z%nUE*mRqL7qMsJ_A^n zw=5uoHvf*yX|>i7|4P+O>0!?V!MpJb)L!G&&ch9SW=K@piVuFlvS@8X$t*3s=ES?V z4o4iu#CHu&U4tPH`(Hd5L=`ObafJYo}AAXMXVW@Y|qa%LAoLz|hcKe+s_!Tix?2(otBAq>*Vrj5D-S z_mOVaYpvO4L0-~ZF7W^*VtG3tJfx+XHqHsK%6DbXsq+`E`QGDmpXImT;vbmda?84= zp5UhZ!lWw&+HbbM&Od<&r~YNE*v>gu*@L$bfX)ccjPryYr#z|&;0*GHKE(GD+` z;{5O5g)@rT2DGWFWlb9379NuEde!m+9)M_-9yS1+*h*=wlgwual?^>p_*VPE(lghN z;M&^5P47k72+nWG;Jl8{lVhaQMG%S4-I=J(DALl>(ATyHVK6BpnlzS9k(l1|0IQv) z-`j4y?Y-K3eQYklPaJA(whnpjF6>_uVQ*JHOa=ec6p;U)7eA*y_a@AFYpG5H9e&K-i*u&hzskS& zHtE|VIENa}@jpm(dk|~c`fvDuzeQAe?vHAldI%}JZ-h_&f8Xi<_4e8i&E1`}vgp!r z@_<_(_niD*cLV3&%l{~P@x4IU4~AWuvK!!=|37cw{BTh@W5IONa!mrxBhm@AQgLWE z>KNWy0exXuD~Hvx;z5| z2`S>|Ak+`WqEpw3t%*s+q^-WD4;7<#2c|mYQPX4vti=*}3LIjkrU{E`w)L=~X@|-) z<*6GL&C{9S2CN_f3?8y}3vCA3jGQ6q;OK2ZbDK{)au{dhk5wV5Z^9?T?*dDjG(Z{3lV!n;+%Z3$}WUI>u6N1KU)BjP^*($L7@$_=}1kTU(%t7h!+gCmPW{~fv(5w@VG5&xAT>*GVEjvTUSSiP%C{g68 zx~-^AJ1Lgfgq9%ny{~KQpU?<+U$)H!jVueX_^~*j~oJ8l* z2Su+$qGSDIa~w6$9*ALXh9;v<;G?SZjqS`3%Z#u{VQh!xDau#4l;wzh_E*85jdNek z72Hi-tOvVtI_Hm6?=t*aoH>^HI4>3R0@U&YA`|Kx^r^IQrfyRrbhcJ$fLJlcr1;MW zdavt_0Kr_M>9X&9QVG{E=8-oBWfS_Z)qi+eGR8Jq^K)i$V@mZ-USnAkFw|a}ORg!x zZuCDn8$$7&bnxXR`3wxVLNNXBecat)4E zsdFDDjYgJJTXhFrjkusDwcsI*(<2YObS#XUPGxUt!C+GxFy|HggiC~^LQ%X3DrQZ#}*-43I)gxibQ-3$4pAx#sW3(uLk@W;T& zY0c|<+vPrKx8%JDZ_dAe`Q_=>w7LPV^??d^6c=(AQ|U)#gcHKb_1ot_n<){ch3UQJ z`HGEsPfSQ%g!4Q^AMFG!WIrV7IAM*dPP2-RBmj}DmDk|VF(0x3(tD9%Xq;QzJY)PQ z8yj;hN|3;LrQe#dFdON3Blii;GnR& z*^L_N(Qkrbp4lwjOzHeYp?uSzqCd8^ssiF-O=&P1A*V-2CIG+S{17m3;151Rh%bb+ zP2e9i(CpkpG~A2u81$}1rAi7`18SHQQ+RFn=C;Rq#y*C6s>PgNjjp{O4^W;j5jjNN zZ8tt1tG}0=jxrP%bLKCMb=Ufh_ut`P%&oFz@&#KoWkZFfw~!AoXMAt&j-$zZ{1$lU zN*&HR7#PKyGvI<0{ru$~g!v9Jvm;@9wh+d@c(r9S$|Iu-5o#z1Cj900Poiz=t2aXa zz!V+osZW=sW?CosQ+%$9zQ0t^QzKc9J7O6?7mMiThHRLq+)irI_HM*@QwcxfdLS7@ z0|oyCiq3C~CZH+Z=Gi|T+KV2R%|iR}5RB$KX6xo0DjChMC*HYU!E~%p>9Tp%mE!T% z;;Jdn39qY3v+qv4xiL90Qxj^;>V0K-p=vT}Zh|Q!9vF$bTWk8=#$DjgO=?tF ztmJ%V?E&(lVN6)Zqso2ah^A1lhWllB!5zr##9ACUO_4(ePWl(#?l@PG*dOxx>VCPS zdFiO`$EGBJNXj-1)rltBX;p&@`G(}2 z=_S`!(AI6FSMH~W*`FeE#G!}u=XWQ6L!-KWH$m|m`}0&}opeseb7(&?Bx_9E6o0<- zKFE=N2F|TWt_g{JV0>~PV=d8yi&CzMkd{Q$3})!U8;Y%jyVq}CzQ@i~TQ(UZ`cth+ zCYG963i!B8=<`riS+;*G`t5^;?K6j!a~9R+Sn(x4wmNIS2%kH7yh!&;8!!_h>j(wX zwo+q&yz)*^2wi#X7-AztPM*_@3b=~N{@zL{eCHyp&FIVqrV2F=D4q#a*`Fw6`Bm z%Cuvh1`x>vQqZWTP*;YGW7_QrZ|GKr)56#e-a4Z7DD9gNi`yMZ*pP__36gZ{ziBIpy1uI9dW+I z_MGY2zmLq`@FcTP=IHXaqLj_Qm+wq3CK{+PdAGV7-4U3In-JC!9#K+lzhxk9by}vH zFbU`nnez)v@xm~q+iFq{l?yBopNxOpd1m|h1YtO0XDbWByX>E$G#!Iw|sSRYg4d_76-R~>Jf~?f006$?SLOBQp?P{qj%1!9Ntz+8yTZ0*{ zQR?DF4UmkSyfl|ElTV+8k|C6gYt_46Ucw|s3BDxEwA53ZBE8X1A2}-Y??lW21n#g7K;O#OpTgt#eHN+3>~@1GH-pEv;39s%MY^6o3}jt783O`xn8m4 zmi=~OPEw71R8jm&Up!Tlx6#|rr$vZUqBy-%uW-N8!l#{vBMGI7lp)zcsGPf9aLVhV zG$(Ek1r%C`*8?@&_sI3ap^Uu4UOS{$qyP?QM`5pp=Vf` zQ-J^%6~_{+hOzbcCIS07uAh7wc(LzMT`#4Y=BUZj#`<5fM;#CD&J2WBUJIWlynBS~ zBt88otS>@gKTeo^Qy#fUPr47bkNu%hO6Hk`l+Vv!wQppvQKGkGZypaLq70_Q=f8Y< z?_Smm9>iXQJXHnP{I5n;+JSrhYjDi|ZGe+QhGTtZ@>7`#Y?OFy_Xpo}{)jv-k26JIvT*n zpBL2iJ7P|uStb*|6^ATQ{_ZH45fQ}C&YCAMV{b2L-4O6hn4pOk!BR*w1@gOOXi;S; z0rd^T8!%;)HG{$y%Xm%aLUUfb)g=x@E}1Sy$ngpw_nhKkQKbm$OMOz;%ez3r@coe{ zeqaCtW5ti1t}OSTXO5B-i76o$p^6&hVV!?Gjxjaf`CuWxP9DGD0XU-29%g!E4-J?OOos_!^V zy7!VU&KH>uEY+sFU@9D1gbyZQ~ULv9Ne@Z~dgK+y$CLJ++`77qlI zA}5QvmYx1-x_f0{^=XuIIsbT(Ein}#yGZdhO8$c5*yBOEo5=au+kS2^X~#GZuUax5 zko9t}tngoTgm3;cS`xyJ2U+j+UJq^Ja`y`aFfH^LzJ zOprF>GBnEe6`l4PeS=;`Va@**Q;p$ZkD6p_?!SD1J^q#cBSinUZ=s0NYI;X>LSf(e zrIc*Tkvh`cV)L_*kgDRMEc0H?8=YV8JFvlN#v(*VU{W2SH1K!1X>eWQ%^@|5g|9u8>@W&gEz6h!&0(3l;0?+Amy=QTkwWCH-x_$ERV)dM9(k#y{F>pIg)S zZB}* zyyiCB)}POQdYMBy>OX#ACoR!7VGljd&KgJh&NNncZ*1OxPUDjIH7I#wMjtn&qte1d zP6+_<9fxb9kyMFJf}c$AGHY@8`8uqAmtD4xXl19ABvHnk3d?0-U>kaL-avogtDOL4 zQg&26R@z&nPf`N6h{Tx`RF>mYTwt{#GF%WvGvX2ip8f`Clc?W>Mzq5oIT zJBra8>@W-z50GUZXq#!FOx@*kE2;}AIGj-Slr>^8A2=1%UK(1%Pint(K|ES z7464&`y8xCQ7wKAwSqlSi|=5H*SetIS}EYgUTznki^Fkg7@Bb*@9WCp#Py$3Q~Dmt>Hmh9oD0?(hKOEu(1??fR$@38=|vx=6Ag%m|KMRd0}rj&cmTwgd<)i8X(?H!k|XX(y4Dx_$1TV}Li zt>0*h%_5(=S+3FbbTlT~*84Gw$aO^@1N~C8o1s8-9w@c*9+`eSpXaUHIX-;3%|JO( z>r;v#*R8wpKI6TqT7Us2e4j^q4n)qa9xfl7z2s!4XqC=>LO1TICy}FUe{Bg>Un z=rnLJO%}%<%;IV0a;1x{wyp1-gMV@EN*z4=swv~e=2i24qX)s~BJ5Zcel#!{1&Qbb zQNz0;3NtlBTP3hEou3GsdWgOm&TvI7+0}bF;4!Z4^)ZEVsa8zbtXE|`9NL<(fjnnx zP}SclXCqQrFId&9pQYDOjhR{<1W)V+OJ@ApCcRIz?k8=gi5Xl};A{G)yw~z;-3`k3$--cn@FbAg-|J-qjFP>B^K#4|VCa2ay!md1C7>c(e&z(+ceIEkcKM*x`BQ--vl*Wb!%YkO-*KT;sJ|zg~)UQ0DKPzP*(W#mj>++FhxWEhL+!U%i(- zM%mz;C)$`q7S1M-6Qq>cV85B95y=eWRR9bUoBwK#(Ui+doFYm&j&F$W<+Yp z$D^Cw8mj-3Ym`fdnu&|4f_QNCY@eb!P-wA8X_ z=IgZSK1EoY7`(7cFpYofM)*wSXPGldKyuE}mQq-$=)amY}-$a=4u zve9!C$?3+OYK>5aP~d2*|lWcQn~XvJKSP6FR??(j(l6 zs^CK1~vEpp*HfQpGa4om|*v%{36VYDo=VD`x{`CT+dd5P&2mLEs3)H6m%|J6z`h%=9u3Kh|d<% zbXbuVB*5^s;Y59Surpe1>yz6w?4=ZThH0<=#@^er`M}YpkE7o8d<#wnDawDeJ!ao| zMNyKd9-2urGQJo_1v31jI-BP5>h}1!r%OF`qy8WNMIslB-cmkpu6OL4* zoX$mH^{v%EAyX{_pmq(7As$*NyjiD1507uCHeN7QK83&E*j^2$%=@55#Wch zE)mfoV!>@4a0yvraqFOY8K7MjSv^SV`*!X`@u=ZI5v`=)am*BuzDI{Ls3VVo@IQd*5UzGH zpf-jh*w4@MIz}tA@X?vPS9*16DJo6AN`Pd+p6USt3(vpsh~TFdRnO*J#y@ZuV$*{W zMzb*>KJR>}JHzhc6%wdqOWbZ4(*(!?V^>E-!>y2 zQ-k_;^GorHl=A)49bDrR)o@?sBiBJ@2j`ll?b8{kYihb1R%g# z-euN$I^TL0!wo0k?Y4J6OKohOO`C3fmxb(d$f38x>s3|HWo(qlx8Ml}{A~Yt2@;!? zXgeYlw%pqP2Q|VnmsoVHH(B6ynhnqoKiG0@=O=Bq2w?*!s)fkY5NK>6Z~Z;Y0}>rf z>JVJCGK)8&0U+j?WobTpcYI`_ooF8-_Tna+(mQOGI&&qU^ceF8Y)4lS@ZLmmZ@-G( zFMN)1t$~dCer{$aHdO(#=MZfB<6Mx%nOag<2u9VDh)x$p@rFG&+_D2|{lZZZP3j9g zE(zx4uelFysooL9`Q|n8bG|EIxQPCI13E+82p~SAjf8s|orYRaA3W}3d1?WU0}e%L zcdfm5x&27qPH70i^uc^UPX%64a<{wZa1?B%-Y~W}T71*}39qc&UKmQZ>K7CNz+0hd z4l%87#MNaB9;RD0S8JtEd>}Ctl-a0saIc`Kgbl#2-FAx+94|^@C_r16-q*h&)khAW zf_4apfQHA~82TXY0eEh5y|K*l=Wo#DjnCm5pR-`*pJCGih&}|0a#f7kJ#aKx_YWgl zN}9k?Fds4?zH}6$=hL@8QJL32hB04cp&tC8FV|Ur?^Vr}gNJ}NK>Mh#<%P1HuGXt8 ziPU>D^#M@jx}IiF{en}iU3(91c;Kx8teJ>J(Vb%rgh~m8_#b`!VNyMW!_3 z{;^}=!dr3BO>B=L=bJ4|Gl)K-g_P72PL)^j17(VgF#ase@;gk7S2GD}Z8X#nol?9` zXxk?stC+Y~LuyEfo4`%gX&pwY2AB!kJuM39g{xKY!PWI=iQfn#GautM$}(_W5dxv0 zo*7(4@Sh;tEDjyfRRNEB>$m<(%<71}6B$>ElCNgyw(o&=hVlZ!-4HM!AtEfcuthpP zm%Z6vuMm*-aPqP{&HvM^g~}J+$m@6aBw>SnE?&wpJx9w^?N)vc-mFytD-99vLT9n< zBb@r8DiV`0;vZYti$}FUU%~uWZ^)owq>d>c1QNl=jh{TfpZ;eNj}8fKpa3{|O2!GH zu0bC+{B%pJtbw$8l5uYapKn?CACU9Y471%uOYEKB;SC+jMJnk>>q-TyABCG>^1mYs zq{vC51QE_Yyt(q)$Jg&)d3^iJFMi4V+d*k+rRT=Rdp3_oOGt`py|hJepxkqu z3e%Cwkwj7Z@zO&GMRA+V9Z=eE0M!u_@!)>Q$USxL6nMHK7dT)|w)aN^rhL1eGQKab z{qQnns7i>I)etv&y)ptA>h67P{zK0_V2r!*TR_Pt+tJ=A^;#gU4NQzJ#dIs=}=t$}UxE|Jtg}9d5+!|@lFOqRG3%$|s z2*}o0Dl_yCKcaPq9&&A(l|-k~+%e6KEhmYAApXsJu? zxwk-2X%0v3=<~E)m=iXol)2B`RNtVk!zyJ#dP7jwKO_I^zxI`W`}OgE;S+i(&l(cz zj+cgZ{m0i1tojx<;{aCf`5?|+b34q|?(m1d@h?kpTnUvy3L;W2y}!P`@O`-;FrXLv z&KojOD*kghWB6*twEM4#M_V-2CR&G2qJQd60uJx6ZzbAXmE zO)5miosUuX)PNjTqmaM4))M(SeCnTd&D{g|EA-VjE)-s-r!rmcPyJ1o{h4rKBunNg zV84wM`?uf<54yiO&3SV9P)|!LnHvvF6VM-<013zmH0eAdDorvr`(&_x(O~6)+EmT|94fou@ zStg3yLSYR-jDPNu=jWN62l9v5i6yMJi{nEh{x64*xK~Lk25V(wGe!p2hdey;bAd`o zAJkRk!ZT|~2lVF1wxX3mpi`H$RCKLJ_gOf@EH@8^Yl-W(pe=K~3%VpQ!q3n8b-!DR~GTncSB6x>%)S&Zy4KGLr}OJI~ zr>+Gkz_W)#*5QZ?Yp<1JG62Oka7ZR398p9$-F;I#gO!ZBrkXYkCS0nR?*szzEve(;6mjcnjnBh}KSCQEZ zy6$Bn)~jNOh8Pp^K;`?b#yasHpkT)z^*>1U9PgjHIue+go^$s`YewF=b`X$)Dkm?m zHQMSQsBKL24>%g>^T;-pj*>Qn;v)UHNfuLCE*wkkaahut?X3xfpR9Pm2-BA6%xD9s z&~VEgxHw?#;djxq=_Q&9+*}qeIB$g3z3U)n_Fz;yap}*I8^nsLRs=&)EBds>biBL) zXh*zv?){q3fPWwUMSaGPF{Qsd7Uwc_!E6}rg-&!q6i?5DNqZ*Rd2Q`LDt6lc{k1aS zk4ipnKKr8YL8$-3tCVQ3N;oAcz0_-|xx~lyHHwv4LjXEEo&ivxVfUXX-+mx@F+pLy z(}{1?z$jiY=l>x%d$XJ$ir%?rLi|&0J#X5P^Aj^W(zj;^B(vu)k3Fmj17jl~pVE@! zJ|1$bV|s;;<@Ii}zntQU4V|62korhJJu@!{p{PeB62?dzGnrGdsR-v_T<)WG%O-cc ziTNzAh?80(HVK$t0YsX1)sZ#{koHewoEqvx?>BoANH35vU^^rn1-2ja#($I*}dlboE4kt8_b^Hmz@E z$ZZ{HStDac(mNCNhjvz>Odb4)K1H!PwLB;|kXnB97>IpV(XOH!|C?CKe?t?`dTIaS zS@K+axC+B{!gt*WZnJ;Voo}h~2N~P!3fx>raFe4t*TJPE+mx+qaiVqQD^ZB`hXhL5xR35iY7c~GlkRP3Rr)~BGXZg?eyDuKXPc@$|JU=wdV)YrKqC4w#dL# z{f0R^fF|=bU$%a>o#QuORw*_h@=oF+NAZbCVuVLsg&XlT4f@er9k+BKymVmuc)o@1 z#aSI;ul6MAp3%F1Sr_eU3yWus`)srs0)ue%t(Ql)U6arF6HcLjQRb#AA%Aw;Xz$o9&P2XJK#7ly` z(oOCk{Lhy9a}1@s@#;hiJ+>1B7wi|!a6K$bp`CDF?(Gvg{J>gNn*2*wZ;Wo$TD)rV z%Mkm9swoN*5Aoy9(4me_WwF7j$gGU|rU{^r2rlln&+helGs@(2^K(5RsRo9p?sZ&n zWRX56i%Oi=4iQ#|ih;_P#6<`8XKCG(d;C2MbV~;@}uMV5aUw>Fzri5$4E1aW*q%qL3u2+)1{wI+& zJs3uQ8k*xjQL74H@$I^Yiw?mz?Ba6o*MX^1j($K@mMfkL!3NSJ)jIe z!&$o;JWJftT`Dinw_G-^ByzB(-|10H5y)bImQg&;lbX-Q0ZsofV|`F+sJ^|eBaK;= zUdbM7{!=;3|1cbOESYhqRTtx(>ip}K=ktb|&=~LbfAc@@G^~$4iib?6X!IkV`+gdYXw?n48dFWW7I4vg9W~A5rR0RRH3C3qZM2}E; zXppNgmwkIyPjlJblbol{62n(2`X6+O9oOeIrs<+k29l547GAZwCet6z%dup3ru(JI zi)1Z`Kxp2I;a1ReB=?+J`!9-rxPCEsKU-VWCc$%uO1VDLP8qJ3Yg4LD`E1m!hh^4m z;dMT%qjlU^D|iu0C=p95AeX$wMZlIlZA;x_6u!?E=!`(mG9ctrOpnTv(zFqV0ex*jml z!8XSYFDgmLbmOG>y7csYo~aha4QMjdbsa$NFg%%73AOlnTIB8A4SaU`+7<6rg1MYn zVtNI)zp}}TN~Rdpj-g=lmEbPzE>@WdodwlQye-SrO0%YVfbnH3m^s$fGk{UK&%>+s zoAH6cemz;=*R4M%uFonVXqO9&cU#={-p64G#g8rD376>{ORFVex`&_3#`D^8l9NIm zZ}USPA2aP50AUFUmTzv_I4)ZX;X7s3{l%*7J{t(dMXB7USk_`iJYGGyJL|FM{M)H! z%cKpgP_AQ662+)DmHdY^*6gE>CbImZ(b90rQt@k3HRoen8Pr^6b6LYpz*?85t;0th zn+A1VFKwqoJgqxs#u&pqNU~4VBn*0a37-7|By+vwdR`WCRxG?L)pZU}`*Y9L4M6|| zKsURN<9_Andy0Xn6<}SiMiTgCr{4pYuY zGIRAiun9NETI_*&cf_gk5CR>OszmpZ7iLrZFSeRq|E&2|S}H0GMuAaBJ z5mW1Dd|Iw?{q-Ww8ZQR(tu3V7;CSSvFTUHz240LRw^R$eibcxLcVX;eJaw%l3i zyZ%RtM2CFEL_B)c@>Ku59Oy;c{ky|MURl}Znw`35fmQBrF3oN%q_Cc-6a;$>qA0-U z^tD-jzyHi9V4$PNa%i{P_-U*}oe7f2F!GZJH5+IGq6tT6Hl{yFnG6x4%7!+U-tTi6 zxfC!ft;2NIm7~m%2{LqHCMHpqA-f$;JdTXT7Qj!wnCy^cL-^|?^KAW z$MQa|p)?=Kc6W4(R`})?8$!!PsCJRua54JKK$sfqMv!eMexSLnOkaOpN9HbbUx1zg zEm=IU1wuhKoHF5H`1Ef3-y?e0rdsFuTdJfyu;Ifb_1PmQ!RKB-^|f9xVO9M5JpSdoUQMV^=D?@Ii2)L#@c(6 z>xC35q~kn?a5W?*80L=@g;e-KarT!jTvb)&(U78ziIVg_%%S=+nBe?1HQ@*JNdY3g zuw6T8o#5&97h3bAzbd8UuNV;qArg6r(Sl-Hr6SvCw0+9aP?5Rvm=?6Wt2NZvPW6Zb z?8YSRMBJ^+sWb+;19Nv^Mb$%e}@f>DpBT*=?T~`Dv^J zKz_FNjZJ`|i^}`AtJB}-at|v#+kmzi=LR$#lma11uuN{`hJwsl34Gc zWI(sKGcPacy0Mwppi38+EMA0jv8Sw8yig`Pg&^s-@+2X-0KYr}L}{!HDzfGGM+1Q_ z-^xLXS}CWe>HzBsa12_J$=SmQh4VOyx?^ad7J@JWW|oPjYv7bgd==MnFHJQWFA8Cw z)vvF)sV>Zwa4`u4vawJ~ZN-W3-B1?F%5Ulk!wrOaLi}QUe?K7-6s#bE-Q>qm$xYYB zI@4*O*h5iyQ{q^m>G{Z5cpTo!hUIFIz&M&3SgTI6)n`MptIwKX(o6PSe0N>7byUS& z{_Rff?#{SA?=;($g|KRbA0*7zZzJqv9q3)dPEt1$6qT0$gYeSa8)4G=BY8yaray~= zFHoiv&=1^?hT~NLO))2tG-M~CE7|yhfgl}N&XoOlsH%%Ps7<~KH6Ej>hTZK!i* z`6NkUoFwJj$DOt;EYZfQ>A2edY!-CP^mzkFwq|dnG-@DZBR6?4_+?R!e%G9rbwJ0hH^FX=N9>s1zq0?pkZb3>j!;HHjg`# z=y26QWQt7DaL4OkdrGRzzuIjPS)s$QJFgW<0Z#KOCx zV@@7QCxk(EwWnZuNo_0qH}*3!LyW|^`nDW}wAS+@5PVLjCkODMS=Q|&%Fh=irm6u) z4XnrdP+jc-9{>bxDMt|tc_(5dMTK|(I1PO_WPz=L&+2Ehh|zOb=JGk^tR=A{X<;{#smU7sf#CQ z=O35PWkh3lf67)H@Yoo{s|MJ?Ex~1Q|A%41fwgDZ^8-bL%|fJaQeQwa7+zSse&O0F zDK&{1FoQ{^k^DM=nqF50qwNZ&?7E20!FEugrE&JAXj+mep0y#YQ|*N$tpJ^?Wy{%; zkgg?9fvCH5EpJoF*Lq4pAw_apkiK3_W0Z3`5mUwc_jX`JT>$h|Ha7OY@9e6iPHbq0 zgn`*(gjC&X^2yOAu=c+qYng~%FC0L3TGc`##E0~)I8S8P)T64Q-rSyhp!NVKChM%C zakC#t0>4VvrKU4fhllhlKq)_V7wvmf=FNyqaz_Am1@P(jKn_|YB0c`d+ zn2xleQ%(GO!9}bhPH!B(KGloQp&C{O*Mzig;Y_P;k-#cTLH`L|-hp3f*_S*2CYo_) z2O($iXTd4J-T$}fS}YYv55LHXAfHFP({LPlK_3bu3)058A>CqOxnKkz#GoMpC6zl` zd-0y6V_-O9{AZSz39ean3=KEARiJCVScYRcH?=UP7Vd?>}b3U3;(rdS4;`|*{L(_!6xS*3H? zWdF=5+w7P2H$=b}R$n|X0L8F1(@uc zJ7VP_K2Gc=m;&OyBs`(c?H`|gY#I&9-iB>yEAxpk#|l(_13JeuNO)k zJLTkw6oi#om=fhGJ!v*`BL;lNm*@I4x=8BxCNSMOdZRd}2R_-P{JJ(Nr)@P0oMxUd zsC5at|u$|hjY^}p#d6$7GEuB?XH5%aL<+ysQEdJ z{1iIl!CWlZ(LS2?K(nvGk;W{ps2Xh6Pmm-~5Z;~xNI?)a(e4s}v_du(^SoNsQxDm9 zLQs(-+%(+d$7A7SX`+)ol96L7a+R>+VAT4hY9d}JWM`EU=Ucn$|!Sqn)KRQI+<68X!kSIx`PbNo!GX>C5G zjemeOE@{lWxebfQy?8YME2|zlFY6kA`x%F@G}N)bs2B5pHFd5*O`T}~UTe{DvCtjH zqTEvLEbI&|Q37HJ31e$*T_tpDCCfE*Rjvw12#^cOR;=krfm#* zN)au&2myjX62c`hKoUsc{CbuI$K(yjVda91U%p`Xn3$Q79vKW=h$nU=gVK}{VA$j4h$mn zb#9dpTd1(*?z(IpYzxq}&S$e{LvmQC45wsQ&IJVp9c&zE8_vgS;o2U)VCfkh2)=I| zr_ad5&Uq1@EmZt0)x{)&VIcr7OSHRq=9M+Nk|bs{p{Hmbir9C^&{92@T+z74Z zIzJj93+*8iXdg8n8#$<2S>&>v+o^~xV2j3fj+hvjcW%7Z4L+{JkiGTBgQ;@QR@P4M z&Pgx_>@Q-Kc_;45B|(oWQl0t&ny7CYM+F*RcF@Y_w~V#Tj1MUFeDffcxWliEb-bJq z*u2iYiT;*wYWLgFp=Cmf0xuhB;Qh|@7?pkeX}5NSZRgmWtnj_Xn-GK2SSF)D=mZM+ zdGht9gSx&(l9tJVCE-m8?XrPe_0iS|)w0grULeIF3}@~bC54G1nRu%N%m#LFaCLCp zZi{*V36gd2v(bVyLp6Og!lZhkd($<+xRA~X#@V@8f z?)C-s-jL(`n81J)>}iLkH+7bDiJ((#HnXNr4o`!_S~FcZE`by~5j0#$@z$}V{rSbc zVmVJc=e8$~NsX}{J4%@=gpRaBL?5OcO;G3!;3Nx~Yfe)eag4Ctc|3vSvu5#XNuJ0< zrNluNr=m@sxaux%(fnxqKucTAAie{-K|f-W*b1}aW#m19S`c6_l0#HZPVNm+dQ*(r z0nbkdI};vA)0f15e;tFnVonU{@{T6tRV^{)l1mO2kFHu2qsdoE-;DG3nA0Y*?(Zt2-SHoiP zKKnMZUFPVfaYikH5LRfN%!I!3<(p18?7xp3Q4sd+6QPgMDZq(j92rXt&)wo&XTav&T zR&u|_{Q1F|@bvhPaQyG$=Qz4@=KFD*@PfS5t6|;$keFEI-_Wmf`59Ey>3Hi|er6ZBehaqdOnp_E|;?=&8|IyP}h%^?&g`PiQpTQUgQ{ z(xF^(F)48)i7W&8l?agKg6@|RtcF6A>SY7mL`pjch-tA?i;@?<|Zj0S!IGIU|@3E<2CGU@XeC@lu;(1D*7PIp~2-JyT& zjdpJmLeFa1*tc;s|D0`dGlz8o^*5VuG*YE+mz=JhXLz&0Nz7xbic#%a6u=C_F<2`p93O_|-~uQEv9iw*4;)1oooPLZ%dUdyOenl_ zbIdCk26yDVVyx6Xz=8=g?a+dr?$!4mo{bn#_uc2pD4=plsuWMjoXux({K$aZTXBv| zXB+47N;ydCJAjxNcNeUA&NCg?wL!Ye$<2_2U6fsA^Ho7+FT_Yic^WAxO$$t}8@|50 z@F?IsD5V9ORwSXK;f;F>v|6aKw&AAY-s?XPv)Aa_+{gQ27m;`kZmUDUJs&VU!^$b1 z_jm89yMxz09oT>BPxW(qy_v{9uaj*s^MAe<@&ezs-2c=clQ!5HOK!EMIA>g@K=qz` zhf+r>^2}0bMqW3LVOpGB!Z1Uk;;r4v%B%yy^RLmUkmNdSZZnJ~3%-k4fLT%Dtn9qC z0nrA4FIX4y!tg}g?7fv#$%R65j%p`_3wM)4F`b3>$f;lTWLEtvt!Z@k zmg%snzMJ3eK1%3`9%9u~jB=SGg@Uww+P8t9Mc28EP5$IDHB0*YVO;wGHLTfN27$(J z!iV(qR`v+-f#DK)#KPQx;j$rx5`RcDP?oV1XNqj ztEtPQsv`g&tF&hVpIfBqPP8`$2|vjo$AMUizLM?P2hP{^IimV9 z?m!_xO5-YtaS?jee zs**r}C8d2=uL%VzS%loBZ;Hpuy5jGLK0-dRKbeebpRIhJlVGgaDP0V=)ZwG4(Fz|W zEFKAVF(8yXV;lJbvGK20ITxTb(5B~LcQUmuAE%eDpn@03mKbf4=&Nfp&GU<4)+;X6 zZ#C`=jRT!u_N6BTMM8xZ5C}QsgSd#Ad-_4USG>-qN9DD* z7qsQ9U7PV-eUXvU`S}NAc+uDw?$q3_5pnArugN|td_34puZ|1#iA~ljd*18%{)0FF zE8}32^jBy&=~sj);iNd$1BBmS&XRW-II)oje7~V~DTU6o9O&Mr36;1Nx3nDT{@wf7 zKK7}-q}6h!@v>s?=Av@x(#x-M@{<+32qyUc7S_$Zj6{z7<>|YOfdYc?-^=u9SpNUL zgp3!2Ed0NBqKLs~|My1Gz&CJ8PZz`I^k6=t{qI^O!w?AWf43}R5r?4scdZ)X|9`vx z56<1bH<>><@}`JY_K3T-|M+S`-X%eP=T)zHDht-^^}$ur>pbReml z25%!7(4stTTaH7>xs0R7jPoM^i_L@KJ=9F8Pk8^ZYzMX7Rc>(0VV~Vs2C*of{$!u7ibxh}8VrR3XcNFDriQ9~)lk zEIOerwFA5MKbsIAaKMjT51rgFmQ&y`li@2o(gvYQOA1D07`Y;`%D;M9n{^*iTG0|# zQc@BjTKs3C;ZOBxD0Kl&Xr{e9e&wKr6;yDF-ANK#f)d0rZq(DKZMuJpc;v2L1;ubn2EZ%E?Le3wd#zyN~284K)(QcOiizAVghSJ|%Bx~XF5*DvI1 z%?JY)X%@oXZ5Sg_9_DYlA7PQyo^;zf2n=)d8C0pX$fEgAo9ZK0v4vi=^BSdU43aQ6 zNkM04*29CZ+*EH314Rt-ggLIiF!^`b0Q*S9fP06g!ZX>L?+T=1D4OshMeJbP_0W_5 zZ5@+^iJDf&d3H{x4i0|s^zwT3`nBo(&H2GndsnpMl>R`(ct9QkYXnJvUFoF0)d|J)G!OcYt+a4@S54w&^+%c2 z%iELN`#*pGGJ0Bn{`@VDMzO~4(U)Z4!#ivmYHI9Gsl16^_r8MkF`7YWupuGO)S5~c z1#-_P5s>4`F!kb}CUJGi=aW_cz`*YQKG+3Y+uL)kZp{1B94utUXXn;hQyc4i&UH%`sYYWA~f%Dnk9$$|zVw5X&cHz()Kx_dF* zwmr8TEv}KH<9i4Ff_SGAbDbeNv+r>DBA6c$LAq8#RB68jQDWC|O-;;Y%kb-qiLY;F zM~5IHA|kkp(NuwaU1OthDz({YI^73n#mGoQfn&(g)=015alpZRqKNQkSst1=x=nsT z!A#7^2Aj&=c(!zXJ`y?utZ%=cCMG__ddVlSY-s8e8z-lvogH&tUS3^8Lyg_CAQ3Tf zlDKc;TgcxP@(w#c;(aM0xPk7)rkGi~d;AT|qU|BXg75K8Eo%vX;%mpYhv=|p9Dl!Z zl)_Pc%xcrF+{_ZkL0IjP03X5-rv~lV;Ls^1*t1?6bRa=QLV8+&2Ah_amL?D@Y#$Hs z-$DNJL04L#f@N6`xUrdbXlMqn1!N8cpo4b{>b?_-3Or^MJe%olOsuNEc?i+4BPDrU z_HbQXTx7-9EaiE`RwsJ@z$I2!vjznR&ow(0;#MK|AUqX1+E}?IpA@;Y_U#|<`S@h@ z^~t_|{rYEmy2b-$`fq+7CWA*%_ZnJ1bL_LPojfLxtbxZ7JEM+^Pou0O8v1?i>n|5%ndp482#^Qq z%!X>r?d1y!7R|k{n^HU~;8^mXVw!zQ?gbiXGoH{@S1lwq5fB$)Q zYinA&*X8L(oT6!a6G4~?NMW>LIDX3qmFaar^S^~JKq}m^9L6s z&~zTBp#FYI*Q13Gva&1W|p)1X$VQ8qu- zv<<3hof#8z^AM0NKvv$_*;!fX{%Ub3AwvN%Gh;<3>u-DX<(%ad&r|XrbbfQy0V7Q( zwuA5Vo47CKp`hFdR-wn5D=9A@Y0?D?Vr*<|{jZJ=8t>HL5*kRDTgjgCE%%Z);Ax=v zrI%B*$R_0a&<-6VM(oh>GkOK1^b`Pw;OQk%I*?)^78Vp8bLf}rlrZ&?S_j}XsM14=1#~q zRv@Z`8+@EZmqO9}=J*y)scD6-zg3a0{?}0-v6-c1*wT_7sD|dYwx%-`x@G#Ef_Cqc zzaV6<8{DlRC0{P3H8lO4nGd(M6qT39`Bm|WWVpL5iCME_F{d+F1f&NJ1=B-pK z6s8?%8hW<1>#Id43`+xYm}}JY{b`XD`0R=K@RK`O6A}iTqjE934Alipp2zDW_gqQ( z+Zbd_#Sv3kE)YUG=)@$^MiRLMABI16tx4GCKM()@63f2_L5i;JHeLl3@00a`SA>LJ z+pvknMR_wbvk8KPHVXewd6^!Fuzh{04DJ{oe(1#pChA}cSGL(tzgqK*Pe~$vIXjSs4 zvzFyuxjH;!Po`!NXAI}&UdUuJFB6d{V4;Aq;DiZX9O3p?>#rZps{fNQHI%RV2jAtW zG75kT$gkhbok?hn|I6>;eN{HZGcFo732gC|&jBtpwzZ9N*`NNvegY>BpIue(p}`(( zLDm?&y+s0mPke6J!S?$0)6mk=(%iygHSApl?Oe4fw&LEELqzLQkNZ)xC=&nWelPq{ zgAL(8^!B|oDO#=()XMF{S8;s!Y$cvD^=kdFc-UO6S+z~tjJ_W! z`Gik?I^DLTiX1yDcIff%ca`=d95d3-h7f-3-P_@PL;K-**?vB)4fcP7^_l6x=uQ6lGx_mMk?`>WS|x|GEg`kTJ^rWe2f27-BbJp#&o~yC zD>ZXM(Lm_X<$bVHR*Qw!z&m8C7h}{V4n(3LD3U^1`=s|`I0Dgx_bS`(&tBj_U zWQT*`+TTtu_otd~5yuK0k^)P(_u=9QR${J76X@NWy3UP;jy^dvBgIaXUs@WT!RJw1iXPbFtYF6BSYwNAZkHuxLN4;Ah1PcF=MB3WiYX2u>#hjknWHz%koUQlN@~{Mb z1N4gz@Ks-$#^3rk|GK9p9nEr3|F1X{YN0{H%R+`;bSHN=;M9}|p}@&d;bqw|<-gVWYj4F8M5#K*mXgL31pR)p zAOo!awL4INNc@ueY^DDz|TK!qHoux>MTiQuRL^PhpHQ@8$sH>xr z=QV{>q)BKRj2t9N81zLr6;)!LR}<5pO2Vqe*8}%{HCip6rD&thjjDZY@W-fFY3K$( znjPz}2kEvyS97znRu?6){ZQnQdLp||m{^!x=^`HH_(At4DSGe}(+SoZKx3oC`KL#! zGFXw4*XNafBfC?D#igaj0PX{Xi+_Juzk*w}Za~8G#bMc}$Zct`DFqQZPzl;WOb{R@ zhKb@q6B}}b#qx$fJT*fHdr_NRuRx51I8rFtomAEdOI3LOL_;~xEGNI5(io*QNd~{8 zR12~-NKnP^RC5N8L1!>S(tCCg58mR`}?_wUR3DNI^;uQ>BLrmUEbmWtsp6 z1~LUNAKzT3pU}&fFNXyC+f=)poCqH;>9_Xu7vdqnNAxX}q-|FV`tN*K3#> zopOlPbZ+JkWlJrN%Z1#L6D{VZrFXPo1gu(!>3X(jFLzS4tE)shATbVPbT+e5`>o+u zOr3X**7FJgJTh&jTj{RJsPo9ev+#k%#C!9%mHB$!B?m`@oyf$%z#pIn2&fH3#l?n~ zM~hT^OX+kgfj#K!tHFl89YsDnx_n9(lz&o-aLmH_CmF6#WWBcgzTh9<-yx6sHDM8@ z%5-9YDBgvuQW+x~#S5U#Kfb-cx_>C6+jd^m04c2Y+(}R2_nZR>$-p4deVH@ZekN2r zBg9~-uE+dFbHswd1qg~|Q&Ur*$~uCF2Xthv+8BwEkr53IjV1Q&%}3f4m9D+R#wRS} zz82auUqOfPDX*1NR29O(Mbhclp!sw6pfZbB0J#9~5{ZGs6?Yj&sO#YuS-h{c;a_sB zuHX3nf%pNMiGe0sfByXWyg;q{n}-A)tR4WF=4%~b-abzx1Mbv$+^0j~p8~K|d?3gW zOGtdnAO5=N0-}MF!2>7+kNfdTu3gUN@qu!7g{cMy;+!k!?|jE%pJ0zvwe$@PsKKL&neJ z>=K*`;$Z+cPMF67p2&c&9qafo5$*fUX1+|jF$%y)z+^4V&40}nK*=6Y$gWS5I)}%{ zF_Uy%U%4%L(A-{{HMDr{^t)W&G2Emn)WCCnM zbVRC5f&%O2_I4Kv9biENY<;fLj!ZDiZm@ys{6JfnE-*@x^|cSX-mJq~uOni3q1V9e z@kpd7c^{HefUSjChG%0)w^O>?i#)%7r&#kXuS}6x&Iv6Q4AT#P+RUrf_#l^t%P_&6 zY!%B8_;0V@CB-?uCMDhctD*k{Y{9l^uv?B&32SKJZ03fa93%&G>X7<^Y_1+O9TRUF;>3#K+ zY%8hrj;hu55bnS0X@ss{EZM+5JS>v{CKx30BlGD?FR8~d<>YtjLy0g0r zVEaognj9dBOwG(_@Yas)T5NUR>ZW@^^P9)n?NC|@QHi{ZnqP>*-k?oMTYbpmy2w_@ zWH3Ll=Z=`>z2%b3A9tzWX`Wk4^QV38Hs438TrsINxoXNelrR9qGakJBY zh_R936|A4w?lZt^WB_=F-lCImcP+JhHSbrnLT2l&2)LHq-)24DZR5-z%r{0aKO8P^ z*@0|_Gv={;yEL$TH?kZLqxu!PVf!ujL_DjpYUZ{fxjdI^u9n#&9XvtQYk}X)z9*<) z!pC#ObX@+b*VWZ+Y(CeFg|Y%D<#C&Ia$os~`ghp}*@*`+7fg{)Qtt4pKMUfcBY$V5 z@fDNM#s;OvEh24g8O;}*#t__w@D~;Z2&XB3M>2S#b@88AIvAr`1<6GEtDoLTMJMdQ zt1yY?C>fO-C@NwEqm!-)Jq$elG84Mh0uv$0PPCbyq_+lS0!4nX2`V}tJi!yDx()-j z%=GW|Q`|k~9%7L4_P&kg?^#(P|77KRGnM6dcje%_-{_0#Uu!mYdIuYunw;zbX%8^# z&6fR&^=+X?k5_tu2hu2-v>}_GmsFKAsKGx&*(=Ak^8j5P9UYCZ;&>mUptdE?5Oi}r z#`1XHT9oAHVmsW-b8z#i$~Z7zIYAV<6p9j^ORdQK(PHkC})$ zo#c%T4X4xEcKJS|F=jwlloFs=BX?I(857d>N54_rqwv2n;;XsM{PVir?X64}M8;qm*Kl2wuK)Qzhi6=sdSW$#$>zl{-58i&i;X?>(T!WukI3T)4Cl zm{?>wRYS)sCwe!^NgJ!+22V6ExC5pBL-uXU?;|*sYdR-FNm~Yi>Jn7p*|7Qt8;;d; zV!iNmW}F>9Xj|NNrdO2IYmaZ4nXfYe*cQCsRh*ib=sus(&qDrqH$irfm37ri18D*T zoX2qk`EtpNS^s7->EnUs%og9fGQ#2sLE6z)X8dpmP`Rw8cv&8g0{Usby1adt#?6MW0Xhs}m*cX>oH)O6b>5D)l=- z;(qm7j|4*a`gK7$qfb&^LqkK^e6Z*n+tx$Q4zTkbe!k>_RGE#v*7LnKvF*HfeF|St z(w;SK#LD7F);evEerr6Gspd3p71cV)^~uzTvzeEWx&z87kLv-UqTn?pP-}a(Vb$Os zt_QQq@4t?wV+jw4kb1!FPd)NYKVAeA3f&kgoD?d(u*p|w``YR>Fd2#V+-EL-oJc42 zNM6YNB3LS@3p&=JjB<@A7#Xu#_epu?@2Z~bi;~42`+k^?W)orUBe%GWwc*<`6nZUq z_0wjrvP};EReNqL4EN6EF`zMUJ8np?3C_4YEd~uSghAyYFOxOwrnIp0mM* z*<(a*N)Dcm)8?NzNa3IqXxBY4>fPPl!AE#me{o14{NR#LW%~t@c7t^ekS14_+WsdN zA0CJ9n2V6t{h9IXAdX+~a>gy!M^ZU>lX8 zhfO8y1N6wH{`GAS3~(-AACmanuS$%x8x%C4&kYsG zr=eh5MXggZXaQ+jS63I545x`;do2XwSJIJ?60YTtLJz+i9Qy+bB;BTS{8l=pb{Ypa zYcch-qCqxHdeL87VYB%sJj3oGfk#Vq-FkTToVINzlHlvAhoGYiARMpDqs<8^GI?B2Kx7$tAH{;v9j=ZI1uvV&9Oi8r zt6la#zV^LZ{f0!|b$_`$R^GVu8ww~bo1mZqNa6Z-YXk(ZL>{lR9(jQ7Fy?zv8xbAt zG-r}@arFJ44J&kOc3@;5SB9b!{=a- zCQHY0SxV?eS@32e+LWXc5JEfebz+`NFHm!ToD=DM_}oyz(ng!L&K7t%*U5knhgvu@p)TyjLTr~d8x-w-~>)a3OQ%gBos zQbLq`vbA*LxtLpDw?$+FC&n<>TihBE9qD2zkw+xPjk~RuyafK zmTEKqKk^^E&JEIJwbe{Tn~=H0+0~ZsF=^{ z`WD5?z+&r5W8dyfD*W(98$JQ0D@~MN+keth*JHZ8rJIH48|2xEz~8$2(u$W_UJoI! zS`q}3m3H78bMCfJ_6BCVIxIRhI<%4@mFw2ED&4n}BTit3inGc)DdSFfZzrIBf>iuP zU3Dz_jHNcXeWd&Xt4l@_eg$C|a9aXEp~ik_?Y7;Y5`V zp7GL@dUMui&ZYXlL`|2^}2Pxb9Mfa%{szX_=1Z= zxpTOqeQ<|#{&)n#K-@I3VjvuUo`R_r%h{+j<_!yOQ*%RvacyAn~^X4dtO{kz+j>E zUVRw(Kb{9c zu8?O9*EuF(LMtR({A)ps>L1c3%0o^tqxRhCnBSHThll0XE;Si~EK;=)j6nBB+ki4Y zSO!ld7EaF;e%$3m;M68!>b}<%`tC4bQ-l&br=tUH=nE6MIHbZMw*59XoHq>1_lfA0WKZnykFrDA{l*rA(x(f432C^p&)T|ME}fXA1Ytn^wqs@2@&yX4Jr3D z<=+X+@AG_0`FHtgsp0tkb1Xp$Jqv1W=Q>!Li4rz8Hfw&oc+hj{NQ%*s5vs|N7-{%& z4#6zuau&Gi!ogqHcH(Go zb}34Z90NDKV=?aKntRsUY!vGqf)2y^|IjmI^A@rhQr03BuIv}`++k(&`VVfjU-p%a+lmlL(3A6&z~vZV82;H zr`Il-gI;QsK~9VQz$yV!R5phn_uLz}BD;}X$aof_d;PlVl&g`Mss@pTivltO0mWW! ziorb=P}SVV#-#s|)~9CeT$SO^Sk|xxtCLK>JI1ok8`NY%AvZJg*RAa@A5&H%#@^YQ zp*F_QdfrL^QEe3Jkr>$FZN|TuX1F2;CmR{vOVjX$H*$js&cT=|#=PyZW^wX^7<~|ImJQa-m_#HJ-Rf=FjBr6MNg8&OQi*J zuVU%+)KnwTk&vboWhatH9yMqG-3slH1tEkTY%40d$NbD``Yo?>pqPXD6T0P8TqxfaR6AD$kleAQuyzgDH<+5 zERz%Idg|44P$@oR{&#uYbJI>jz_j=WS^HB>NN3=RW`RRpxUC&?k)2%w1?GT5h-5A| zD^k{&6lhLL!g$S>{cT}6&a{tb4w*YGh_s&|ri5&oF9Qh83I6QKXT1s%vG1;+R#k7^ zZ+T&O_0OtOSyvbMb&QRSDBcjY_d|ClhXyGe%0F^y)F79f(HlUC;$m19mZMnh zEhp}6y$Fs9!iU_y&BY)aJVoYvl#`<&s>z;Jmiznrv&&0kE&RpBMbI-`8_HX@R)$lu zia^3JetkILn7*@?7!QNRpsm%f!ak@GjV`FtecZvLSs%RU<= zPl+wj$|TsC)lxzqpOf8!cp3XKBIV6^N=amro5TAa)xN@j^R?y026X2E-r+sW0+c+_ z^_{)*A>IyHq#>c2y1KHudZ0xrkkuKn!mBl{Kj4C%3PZ8=1-u#4EwSOb(%>4wsDxkb z3t`w_f|EyBM$z~}>_GbSnS{gHQxSLr+t2-4RJiMlNeVweOA4qeAV5JOo37L!J6dej z>h$#yiPP$a8*gBJywzaIymFWxDNC`S7}+mEA=uAP%9OZZuC3h-ly{VERMA9~+(Pw> z5^R)YB#NAGx_a*GE%?~nvtGgUCqI&~Uu}W!9nqkmK}^vv{-Ybth-y*Q(-XCZ3#18w z#j4TXV~GH#eTqoXVdG$ez`EJxOG-;?KN3@GaMFbL78e)yF6)^%HPEhI7g<;Q2O-cY zw;t;%1NPT$AMUSw@7m9_uuU*qZ|+dKlxQjGR!Bl1{Lu_Et;||K`ixkCT}lizUqR9Y zE9MCLO`q!*ez_f_%gG!1oG>d_w#UwFxvD--rz?lRkCsRB@kJc%iM*uDH+%l<%tTwc zSXZDXJN|d-hmSaKS72Y;+5cu-96QH4)LLMpeO!exJ|OSCyUgYk7w#MQb1q*rf!4>C z-^8h|A(k09cJlm-y${ax#p^N`qI{zts#E=U$kkgJRNP(lih>Cvy9aiF0utn>wg2AI zp{V|oP?|vhg}xnSHtjK~4Y8KZAv}qTZS1mImPw3@Jpp!HlUq-X9UAgd4qY6Qi6pc6 zgg&Cy?GI*IK?@!k9?sd#4e;yg1Ls&SR|UkIst)^id&9eJ{p$X&n8Xll_J&N;Tg4jd zgf(xY^T9hlhkd?OIaDli#8adj(LfEE6RiOG+n@T(iH>6~~h-8^FRJizBp4 znpwNZHR6m8VR@}y2JO)X&Lr>5zy2nPe7}Xdzojw=l<8~lEANi7gb~0Iu|k0;3dB$> z^k4!l1QS_~+xv&Mz)0KxwSud_GdhFyKYXb8%z0W_`y}pmJQ$43lnCj>SpM(6(VX$4 zCK+khc^F3mDsj5;p>BG3WTe^+syAJ(tx@yhT^4e-=XH{%-)$00QqG~~KN`Bb^}O+_ z*NMje(s>yyl^sI&4khenAtR9v%6N1V12OEk<-Zxmt>>wULb08U9a>{b=yNB2VV`X0 zdnZ&olgih8*R8Sp#rHhj0@p;!LHi%;XaSTrH*Gqv^^>xTGTJ5_7BhDW-dnYZS^W1g z)_!p>>?}k|q=AEuMuT%3JM;wEeKRauh8gZ;blK}=S(ZT1W4GOgv*5ToM=w*WB^5gB zyI8oq#P*ZFRF7RK;tC&pz3~VC}rPR1$yGeYq2L zvFUR7i@i$9=B4M@$B5O&Hy;luGo_$Q@h<+`5n*}${ZI_0!%9gyyy&6=w4%#Hk@|Gm zYo_jzf(999htop2=Rp!>g-G>pLRL|8)KZ;&q6j1<3c6o>rNTLu`EMYVH9Yn9CLk%E zwA##vR_9L8g5)NrsL1?5K>ybT7dhREI6@U^-{YZIRn!A}<#u0%x1zVjum^}hX?Pak zHyQf2y~qWGrW7`_*)|U+qxW>qlj&Jmg&>UpeGxdcp7h?s!$aUl)Yo4=z2PwJVu?80 zC7bDMyR?mf3M&0+3Uy-sCB&Q+Kw!(Lzc4?R+HWrvUTS|HG@Q;O&^Xdddv)Km3e0^A ze4{LKU%DZJLrGeB>Kb_%N5Tk`;`gxw7~9x`Ly8lx*z(M$zWnoCsBn#Fp)J^jGfaH@ zK60GacCp`tEK7+u_FWp=Dx((g)ZN|8bW&p?8_aWp2z@cJ!>!QsK&|Zp`&40Fv9Uwb zTWQ!mNB2el0X51a7u|~#Dp@#P;N^L;?VCpPTL$$PVL`Zcrzk19J!{Gn$z)n z|9%*ABUN@4O0iB!+)fJ7ZR7XfX<_+Wec$+P3d*FmHZd?1gg2brsF=xcc?p!R_bH^H ze*DtCQgS$_vx_CXzq#FX5aZYVs|JkG#Phch=P~4s2_bYA1GThCy)~UZ({*!RK%wE!4 zayK96Yc$ek`-8Yep19_qsr{VFmLF~jfklR4OIVw&zP`TsrRv16ZcSi|?%x#Ej@_c- zug-AaC*8%Q8f^z`D*Cw+q2gJ~t}4hi7lUf>Mq2oZCMM3WjysSG!vJ)Sm*$e9i1~Ie z-;g=dZE)O%Tpbn(2@<;^YaxKmR2qzpi6jO+D=rJ#A?rmIhG;!cevaioME)N*frX8a zjE;i-_yACl!E@+%pY;9LmcDB9Nq7gBd>r6;OE~>_O~CRoL|+;)mPXCVBd&Dm&r9Nc z!lE1s^eOa~Ym0w(-P>q8~qhFT8o?a?D^7U>Wa?O7UW*ycz^5&K;= zaxeEa=Y!uvaMRwZg3 zldQCph{V%ND8c`2P4J5AUEnfVR~Ex>YRTGy+VlQMdkY+D!(VUrTjS5LmQ3_ham8I5 zzOH7|8OWPv@_o#SQD4SZ_@%&OV*qwo?cDN@{W*Tn_xtrrT9gtl^p_!LjAlr7X%TWZ zDAXsH$M?5idwIQByp|)0#qjKJs!3ZXX?T>7~sZ!J`E5`#^Uk5 z+J-M?%SAT{!2gSbxwv{yW}ItDLexH`u*59Efb-!vp4&bAp4^r&bNI!@NM0BE%I&>= z$=UiBCeb+uClbo-WiV&s=eTbmaqTm5Q%`d4&s^8Y`RS+$FU#GxgX$gC6wh5<3!>f* zwQ@^<$SePJ>=_X_E|YWWT?w0$>B}wJVdwq+NI+!h;?No8mkFZs5o?dze5}hJ&l~elYcF-Pk1hP_fB3DYBgj#;`3(WUg+-fx zs@HU2v)#hvKh=^#m!G^fJynN^;F*lz6o=AAUU^VkGI7rG5`Bg^>f&3m) z4R16DQ8)eBk_|1#3xxt)%f#44dqYF6fl#c-OzmDhRqgN;D<6Fpi8c-O_16mlF`o|( zBydqBBuu-vpY!R)S8zKVaaR1aok{m%)inzERAz5+j~#i9WdtY+d+9yJ-nrIj!_rVG ziacJZUJ2;lGM8AR!@~iaG7Sm7iWg_)#SEqXu)bjU$me)b zF3udFv~#Ez?U7fv-)d|m!$kN&;{Xg7_jL8L!RMrpASE-iATRIhb0qZ7cbwX^RM8Oh z3*(2WnHLWSbic0&QWU&HV}=3%pD-n2@V*z}sp-A_v_s19%BqO5tFd81nwEzGg;27)?Q z&MG8YR$PVRZg_5=;|w=A^FXadp2_PHrpb^f%@O=_wKu6pC#F~3&JPED^>LI7d&#$@ z0Do&sneIa8AG<@^jF^wWANcV^(N~<3*64wfSkEZ9wbA=#URGfDtX3g+@oR2A=35br z3DFB4`n_VscaC&`5yQ%eJW6s*f2$-G6ldMN<4|Ev1 zCmBuk;&0?BOs}UBCVtQ?qf<)MFXMbfO^8Jdyh_>yG*jFJ2Bck3c3=GTA-5UZvgd9q znh(>MOD{EpUDtH7dMRNFW z&sZ*^|EI;~)kWnWm6LHbj6%f$M%@ORfR94IQ%2Nozgw&vU<}|BRJ-p7<%0TNT2_Lx z{Jx`p-(`Qiwb7ur=0zs^b|&-mB<*LFMq|f;&9zA{i@i${+gH=FvQ)?a3RReMcY7;= z<6wH)wA@;O277yZ8>B($yF+zOvv3MTxPVD~)+VNDoX4O?Bn(Pk?q-|Aop4?jGo)uY z$Ps^UiI!aXExcOqbMF5vf2Rig>8*;BDunZ@t8$FuXxW2t)@FX!YRa1RxA7 z@^Md@^>99Ttntbysi9OdltsR_s#+?DwbP4my)gP~+NMYS-+YHx3U64|J@y|MP?>h& z%n&(*l<%5&wty;}a)$6?cm$j%C}{`AeRTn~Mx@$k*U z@$maQv~}@D8`-p*^YLnrI=BRw5AzCPT~y<@Qk${%@+x{jwJqp=)bQw*%-!CmGyYYH zN%khbJC}t=Uye-8iY)YEUixB$&BhyKYu=BXuTPwjbfFP8+wfQQZWRk9@W)G?*PwcQ z0c#dTCImXFm;eDC{HqT?-=8r{XZUUM7Y;!jA|-|YZP^%eh)E4H9P>t}7L7;5g~?Jv zitj)(cv5wz|KpCf!bI=n%u=mGC^46q`n{*+-X2Q&A5~M4AyNGr(!V4>mBNQUt9?%N zrj;3J=4`2W#*y}ic$WBWG-mdE6M8G-wu1dVM{>+0US-!8vTWoojt}`#kg=pI`3h@W zb93od`GVi3%zv%NM#o{p(H4HU>LmFg&aP{A>?gqrd1!$-Xht6)eu=PQmxt;oo1K3J zCRujHU}k)uD&u?uIJlwXG{W&p`wf-qD6)aVGj7hX>-JmLD1H=$2RcC$sTcKi<1Abn zryrEwNmws4mEB>s=6TH)C6@RO2%@?ME7$A(9HTLC~T${=W6GdMc+Sx_< zxM^+#TEXmu$FYV8yXyVfd;Nibp3?aK*Re%6Bli!j0sj`@s=B6Fwxm$BN9oFl=!=ml z6aM-h&C#c+Ltnr}F9j35?%kaew-#dz*rBXwn5dxM>b0-$7o1o86Y8%*D3gQVX47t! zsB*GrJ_h4V_?!HIP#rKxfaNbSzObP4J#xq+6!Za&e4!!{Z-wX;jv<;R$#krg^(?^RC<9gGz8T@EAtK)KCt1dDe#R8y*@34XQE{KEKPNsYRVCw?O21a-Cf+R zSC%Cd1x=wD4Toe5**3Yzw`!i@n`BgkeHgo((@kp#Ai#QOTy@T3PriME7hVB&9N zk-Y`UvvaC>;S4XZOK}4V(+%L`9bG z{rM3}m}?299V@Bmzg`VfKQ0uUi_f1vo+>xUte8~j(i?YO zjv3TM141^!2?lkGj;42kGb8jaqiDbZaUQk}zt%i|k{Hgz_FnSy3VVz+rJ-M(jeyZ0 zAWJKAUC47-&zj)kOZAy4B?xF}Sjaq(*9V0B&0pMH&?|ky*+1ywb};fVMtHt+pOig3 zI6QA2xilWeEAV~hJ5eNQJweH)4%$y~I=1a#J^3hq3lm+WVy?RE#>REG0sDISH)L^g z6gCrAeU@+d)I+ujdyh+e^AI#|Ht<&hU$;1l(t4pED%xedDYKmpL#F5GQ+rm){xmK! z{*aTccRPt6tI!rQbdx7e$_7zvw2D#=5)lUBxOFc}U1q#P`Y#wmZQ2`B2KTW*Ul+JO zwN>WQ2QT{f=h_x#bXB@Qrng6+ZBl83l#P=_O1x+ZeFK6WKK7sCdS%(Eb$+*Qnz`7P9ctW+%#Ycn4V=C8hjy zjuXbO9&s*Pb1zTb_IvAdz>Yen*X3M8yE%g*?&$FFQyab7VyXZ*^&hXIAAbRZnF%oQ zHXYOqHNi%K?NbQmA#gS>=KTQ6+Wu3lYQ5N!@Z>LB|4Mdeuy!&xr)Ar`i4WS@hJYe9 z?c|1EO$ptrK7d$Z2h*e*2xyx~*ryW;>NBlx@q>mb^AEwhhpU#} z0$LfyNaz0gPpep%x>F&k^s1|3>Xx!i>^OBvH}V!zNp^cY_(k2n=pd+Gx)I-<;kCl0 z;q6_Jh1WMu+DfWk)LC zQPbDU&d2*Fn;JMJM0M+ZF=uw&zI-dtahA_~l7rzB@-r9%wu<4Gtp9MD1PUtZf7fT- zZP0k{YcD??o#O}Ayt~1yyBDOSq<2Tq2V0{uMc>o7yL0_Vmo@0#-emnX11=Evgn20Z zJ;ydzV0jc1r}C3}>w1+OI)(=j1U9=ceRaKj>)8`p_DFO z(C-c=N@&s>lAd-;GRZ@JnS_Ea6ReK+6#^gjN1CpB!#~_p$F*WN9f#-Eebe@GhyAw1 z5_vabiRs@TYJ3v1oK^{0X>bvC5|DI8Q@6{eM%BN_Bj(DcR@`3tex~|xeeu919|ugj zR6Q2A7l(JU|oQwSkj$1rGs%LLhXv ziqQ<5OU;{!+KC4+vWHc&t1cwLt`V+fw5}%?-Z5}P!0Ib~7_r*Do@V!IKxp(S;2?tM z#fm4uQJq1c=WZASDXXXe?xI4v{V?*U^c4P5t_tO{=H1F%p)8**HVU3T1}9tO(UIi& zrP)$b1ODaja8|XWBK=srGYX)Rexe>8&c(gDf95Ty?^_;)l3cjh-l~*w&Z46Et;S#A zv$uGR$laEJb6AzE1+$Lx9@h(9;e6)~!klXN?N`Pwv*NfiR8l>ojmW(E>0=a_>ls|@ zJ<#%*wTX^$?QSz;@xnLQk{W-FaMMiePo3GvcU8MaFaFM4zfAy^T3`l&f)OS1<3~z* z?B*vmffF1!m#>1Jj9z0Cc~VnRZomd>+p=3AaoPTO58Yl3CR4cc*%^QH+G7Lj;TYrb zJLp?xdY^uH!fwmpnAnS*7h3U&Q^jDiJuf?0NgddE zy~|IoT+6HN>W5ib{d(#&$1qH1Ox<}ot=+?CHGYSao=wf*y8T? zJ0Gm73tJfe!yWIxxL)eEvxp=pKJ%P`aCj3j;H3Ykk4Ov@tRgm%_h%AbVfx{3Tum5b zjyup$jX!<)SN&QEA-t2jxkBS6Y!P+Wf;_d=M!VVyqVA3;N7kE2(>sYRJB4k#3Wz12 z{qv#aLf35=z)+aRzTc7o$`zw3^w&6B5Q8N%3x=Qfs1iOe9ADIJN;)$THzSYr4Glvf zn7~3_a~cqTK+r4RCY$&6=n=B#z(Ehz;4g9A&Tu;gM#qz1Z==VjrhZN-3XK#B-CF?i z)%0+)AK?CJ))=_w!4X|pTIY3II=90YM(u{rL@n0;C1_Ll#o2G|Cd4<9GcrP)bjAOG z8Z`Bl_r&&YNt|r?1BwEdC1|zvyXf9M;I3~SGqg0IbMUFoR&O~n&NUMMwP!ldIq*PM zGf6i{3a_x>*05GNt=^A?H@NFv1OQ7rDd|R_@hjm!{aS0(Y_*8%+TNxgKa5c}ff(n( zvgCmZOUW`yKa$`vG%pcx`J1~iQTCC^c0H&q&s`RofTgnF`gH$5GoyT2FU^rA8ehZGyOZ9F1{>q~i&!hI3aiH<=1w$WFE6hnoOjOwQhN4#4rO%7jbqy9 zGSS4k5}8uO9R1Qq!+=}%@YDNMrewc=6STisKnqOV22kGjiWLDW_u7_c2}wD7Y(JE1 zk`w#6XdPdY`^!8I%OS8Jyv%s-y0KRNo$B0b-qq-(r6cp$#ynMVCPPA3ACqys%u4+S zDk+GpI=m5y7wLZS0INQ4m@QPeaoR|-zl+X(vCc5(w95WNa79UweWIh4Wta#p?r%#frzv@^lapw_^rxdoz#il@K?Q81dgAz9`SaZCRBnb;Iedlw2@ zX)~(CBegZ9n6Xdew`$9$}cwaz}KPf!ZH2DFUw~BvpS~h>UOS5 znk((N#!+Y*pPAtA17lHTD@Xvl&3r79F7;@0^;?efE8a<;?=GMb68n8U<1A?GSPTOquMmUY%V6uMO{82^Yft7mF@h5$CSl7d7G+sv-JTD-SKA%G zzf_p2>7u>W(Lt!3UkGA#C^)7eLV4Twf6;W6QBiemn`Y<%5s;FQRJywx>F#bsx}{<0 zknZkIm2RZFL%O^BJ3QZdf6ZF_7}o4__FY%p=Bke{dwpibWx=$trs4|00bS5$NSx@! zj{0#KI~ig`m-m3K%AC!=4d5+(`0!yJMgI;4ke9x(r6oRkvnuXQ%*{1PK7HhN`md<@ zJ?0(tcIPUzn=a0}F{pTWkKGu(go^uu;mGBPzec3SBiMm#^ ztVKLP?UT`6OA>9A2~Q`d&E3#kkwzxXhIF^Zy!M4Fi+jAu)X8 zw@+K_h{!oy%3j3yLC_6iNY~$SpZpBxSe81$R`H=p+cvO!J>7d<0ANs_rHpw|9vcIU z<*m5KHwNVeprm2lbOSg*0Eu#K;Lc55eJ+lkWEX&Q#d6~Z9|;_|lsgJ7ng6&G0I@{8 znPX#3F$?Td&H4tE4VpdELXekz7E!G+GaXugen{3_)4fI+t34Z z3z_hJu_*MOx8d01auFq?k2Ch=h`wP&)@aM@Xi@fnNhJELk?hXNS~IA-( z6iR0&8Rgf=d8s}hE<>d~A(d_PR_+A*qIzVl2;fkY5GKJ2&9Re<9ZJiChGd`YWxbS| zJc~MOXHcAnkle@lh+r;m3jlz*2&bL!r~T5{1Z4@*^3c0FuN>3S*BfJulp&1rEq=9i z+J^h3_z@`^c|PB|xrb{ypV-xqo9Yl}K*1k`a1SO*HCe@YMy!iG*0gUN__fO`-v1X< zbYLy;5VUBF9?=bm?er*sJnJ;|lN=5_VOh5I6pZD{;BTChB_z@DlF3^!;soVNbd zQ|l&YWiX@exY*^ifzJ{DecqHHiAW3x~D+U?^zCCWsYuimKvPlWOrDS7D=Th;>AU4D-Qgb?#FbVj;Iyo_INBqw3&sq+UbRWEW#tR# zNfj@{@gDcJs-6AM9z2s^inpg24@s<_M^s&)OFY5_qH^h9-hotHFf&p<*wl`Zmd==r zq>4g48Vf_oL-p&zg23$;GkKVTG>TP!-fI^7?xp8JHj+DT7s9_tYyBMBX5zjnJVu)+ zoZqV+>4ch)rBSGANl7Q(*w-Qo&~zlq(4vq0&M@;WD&w+fzHSI^TUFZE@YCRd{Z9cX zQ&)!Elj~!eZnNhr_sqG(ySrM%E|Y?y`)JA0!tZxuwpXol zQ}z9Od6nY*D8uQej`ly#zk|vBZB6xzBK7=H7G!`g3;Gv>w?*l=3>4|>Uz?10= zllOw)e>o%3M1N6$sprOiKRuK0SR`-E@9mCScj`wiI5tYo{uslZlJ9L=i24|#@bhXd z^33zjDAEWP7IHvusXcuy;{Jkt=olt>WPp-p#3Uo0SX?f^bTPk@9lVF6lgZUgqp-2U*=!o0v2eMDaUHwNLF-Ta_e8L;7)@H0SmHM zVIAdbpBOOkUxF>D9yYoIp)#RRyEz+I%@;+`Rotijxg_%Wa&|Ca|#Cs$_69 z9L+ZvW^l)8^y-O)kZ{sQ+n+Uck}2sTvF=_f`%r$Q(Dhp{ZD&B%S>1MCwi?6t4(0xIB??YFSBJOB6 zHJfP=%n{n`N-?yh%MoopigNK33SJ*SWOUy!A%lqXd8yXt2mCQ%p5Y6V0U4B3G!ir~ zH0xx&J#Qw=Gv%~ux-`vI*@@YV!-U`!Ynw*7BQZszgc{E>^;d+ps z0O8;!4eMequyezQ%>;Se4=M`&8%`?7K#P2jF+$_>=th?F_gWlHAj^M{IOl)BI~~)y zg;3662!UL1MlbK;f|w_nwB=91hfpFBO-03)sau!s7x!NMw+TvjZEJ~Et7~g^PnGdq ztRw77#qqg1^qYU^T|!Pbf*`n_$n$*joli-RhVJ&PWz^k*D#3OrC1yCWJY^w{Lpu}Z zYB4v^2(3~D?2)mP?dQuQA}3GFIjaaKz276F!rp%HG&yp=CSq~CaO;Ij1oo=q!wvy> z2)}221GC?rJkl(c^0!VU<}(lSdeYB$QRkLcqa}so$+Km~iK;fFefHS)hhF}Osx`24 zM2Wo(NLtw7Fs)HFNoBnd^$Nf!Rlv<=6|3DM1;374N>eXN+VI5Ee5#| zhQTz80@;(-$9DI9S7LGe^#T4It8?sH?(}n(aSfLG&D_z<&hMWg{5=>@mLvh|#5V6P z7$9bLcvi2wSkJQARGdA5Q0SpTK-Fm6;IAkxR0C;S$LVSJF1rj)`SPI3AjTOIE`cWo z*CtQcKQ9rH<~gFCU>4Jj)e+y|+{GifivkHK>>XtsulkL&UN8P4u9dq<4`)Tl(Jr^O zKhR0#9q0W-V&b}wdO;zE+?a5%Nj?SREei)0I>L!Ttmx0q|I6a|`AARwVDX~znjd3PotT&(t9SBf-9s23y znVd%UFN@d1;I zO1TnMkTYA|t~*+dG?l}=PS%}{_G(MAQb!-h$G(S;uW0Vq$OnI9sEO9U@uK}6-G;Nw zsk_f;zNu&@)f1yzl6*a>Q8MRzg%(2=( zpC5JDzWOjLjnw&}p;xzqKc~_t6j!b0hQuggN7CrG&Ns|5D88xTYw8Ut!ZDN&7oie0 zFORRG=X>qY*`xX)AoObVMx?$oQ1K29!qv;W;@=d>f5}Zg zY^>PMx%HuEl7cSk2f{Tts+mACK!^TI&X{h9+XmBB$@^dSI0d&L-YiB`rV!R|{K$$c z1Z~kLP_|c~R{YS`9K?HTRNgzCgYR|U zEc60%_IQ(n8JtUMT2bYB7N~SdzLQASeX4OqhD0PkhTIbaDPt%vLZHVP!I51 zhboS~hLDJ}=Hg@rMT_4?%%h`6W@($`C7Z6HFSXU%D+JW)74?KiL*0n9l1n#H2haW) zxhSkO)6>`QzibH(YgboKU`^y;C)^a28`C;_^$j7|8ssFPpQ#9aq4;BxTy` za!Wt{r)33|uyIgu8K3#$S)YWR=URSB0IOn;%moK6`xV+2@i{EqVoB)ehRT=x{zmM0 zqIW0%g3+gyI_%6lE1)*_6UDuk9}$)O_T(2iOI{+$IOCfM7bHw4#jhBFfp-;2goA3R zaPzr>jDqLxS}N1rT6#Rf0lP!ILE!)V6KstVxZ{;Nzkxs zW!}LKZ>5H=52O8GudtG)*G08HCqR5XJu?V_(S1%&Hpk9s@Y^a_3 zTXTdk_^-&I2nL^%?X~&pTJO_NH{O~X-e#Hbe} z_AGl#R$Ca^Nu>5H;x;RVms5}x^sv@=HeY90+X`p0>KfZXR#4)YLgpCOUuKp5Dg2WG zxX`nZmgMGl?c8L#QcA-O?VX&P2Bxi1bii5XPuRFCf5GATR@czb>k9aU0UF^4_MtSP z2bL^R8Ty*$$n(e$tjXKc*V)3oDiMYZVg6^g&D*#W!a0f2*+p}jJ#jc)BJwCPtW^eZF?CgLyAD~kPq|70O86Gc318~(J13AjU z`TaLQc5b``9iE-52YMQ4fN$l}DEG&qizZP$&vMPbM&7YCe5m_^V#|ee{+T8olRN`8 zaC_na+jE#SYRKYq2xw|i?277#b5GzrnS_QNqd=dEg_tcP9Ycg|3sN5<4TX}lnYlSn zTh=_@{au@UgO;r*`k~d%AC2u_4=mvok@)+bpv@YIKXGk+UUZL)54a)4hhxUrw?cj{ z4w6+|{;OJdq!7&bpC_Vn$NEwogV?F=tmxG5{P9XjJ^nxjv12?w2Jla`u&F`}>B`NT+|gx+U-CPOHPJxYZc-5PJo5YdpZGGZ;>Ky~n>>)j(CFO$=^ zOe!{7Ii&;n=UWK;>}390p9bI&VbV;Z97w!QPT$L~RbU_)FlPEN$(eU--909}s^JyX zhu64S>t}5KKi0y*xk4KV$73xuH4`M!0axZY1nNv}FQ&tGyb)d-6Mj}dW-crvihlUc zFF@gLbvcKeZcF2B&&rA{Dl37>K<^y({8Q7qA&nu9`L#OvYYS1dGcOA%ev|EkG+?uE zxG1R^&b^)~VXk#hRH@B;F5D~;by z_}XJxMDC*{3aR+gNXx-G(9g9jpt?H8lIqE6f~a2xV#izi7N>dzY<{Qj;GlyovzC4U`Cq!8cQcJ+`G3=2vbv(rLfX~awCx6J`yXioX z&KA127p*u2gt$?svKB5|@&z0lkge4R%JoQ3kL&KH$+6jI6_mhIp=rcI zMD(`>v^;#_#5ow96Lt)=PA_VpF&I!X%E%JC>;51CYj7p^O3NdWOo#akC-Vaq0cj|R zqQgnf*jzu=rl@iSyZZDI&>HZ~P5q(--Uq5cLo(kPtAwE>hRdrdd1Y$sUw|T9Lr2F( z`-mG!_UdTg#E*dDIDN;=4ucd9GdBosUk6jqrS$VXtl)JOtSni0fP7Jnj{?Gw-x7q`^Q*aeXfs-1ba4?M1qG$$K()%q%BuA6hUk4?a8RbEkPR>2Rl4#* z_Fm^l=d?VlKMMXIwS@4z4<5U`8EqjC*X;N~$snh1$o4%i*?L3MM+JBz^mXkDJxzx_ zRj-jsA)da(j%e8y_cSij$!suqJGj5KoT#-iwIs-KKc;qZeeyLH6{}(yDyWI(>D~a|L2spa}uMmR2U3TD!~D)~lIkod>z-&MM!2 z{`OXj()Xtv$v)Ft`~Xs^mUX3G>)`fK(!$cx=GFexGGOOXl4+73k2VyX$h12aEee%J zImd=iUD_<-Iyl}-^UJh^;ojOtKUv7;_M#B~*{r~p09w>O@RTY{kCfuxhMn}sWzj;G zD^dlNq{I`x@#l{e4%vOjC9VTUWSF^WkhSsO#pntT<6w{UPmQ@86I!G_4es6UIY#-Z zsuh@r)**1Gp+iXf%@@Ohnn=zMs19|mpV>%7$sgw2Z0%5Lnp3vX$agfq7qagk$TcQT3LP2Y)yTbk0ONc3Alco=@K-R5l!KZ zwf<*HBy60ul`8MELRGSsR3BAw&Gr?FiY&(It>5vFkE6C~r_Q6^STN7pzSth>u^;~J zxa-#YS&u2k+20V)P0#Z|aV#t76kT9fDdZlkaiNd4+^eeZOxFFHEc@)(pzQ*U`iTr9r9z z`W=)q9eLAi_Nst7NCDaV9DAb=#Yszuc}f}L5U7M-@pI2`1&#+*I9|;nLB~`$jGSgC zA6+pSz3Zc%cUf5YK(Xr*$2K;^QH-pg@~vU;8~4Q!PgFpkNZ6M=Xgb%FzCOmf^y>Wt zlMGbXoG=fiCTRwE;(330K2h!el;{7eEYBxK`Ez};K;{b_9oqHu%!rBBSQdd>x!j&7 zId!4|7)B#iD3jR`e1Vwlp-oQs-X=eU5+nk%M%6`boubhgz-T-BHR<3t7IWTylDHJC zh&rS%9d0&RMY?F=J1-czv3mT#?V!mfw$pfdOR1W^Qh}+m_OokA7;P~7xhal3tsYhe zKRe3-l85m>M@gFW*NgtVp8|rqE$F{fm;*3_1}apG)wJ}RP_Jw-pG(uYPYS=HXf7a- zGNM8^T*`h966b&f&SpDXhiO`i5mJfTM}N7`7!k*=5yFa|CU?6W^wMT?Y0ocD#xA0K~t1RQnEE>=I&Q3C}ksIsJwoXU;pC*$b+u&JD#7t z>Gj)&6F#daXJl+QE`2iw%DDVAXLT6P*7QLEI}_Aug}r^vUzX@)EhE{^>}0%9JU_2U zPg=wdYDh}@Py(RVFu*W2{iJr9)LbC~EF!=0Fja3D>Dbs|$RLnuHyou=5E$7iedGFqa=AnYv51ik#P!I68IWZ?B_&kkDUk5Ea`s$DFzO)2!7}b>0kS zmBx+|@2k(Cun)EbQ)8l)hUBSL7$rQsZXU5JNfhtDSLvf{d|y+Jh@zDI z4<$engZTL{{-I)1s|q^3-d`ruRjE?>RxN$ zcX6}cf+{b}m76@d6206X#>g-F6=Il?TNiuvx^!W9 zHUIf1$JW&vQ?nb^)XvGV6{U7(okO_qO0dc3KyHdqkY+o0ES;fkv~>hH21Xdh8I!QB zaFlsig0W-{@#3Idb6hZoTmWwb30miCod3zUOW#aKRjnD`Ct=hnlAnL4Td?65|2kB+ z1e&XppvSmi5~*5+u=l=UK*&DoQu>zXCER_3L%oyw6LK@x6}oinA1V z6K)H$!=|+LEe13m!WPS(7lQYu`@l^JJcWKIFeL|Vet*)aCPFhL`l+z(G{BIRi^8u_(H-LWhQP$$b6FN@0sVk@25RhRqSXj0!x3LON- z$(~!P+bOmC32UREw|hW;Gm><=n`k)oQK$rO4Fl8-HB~>bU5h9FJUtg!_xVUJATi`x zgmzH`Pt%C+gc}c9%TPXSnKCkL>GmWNl`Hlu_i(_3Jl|Qse+YABEFElVjV5ZcoNSx zEF+mLg za!C+<5S9~(uZQ7>^EhGc*vs+DP+AMBfHR(azvz0~aBDSsMQnEWJE9l1dP`+JF0q;8 zbfsB)_)pZari3stCQ(ox*&e*MN%OQ@)M-RJ zD6CiVYNt>(mh3qq*O7VBk924(D@ehjrH3yDA9sCTh z2)cuYN4&wAzx~|Kzx2svNg7s-4JLpQbt}Ce1on!%cx!7z8|!+4XjJ;dG%>Y2*t)M@ zFv@BaU@7q62;)S$JBEjih<~@G%?vx&;z?j4(vJBdX|JvI$LL#GH_a^vGem7#GsA%1 zy+0!X3IfcW1~X63G~n3k+S*1hE|{y_N35xF!s(VGCy^^ZdSD7lqhvH|M-UJNl6cs| zpU3GO@85#{T+M$CT4n_f@EZF&w%DDYJYnyAqZq%wh4ygnBuuj-`ruy0mqar0P0}MS zCr0kr(lsTOUq3ltZy6_NCkvHy45n_l3uULWOI@qQf)&(5F076~IV9h+MG*dixp+T! zCobr%xng657It`4p)<0T|0SYl2AY7-wu4v3p8LEtiONE-b-u5b77S)CFehvr$?vb! z7Y`)%=bP>#3|{r`Ey?$kaGyS`ne!<3oD|5Q!=xX{sesXX_{3HN8)rZ+QZ8Gke{egxMfY8B`;^Js%si4Uv!=?PeSA}N70yjl7uv$k( zBw7Qv_=w}}3AxnKhs z6@jeWPCG=OCJyZkz~(y(EQ2JxI~hFHCeWWEBP6M)3+@io+Xpu`$SM!nB{u*U^8n6S zTO(j3Dym_g;fBu@Mz+D3ISo|^zz|Ws4!?&72a${9vnoT8{%mrR`#$&0qU;7!`dW&T zK;_m>74J`dHV5ObtRhb<&IbLG>%d~O#S6Y`i&nz#jxllk9krjvDbT%Y4T7)Y*B0}+>+maoy98k*0ze+4LAuEqNDS1Zl1D{6n+C4KfUYoNf%XAmb zmRX2oZhQ}JRX2zOD8g76VW3s+QySZT(^>F13AH%k=tf}1E8dWaCdhdf_7&T{C&zU1 zL2oGJ`VQwOnHxv(C|ud+GYOVMi-3wVV$-Zse1E^{-L|Lj^>(Vd;0J>#vK5Za~| z;(d7hH8q?deUTwc=DQDc#N_{glC&hxqn`-+h^;Y|$McE(k3EEbL@>wq*Qk`C09o)! z*ymi@!I5{zwnQFx3v%5x?U7GNXNjYAS+|0yjeE#&ZCt%-dU?(tH0#vPQ9q9PcF)34 z?vXV%evc0#3iu!f84wXo5GhNi`^s|u6gD)nt1sN|aeIzGcSi?(8P8HZ!tHww(>NjwUC zdmrkg>c0_!Vf=3{CAHZfp7wzZ2QED8KZK`()EHej^RZ+*Pbl zTUcHF)>7F3{JnB(+*wz4ijX=?;}pVH0xkPippo*Lv-wWPcZe9pe4~0e`mp81mTV#)O^G4kcj{@IuVjjR#4v)T(Y?Y*yMz5m@!jejd*qkc1Epm;I6nx; zBwj}o-4~iWx`2+*G?$it#vmkJSy3JrGW2;G{;&w$aBqB*gO)+*gtDmL=r_mR$OO-R*a@L|- zdPec_kl}=Ejm2y3EYG2)hY`&n0vs@h--N$)%*#?9xL0*T_T2RXNIWtnu*L9#ClUy` zqXITL=`OE$F-UuF)AcgN{pHQBQX`V7)Mvu zdI!fZ1O})H%5^fonkQoYQhjFOP|O$T#7GeIE!e=@NehupSo#(C`PEW+C)R%8Kr*s; zOhfjrp9tI-0J^9-*aw-2;Ab?ADvJu54)e7@g**7}lLgC6E2DbDkI)n{BBP}eG}czE zH2w1-^QT}{!=T$%+U7lKxA0Lz9G7mof6y1^BOT)+M_@pVIo+NZQ0_z(vsllSoK?uk zfT`A8Eh06cEij22rx2Z;n#iu`nDjBFa|pX+VAfd*^tZ(kF&Hl$m8c0V0vP!HlP(yg zJXOSQh!I)4rAZnB>Uj1ah`?l4-fQEX3hjGfP^zh+@y{{qkr1fVb^*sgB5R^IL*Yva zpDPJ~L4Hx2)EW`(ePsOR6RNxW$l-Iz@icn+gr3Bp|HfwD#dtl#aGy$BopyWu_s`e! zN2LDCw*EH)8S9a>)ho(3n%nulyiaOV`}1+Y%Y9$)+bcZ% zUb%n5r1=GI+PM=4hR+rK{Hh&|?MIbL1^p;kKUpMM^{kBgb2#ebPr+Db`11HJ46iPd z9@ei83pyjV?LR4`M{L(dzgO1=nqwpxO$aJ*_7*A!mD-f}P3KiS*-n2RM@%+>h}Wd- zW9G1#W|l<(EK2;W^1+Spb0lHb)MVNymoqVQp%AIi8Gd#K%NnaAg^0Ha`?x({Ng`7w zzMje~DuDVJAOG!M+rjP_=9jkBP9kY3r?A-D0!5O7e-g~tbY4qND zd#&xF*}1{4J)gMVcVhhT-F0tyW4DJ=WoGNpv+(ha0KQzmPum{fCWm)#1npG-Q+GIR zy}bYuRciE)E5Kqc(r)W>#7U6}_eMAk#J_#?mb1s;&1W!NF2QBr)aP=qq0StyYI;yNmE#nmcsrGKeR&^B||Vj-h}xBa|)`!t)l>9hkDz^ z`!?X1&yIoROTGZy@uoA#blX5uQ;T!nB>#91I`x=qz6;X7gNHh4z14fUv3pHyzYA~w zm+5(8`Is(n|5ISS-{-0S%~lz)r{ z@+)IQISYI)3hqQW)`U*qc!5kT{dP&>P%#+_>bnw6rQ-qwxs@^8%QMrT|W3%{9^SalmI< z6=1ze)c-W7-Zojw*Fms$*Oz#F`fC%N|8ZgL0_d}{8+P7Y$zvsm*MX}iVw?uRG-FT0 zV`p#d>VksZkfQxhz)-qa<}f+{Y8H1t6Yl%T(YP^(1kCithpRC7735cAj0|nT_^KP? zruC{gk}xu_H7YgarA8VP=4bM9W_JO4x@wkPaNm1S$kpyUO3wm!^kHGfrN<;BfGO!G{rPtZ1clfrqw zt&SYHiRl~IIt?tE5fZxGuC&Rc%N)fbuFc~}tC|Bw54j*@#4z~QkwKaDf-oM6!lN5 z#9%Zy{7zg>=jZ1EfF1`IS6feCM`!CzYt-)zv<^Jq+W&ZHggn$ldq=poKdzw3aMDot zyzKgnM!)Puvp3$4tUY}_0SIF< z_i#w6UDCjH5H-!lof;gH1#J7P`Mc<173;62N?XLBP?E-tF{`={o-`|B73tj*?BKp5 zaVbTU4wsXlgd#AfhH+z+HpHi>oX?JqY4_lvCZ%|<_*FMx0WIUE{yQiroNBmc_5*Qm zY7Gm}h55?S7~BtIfDk5n0{QVeV^O{=+ui}EBi=`W?&q2+?qQY=t zCQ2sTAZZD=NVDF|b#n}&upK;~5|p*zR9Ugy*`h1oJCsP3r@zaBC|lzNmxDi6wiBIJmf}Nn(pf{R*dnW5zvSad(j3L)(b`rHmQ`f|K>0Iw3e`WHKB7%e4SZgkrc{ISq1TVOA zaZzjN(AwHscdAxKMuxAcO0CT6AMD3}Q&}&pZ#L!7cR3#)NZam5>@MEo=rW+@TK0K; z22AY*3;>+SG(8KD4{ibCmaR_2kAznW{r*6WA;giNdzQ!yM5SB*Roz(sWUNfJH~v540I#W+|=X{_cOCtqeErW`erE zW<#7PJ%DZt_B`Rpe-5V|=~N*mjEtu_JdK)$qIE^snCPLZ$v~Xp7RTC8>vCj1;z8Qa zOGE-|s9d4HU&`6g6CLVax{gmJ8#*suuiD10-gW2WgR))PNvQIocyn7OxcMwi({|U( zaFKc2Qnblm<$Y{@59kvH?4J7USoI#?Y@Mz3AGJvS8qM%zvF3461Mcy+XEN9YSrRcD@_p3WK$o#MpwU7NxW@K(qz;0{w~+ zYRK<}|7piNeqir@Zrsa>havqmL!ZdF*_FDS0`4&GQ^bVKFA1}2Hlo5dRQpp~m~grg zEoa{_&gEp91WLC0O?2hH%d__Ptu}UiJZ`!KG!5|%zn2x@U!TTa->~nE zw}K3+{pGNI^ic1X`@fV97=Nb#aUuHcDLgG?J%4}#I_kOB6XzD-3(0@}{eH5{^`DCN zul$d=Xs<1DK`gN&Y(rkpn=iQZI(WNT1|)B2`^GPF-%T=KtNSk=3vh~lB)Sa$*n9YM zSRxnQgR|wtYZrn|zv78`|4n5-(&`zLxQ0;nPM{~Ugh1vdXXfUo%C}9e8on2ihA;=7 zFcAyp55gAt1yR?imd1%~dLH*w-Hv9gB?YFP6vp zPKCaiSt7M4pG1`j(D&Arek~3}oIIP$=Y1g<%P?MxvWjiH@#srVZXIStjDmNfWKL{M zR=@0)FI>~9QiNx`iiU!DnwEdYK0G{p6AaS>jEiNLC0nl($1H0QA5fqDP26k;aEt${ z-?yC>mwp&tzK2!qnQy%c8it_n+qthjRIF{hIkqn>E^Yvw(3|k-$O7)!tLrUoWgdb^ zzM<}rgZu*ZsWI0?LvKH}ZF$y6Q--(!OCNNnC z_viI(ekuOa6m*%c8ia&N$Py(E6;ko4j55TyDNGu@>}B7vg2@U{M@7{eE`UV7nr zaXi%@=s8mouc=ih^K@NM4Pj7Pi#>9o9rneGaizx!Y=cf@-hX##O5Ki3ib5+^*}uwI zA-PAOf9qd?-{Op=gaMts#SQDhCS|@=p4D^o)$=G4tI`XWp0et@8hEvC^p;?>#1C_O-;yAsJxSUMGc z#Iql&Z>)cuS7DjmEX*|er8<$Q4cC^XOYy10DYyNY6-_4Xu4IR!7b92KpIW#>u&0U% zt%Gbz910#LoUA$6K%@~6qBiZplZswc8+W9q8of#`0@V6Hvu%u|LH5`bG&|^U6Ka%u zsOq}V%%XeUSJSGR>zAYNWIu;2<-%8n%M1YLNPusxgH87F^+fRTzy{jc42gVId_i+- zwys+~ALuF?39mMgyXLD3JfnqkOVC}^SZAP0f30bK3eCXE`PtbdOWW9G?L>>rB#O`; zvcZ`hMkRdXI7FS-J~C3vtp~gQmiFY~n1wzA{U+SGPML2`BEpZO!w?3L0O!I5GWECofIrN&1tn}5}0NqU6DTeIJK`{hbi7HGN7KO&a zMpCs*2A?RystC)UnlWP3vGSehXVzkI1a;Y(5;q0>08AY>W$_;GqS&I2S^*dReljft;S5<^TXidpz7REBfhh7kl zDOAad97Tv^v~-5x7{4OB`HTD)>V8*32c}~EdU0&@{o{swbaF%A>eN6-{G;(Jdzx)@ z7{Zc;AxYGi7Z^yOlvg<^lCbN%vCq&6AyQI4~jQO9!#96eX6iu8l$G|!Xq#naNBc|)I%Jilw{6?u$ zT&0s6rD>wX(e%65*p7T2)MSy0L1n=knl&PKt>&5wfCH4hZjvnJ)ZOowF;*%WeF4@Y z-;wxz{RRgFN5dbAy~_LUF}8vo8YkO`Ag$+u@8CUEczXR*T>kPTsn_r4Iw zK>_C!y1`Wioi7d*BpFB?j&OCD;`s@t(2o&x7O)lCSQV0mJn`GTr!&VpfL+&R`2)I6 zRymJc8Q9MfVPF_}u{rh2M3Ax#7tJ#YPt^QoD?M45VSib-#URF9s6Jk>1y=y~af~gF zYd&P$#b10gjtU!rz)X<3+)pJjz{}{52ZfND=|cBEsSmK2x*w&jXv}1^O~is#$-5k_ zDK7DQY#m!{%<;!A@n7E*FarJd5vH29`PC`Zav&prZs;TR*P`&Ly#y|k`V}m=sc*zJ zb+g|6*cS8cAiq?B$blZoNhGOwo=AlNu~*h=1_w7_P)Fm76()z-!pdlZ9yL5uBn%0$ zGb=GkB&AqjZusl3g=a+^@J}lm%B-&6IGW|>n%n=l0GGl&CJ6-4-P2I~b8z4x3Xc&V z(Yv+7r3qMcyUx%MeaU~1Akyzdh*PynnE1LZaiTs=;T zmEAxYM#ejqr&Yl&xqfrQKF0rO6F`z$xF8JLb!6fW90hRm#^ZQ@?#}gyD zeTYR)Npf9cgBqC!2EnCkJ4}IsBN_fJf(M;{VyHR7750_pv?TqXV0gHGjvOHLmIvVH zL%u!4~ga;VS7BV#DYb z_|-I3l9k+DCJU_)pH6IKTMDVeL^nza4~6UKr}(fJ7CThw%Q7Hqm|jcs+X6j~wpA#k z)n8DCYN@f2ZBIGg^_ayKHvns6GS`8PG&`ls*wdN9Rq!~`|nuEH#WRhSxtoKSu0yfu4gDUl-!9Ltf#IHAsm zsFOa6_Rv^kw;LZ_EV|(scTD?m`2T8b?0Zv?1LGIe?!+sH1}#%h&*pPaKuYF6Ux7Yx zV0?Y$3B~t+4}UW8 zwX5If%LwfuOv&T}V8Jnq)?6bXGd6pw8QgKN^KfX_$jwDH~;RB8RGjhw|t z??$kFi^UCu_X>U-e;=D!r!VA@pSCDsHCSrYW2|*c!Q#2_)qtdSarQAu-&vhS!H(=n zd_-LbWBf{nMZ+9W+)y9bjaAAG3aQ1J-xGTA5Hd0fh4Jj#6jVta@NSwX7wy4L7)oUF zsIU1@$o{<{ylovOWA^J-yAvH@Q4w7zms*3gDyp$+6WnmC@qt3io}Z)@RyPeaC0XjR&0 zNmJj0rfb8{M|(>0Op4vo1+|jWA(mo!gA9LjObZ#^^}yr$MgE;cCb76yURE^0J05&w zDvznj#XLxYcUHz%viDJEi444UONH41{l;2_Y~uJuVCgQGAQP{p8;bux;W3ZPvS-Tw z6eS{xH*)|l(LxIEX^{L0{sq`{Et5pTGZLjJrP9OpUL<3qxJI=0A@mCZ59C3gG0M1< zjoDzyCEyNeA4^NQoQp}=LMNm5P>eA;1`d`$WNSX*{WKUeqLwoodw1bj2B!IAQx2NW zaW)e*N^fEWm@OPt1O+F4C>V9`=9u+edp%~m+?~4dtp>wFQfI zGyW+|l8+BJ#Bc?D-^w6jKrk_<3Zr!|#m@rRN+?zU%%=ZUwl zh?9|h>e%(wz(3j<&5r2FrIpMf{?-?f%7=L_K{V$8cXpo+(*{`i{I@{w=EfyYbPK>p z_V+D+Y)Smc@AZ8E<`Y|Q%MgL3N!$HDj{1RpnN*8?kK-ZyJ$$#z-2m}Zd-3mAd3ndf zilz%hpEJZa0w~`u>wgcX(eDH6pW+5HN5`N2#GVlV+6oxccdM+6JB^zxFq%;Pic;WD zWRov$l#qdzNn>OgYE%{Dh|TLmtHIGlnTAGSw~~a{XST2l!$q?I5zVx{N;iZVFPQ+| zhogh(8y%z7-w?)0_(*d=GzVncdZiK-HQ$BI=HHuMK}yOr?(ifxDzT5L_v57k<hG&fu>zX7 zt;>wRmPPnI|Bn*`A}=6f(6#DR2@xicSXJ1&W{I_Kp)#))9PTTGfO}+iV{#)PeA$bM zWV31rc80M7+}MsiN;iZ&%rIo+*+($S%AEEHONh;0zKRREQ}0W^20^3_qQk?FOh{RU zCpDTt>tq@0i+w^$k4^mu(5k}SMhvbvbU(E#%80t+yRd@H^ynO9oHj!t0{B^;XyJmH zV>JKXe60ckVB2mQs?JmAS`d7Jd6SO`(BOo8{P9byELv{z+hHmT^`=iE`l61N;ox3f8%kEQh_d8 zVr;iOCKDcxqO{1~|Iu_6FmZHU8+Rz~P~6?!p}0E~Def#3FYfMc#ogVDI~2F#)oX=iYP9V{~y>c1Ri_Wa-mi^wD%V?bnl_DNB3yWrBo30SdSU`>nqN zOPXM`K5`!xHjJB4aFKDzkG6D9)mwG76(K}sMBUgE=8o4Cz&28h9U*CkC?gn0YstKG z4&$-+s+sERAy{CTI!h0kk^8w>?+A{N*2P+l@*K&Tpa<#FM!E(4_98XKZw1az?ub{% z>$JAfuaDb_pY`9kC6DEQ|A89d#(2)1&9*MZy|ue)$Ck1UfX9XG)f?sw%n8&~;7bht zjM{+ao?uFlnklU?+`mZRF0goi`yPW*e2Mor>~n`wc@<3Qq|u#X^mKGhjV276Oao^A zVd=wD!7)2i?GiA+d-8ICzL`(&O*uTYApLgP4+jZ+gZBb}ff4YG6%Yjtof^MCjhuqL z*vz&i3VzJbtIu8mc7A&L`d@$>`T-a*{_@!N1;?&--_|&tbA)RSj?XF?Xdc9sQ#;>Z=O=zgqcYIRBVjfJQ_3iJ7)yvjr|5B2x;*5QN_r* z)2WTX>bK{?B!VE8u%Dm0ip?AK+&wBoW+~1jWT^-aq2RO% z*3v`{b7F0qyX4>7xSPqUNQ!wb14%H7iU%|bodRs|U#c1=tM)VTG=18|5x=;?G!Tgk z$zw84egSOQFc?aY9V8I;hMVxe;GGGKy}HkeI#^xd;zmrN;j(B$ZkC8T64DWTER9wG z;^E*Na8}(IKc7B7k^eQ(Nx`+yqh5r}OFjM`JZij33so@}A_1cJrpMdolmuiohE*`= zdGFi-U~97vLYEL=>!}2(r>*z5d#q7*@Neq;Ur#HvtH2lj1xU8tQ_TlR503}5qKE+w z_vaD+ZFa{K2m(Csb11i3ZXtZ^X9 zutsGYymEz-9v&&V8kEIN#b5>U&M9j%+%nG|~Qkl7`f8PqHA_~#9 z7?Q-{AwrI2#BJ5J#y;#G@DjA#JVE-CHRrY)1aclC|D^UwSA)P#Rwtt?Qo5motyY~A z%9dfjxz=^mZ49>CXf=-P$g7tczCpjnf_-nmBQ}ajjsdm< z0EvSejsHliq#<&h7!Pp?MymPZe6WA~mpl9U!dqunH~;NlnUBj0@HmS%FLM#1N`-*O zbl^zkj{^C=P@bru8k`?ga(u2wC@Ml%FrgBGK=|t#v5=?pMs~JAcatQ<2J%b5j79P+ zZ`GHn@7XaDFVf3God3f3udQr8wmSS4!QVhkb&#}%yk??|GE>ak_a+5AwYp)`J}Yh7 zy0u6A)9rT(rTDH`j=9`5mP;#AwN8Qdu*pb}^3r+8=$C#ufoOa4J*lruOtyQi5B~@Ka zV+^@EQH@iTi?nsMn9deIO)KuC=sfn0AWV{GCn(FW_eicvhIx|iZ2Md$$mh<$)9x6- zAS(aZNK3O=wSOv=-r^MB%v37kFOu>rQY3o>g54GqHmdtqf+dO&CD?{js}iw|11|^f zHXI8KM@hamNukmU6B+sP6RFlu!hEtv|7e%a9C(WgFo6$~gfzO3x5F-E?!jyl^G6PO zosn%MfodF;1gaPC6a_mv{+Ia;YmTeQt6+i!s<)QP)ZvqJ9W7i=Xbd8B34U=tV;tn-K_kC5Y`M!ng=hiiQzbDqMWhGY@VPpWRq_pYnUvV_Vztn zB5%*{rmn5G7W?SZp_~ADQgcqR@5V95LE1H0=A)1eFG>^(?-X{>|2 zSWW^zY|)k*;N4FW5yaLjW6My1B(h2myyEaPe{-RGkgf%W+3RuQ&nHGdVWu{n92wGo zH0}9jPxt6LOn$EZuI{4kmMcrmlr`8*_2%S=a1HOH1Bo(7L?&S(|gaTKc{`StUO2|+IlbC~@L zO0B_wpbO`u(G0b4dsdsrR1Is#gYJZd{|0S<@H=)s3|)1AAU{(l7D z`7BuAkcHG{WdG7XHKVHj{h}c~ZeHedpI2rhU!z^5t)O-;K2=Z#vH%4(iO19+d*%>=!3OVeV&gJr5 z2NOkCyQIl{5hJLKs`lkuEb8UsaWn#7AZ3`Hm_{26^lp z**UP5SVtdCL!yq&foRKMG55f9_MM`gjK}fZg&$9uvRS28W9Y@naIeoSG4s`68@GM? ziAZz)#MpoiONRkFM?k(cjAr<5{9C>!WX6!^FBTJXvEE#D>k=`$CtDXN8I&(sQ3V*1 zlHz$(5wbVr1|Thd`$H0UO{t}qHbDz<100mss83lmXQ-c&^+hTU8*Jl^RMSkyq#G=m z-DE4GCvWzTK@S4jPiTWiS`hnuBW{~Se&;||^=X$3iLiI`#VJ7i&a>_Y+KP#Z%NgNk zkA9Lb#1t#a)wv-Mt->$LxdPH@79=0~+!ZqEqDo1P+@n+|Yw}lltQ@GU<7K=O8U13) zVb*PP5ZG^zQ2lM0KRpeOJ&e*SF`w8Z9!>=Zi`1T?#-1-%?C+W;1j0;35vLqC)wZed zc?^*+LM}NVs(B>F4PfP)BegQXYU~!TPt4+|a-dZSPOtoh78XYqHNeK%*O z@+~q&bQiO4NE~g;ghZm2cJayLFP1SJ?9q+`T~*jhxx_~#%WllweoFinUxRjWHh08~ zdKHi8UoD7*jZwwD5Yxm$7=O^k7Z?=TM-nX7#DX$5(DsUR>0%=!1d%mKg01tz9Mo12 zjXrXqBv4Wvm``xY<#S{#3ok%83RcICMi=>eY%=1&{^Er>oo0w8}xyHr_h&_zTx)YGB=wAR95 z;DVK3)KWA=5HI7~Ku1^kw%n}5Rb1)*Gi9FSPF$OgiE}X056SqHGhA=rFU%=}>5OM} zoT`$LnW3Vi>lS_*I(`9^cW}=85cQh@nsW@1pz&}0{?`$I@otJnwvDOV)B7a`=|*Q{ z5II~GyPT;Hyo{3e@3{||20<*h%JfTWuTQ3&;#?yX8mNj42bqP59a1F$hx(~QZsSq> z3|bE(R?}5UkqM0C8kaP)#fz95|XyKV( zwpQ54=USrK_? z!l@rLI3Ty0VYd~`F>%` zxzLjG&7ND73Uu#yIf|<4L1-`&PR*{C*V(HLdwK+6@Aa4k;Zjxbah6*Pu%sfVSQ=08 zmzAW5>&PiQ^V%GcbJfsQ&85py5XMHy=wU0ImCGmz@zAzP#l+mixUa}yMvkFGV#yCK zD!mysV@4-J@?r<;E5A&1C}{E4;V1wP=G++fad?R5Xdtd<3WIU63~V+>780(-oMt_L zkP>KU;-@fj@_x>1opq1aEtYkqUvwMBvuW7?UeBQ2Um0qZ=$n4FsDYr4eI~JPl zGL>64Vup$=j37g}ll)<3k`Hl?ZuWRe&;1jr)Tqw&WRZR*Uvw7G!rX8Bivm%1l<}Kr ztSY$>xQ>$bttI|Y5q&>g#>*VbVr>7+zY;s>NnhJPnHLhlLBCBi3DOtL$R!DYC}rqF zPdlL_x7)q41G9FKP*c>a)y=OHW0HItjS2H=vsj!7&=EY`XH$rMHVHfip>eA1WxQgZ`2t7$lE<+C~Je!2W z^9-L|b${C_Us07o?6bhV<{R5QGgkEuFGhn)WRp3TqS{g5Y#V#A$ci}%Iu>v0dUx?q zIXaa?zi)){q-+c9!nj)OY1;h0Y7f`b(9l1gOxyA8kt6)W$Gp`+r<}`cKGg{t4){xR zw;i6nnMQq<#@%8z<-B6O^V$gkqFJu{lWjDE{}-?DAJ^RA>v_I_oW z!7^Tdf-jLn`z67oz^9C|*-`0^(KwFX#?w04PeO1`Y^i&UW)b|ErsXrCyRvl&*T-m= zZ*rKNY~!RFpGU8iy%KTFMopw2r`@b6Dj0t2DXkbeTze zupR*t76Svys6x`9Rhp1&xx$O*E}8i|7mTskU$6%X${LPeps2WRP_?M0-GU9W~Q2vlUO=ucYS)t2snu4 zRsFWn%(#&${3WAKx3pqmY^*GH8n(Mfg$)Z(@yBqXCdnES8bpa-cw8jQu@eCn^v6#z zVvy59JY}6dCo-#>gkc|!Cx2?*TdsQZ?f>=Yl zzHe5rJkd~#D`KunUn2ijz|2*Rp8{D}%S>#KG?X@7Y0(y8%qkV~6YqNYHiNzj2l|iJ zYZfA_j`3uD#UxXO=4yBF?1Ytos9lX9RqaQq5Wcv`!t!vc+PXTduwC3Bz6dI1dGOk7 z2dq5@feRXDef-<^d1IR<&J0}dx#r#ER2*ctU}bv*LzEJW6`yK0K%E@IrgazF{AmpC zdQ4mAKU0)eo}ZxhuyV$LqlGH? zwcjT0I6_hqe$m}}jl%ai6C*X149$tRuIsf@%Zgjds3P%64k*SO!Lp zY?ZE3VGZh0a>1;p2f#%!@0EFcx28gfC(YhZP+rvwE+v9LkDM(en#|pn)}xAUOL#!V zFRjeXEwPR;fNaf@k4Ltc<@(tCm%wGC$P^isQ9MPg3|aZY<6NC$K_vYQf%E%-Av({m z6hq`F%Yi^oMYrl-6%FVu;}zQ#(8$gS)#Q%}xK~0@S$0U;Fks5vuZv z|D}lpcxAaOJXk}1QXus4jY$~iJ_K{2zgR!)Ak0tz>fH{oM2l^}Lcv+@nUV2+j@!B+e1(hTrk#;)4t zQ47+1-0QJH*Z#Vi44ut@-1X_TOa4vW@PtEwC*Yyws=9mLzKDUy?{JFAr0Q~YY=2 zYwBw6Cz{5FVs(YoO4okdgWTO~U^91+8_P@#kkKihym)w4vQmpmHC=AEk69aB!9z}l zd-;*!kV}&;%O5m3TuZ#5h;po7X{TkJ~O7a!*DDFZj%fv^}3LGAoQzi1*x@WK7> zUg!BwVktYZ{NvNmSM_k?sGnYLtm zf)aG`KMVFNoGst-_(|nAlDS`)oS2wU5)^6HY=KJU=fI^U=0Sy1f6UoXua(HS(d=wD z*xye{raoO5>78I|5Eg7JV48MT9#=z5HXxCFh@-5WaM89|)~Oq#4^ga!-2_G3RC>Zu z>EaofBFSe+VijZx-~kz;P<9rG5HOFl-KiE&*rr~KLup=vD!$GQ?T zS#hgON<6Obii`{5vX|ClzhsB%Vza4C+{Nw_PD34o_&667l%+#v{oiiD{BL|SZ-g&^ zlhBKO%pde2aj%G#EV2<$H?aEw$4L$aQ2hbLG1!3$(82gUg!^Xz@sa<^G0rFwHh(x` zim|KCN84vaYY?@08Md-4HY{GHs;~qjrm6GnO?gBZCk+kBC6BGeNtzZD1@6R`L$$g> z_#!Q)uDANv#mC2f`iwZqAmf&(Sd!(_Q%gb2^(QWw^!ei`j|7JhNRJ2dbe&E3BCRT4 zPp2q%fwN;abn0jT#^D{?Sr3yXs{RWMvNY_pee{Ey2(*&J#0Lg>F1D%sDFQ=NYvXg(63yrGOQ`a+Ta6fn!Kq{w6a2Tof7dJh1*Lsnt$hj{ zX(E1Bk-1kz=+qh#$fNTn57}T1v7y{Mn2dlgAQWLN9GJNbFk^}NoCA)9FT4PItJ_WY zwt?pQE*Q31SBB-p3d|p-^Edn`bEodpvDEz=mRIE+9`cf=}nY3k5Z zH`t(zSusUOrg(qb{%4oXO=$at&k2T-Eqa*gE`TeDUh>D5Y7VRIddF2hnwj6P8@k^; z1yGgkQEqRHi%udDDD@O4&%JjaW>Bam2YEIv$)x{244qGN87eK!u&w`mX_e91!C9+s zjj;adYUr%4N?@^%h1St}!cZWxv&%X>Ko`$vTwF_|acRiqk##L~(PLy?_i->vEQ~(l zCsl+^mSaN)fF+)gN5t);{1eX!Aqz7d118{}f-g?Q;C*kbF^1Lmj{<;CB;fU4hNeso zvOa85*wp)+6fS3RDOLQY{J~qwdkHZs641UN+168mIzybEo0Ag4XM^i$T|*BePFuz? zJ7T9ugAfQ)EQu?f%9uj$Vxa-mA%mq#Hu~jrnI^k^e!^CCLN1PK^V|iSfG)nq9u+?t zL7;9(m$q{u!V|g}QEWOcUnUU^wVw^Fu{Y>2?nseLebW zikCjMsac%6FeK~RZ;|yvd4V_0LBDNw$tF`N7>(lA`yY=hIBp@y?XofLY88r7!v)Nu zxE6PUQc-cR+_bikrxTn?xgr}7lcAcc%GUegTzWIIc3Nbn=0{M%acyt#SX;D6ppJ|sk`uzPo3CRVggLkPFD(mjJ z4>1UxNPr0Y+2#(#?Whf1)DG*aOW=0`4-vF#Sy-&n@+Vjny2fHGb;03&Ae)PpOuVTQ zYk3^MDVEp@5>lmHZGR+)kWMA+t#aqfMfT9!@7qtD#G4Km99nnvy|!0Ii17 z*a3g|ZQ4nhv?~_cIl}%B!i{dVvZ)H5Yy1V*6Khz0B!$sQSBj(aB#PV$`_+E(hws?t z`#!Fgq0(s#kZ!cYb0W3_X%0%(g(66;62aV~UV?$R9ZVm{{e$XDu}&ru=+lX%E4kp7 zzL9Z@=rj3PR_(sLUA&9nu^Jr!dc$2H83`QLq?s?a`-3dmm6U3W8I(^njB4Zo}z#+R2X-ED2p-I|6G`{h!a`2TlmwEn^|30z{b9IHKo+rR|GN?9RiN7A2_2l zN0qtJ7JAr7uzyW=1KAP3o6yNe#wszGbmeAa#OA|AVAWS*j-0r23}DxgRKjewowT0Z z^LcTCYLK~8+4H-qb+6)<8vOLaPZ@?k?Gt9lE|OTEav;Uvvmh>_Ozo@U-{9lS3DN{a zkL((s2FGhsUH+jv(h4Oqa7&22i1Ah8+FtdJ=Y$^rt@Y?t|6^V;QD4XEI|!-ksb2%< zBwIFDG81QoW|97^iVQuz{Zyb8R6i_PkJ#cou}-E9%%L_2uaR&?2-xMtn}hjhBS$eh z8fK&YtbHJiRI-ae2wy5R_j;et_rc?raoYR?fc=OIzLFJ7woFV+&VN_g{dV#E0zJC- zNrbM)D7z1top!-8QSiC-2xykZCXL@*dhdHKKtO;EbN)>Ut8e5=_YpT(_OV~)cT)BM zWV(#ZzWtrO28VkA6LF$|HsHU!Y;M1j{3o|-FdKcy?t3KidtLF*1;%BOV9hVw4){ZX zbHds--H8|(8M}eEIJ98(Apmyq&hykoc^M0qXZ#2%IT@M&u;iG1xR`l_zDsP{y?Kx@yyDozQ47<2V_j$#BhI0^|qon6Hhrig&(J=`9Db8urNULdSVKOX@L*I9s& z)YxmbeCh_yt#JW#USOJ@vT2=17*Mlwj~LBB!l=q?w4ya+<>yYUZYnh6#v{v=mrd#d z_VBtxtxOY|<#FpGwn4;VsxXyO(8HZ^YQ>%@{B_v{>e34#%l+rC?b~pVWkFl_#dHYRh=mEDG><)IH$xrE^;5O_RGWM^6-1fGDCX zRQ>&4-_YDFm3K@m@U{H-Rx%vz3OJtHE_?ts-KxiPG+v#6>3^i4iMki0wqGvDtqw&k zM=EazDxP!EMvFJSAN(H%y8)1^$f)iH+!TS+sWfaLyEK5-oL&sI!g4dFCl4Ayb@@}N zB!q#vQVcm7^NayTtCa>ylyC>eGzDt7{m`#2HTtaRcx{nWhJtndVj&@kLl-@_HWG~k zgqyvlf|06XV!lzOG!W1sMg0YZtp_f0iVXcDw}9lL71N>+Br+?))R!JPRcxZ!mig0*BpOwoTl&h$+H% zXh|JpaRFv=9GcBaw&vfn_6R~*S?H03Z7z<<5k|)TXryY&<6{k^K(pQQ5Q4!^`Q)Q z#*L2|OmEa0SyT8a+!DQ!JT?>({_9J|c8&MOzN`rozU=nv8Fzk-1lsm{-`U+kfJ*Q&jQrx;vEbtntw=wk(G?N|FpfLE1gfrNFcVQ2 z#@W&`3uEOx(vbt(%nXBMXnHyZn9PsyJr`EY(1CW^WAwP;Q!Djh3#Rx^8A9L zhMz=3a9bVGVG$?Mz}8GrsT>=Cq0feDq9Xz;#I2y!Ww^{v#BeTD!iWuP$zQjSCvz$6 z8m3KWqdy*CFuJBX_Y--(e}JPY=Wp^UZNRuI(D2=QlK@(Yba~I-?IM|nFYL*9y0eBe z5xYV1h{dPvjH>#kdbq7-``#>mJAk7x0ClHKTF4J$%5%4=$(t%FCs6_5GH}AT=*N2Z z%#_qeZ6L@cWpGW7#o9dG5DXTADk6_K_)iarwHN$xKc{{xwwI#b86m}^r8~b1q|{|P z;PG!IjVDHIr&%?9;Kd@ENCUBV4110LK2J5Z)}G4y*g_OsSaiMC8f)Q1aVGJJ8ykbC*|as$ zWqbzRj82=Auy!yi{VpVxwLE2T;;@jkY4p5^96Nn>a_@#11a zCwSQsW5{XJfZBJSF``!2n;q2Cc!j3=!Eu-vVf^gtMx+`QbQMt;;P0SIMOjMgDG%Bp zoqiAQse+J5hCoAx>;o6XZgoB+vp!olo;!i?4?s~Y3)DYAwJQt(XwCbEz&vWe>P7^@ z?}pbud4Dwi226(U-ovTe+5h;?_x?}ieF(gfL9141^7*~+Ir*L%AO-~#eTu*S&sycV zNpv5)Z9(#RT~oyiT_dpitW5&m+Xq09;mg*=E2%j8zXwDkR`5(Wrc45jjO!JG)qI=u z&+F#UY=eWPe6&3_(vTdT3TQ0 zGr5YFIJY3|TZ8_bA2qD4%;GOJ_l&#RZPNi7U7(GR89FXBD?7zb_V znQe|{PP&a69$yidNoO(BqC2=3WV-X+zmpWyW(E4$+Z+8`IZ8B!SF%QTSHd({V%S8f z9D#sa0AqfF(uKhg#6ea@AzcX_Qv^*9+M2K~kFlrlJzhMdcOf}5bxe4_=kf5APGAZY-^$M=U(uTjCRez3Iw;3&)I{f`cuti8b=bmyDT>UR|l zR$iOCxut?jfg^@+zUkVi3mDJCyoB|2<_a~PH*1|w#CT#@lzHS5Hr%vO)_E3ew3?c}{4Q4+KVo9m-{ z(L2Eo^vx<2982*4gUBg?efl0A;>(==(0enwAuk0PjkK*O{)Li!B5ZUu-e+6opd#TE zML$+GT`9^6f5N|BGaX*D!sMjiW#QEino}DcsSoh0nL7fb$XKzkV*X11iHyzm(d5iV zPMqYGXv=(K3rz4xZ)rf-k$2-y?^J_(%#*zb;4h1jzNad{9!&FWI8TuwRgIvxl+&! zx`GX|B>%LhX}wCC$M7A7swUZze)xNkiTB&29D4>c@6~w_dMJ%5HARUojZ{T~;-o4O zK76<#tfXY`>rc{#TFj_D%<~W?hnogS(h7QewO1ajKJ|u>Rwlw*OQ>$js74q=jxY_g zEcv=hY*e$}Dp9Erud8~OXjF`u_&I)QyXh$8Pl&oarL-$*=rK0hv2Dm2jY6O1oArt* zng=E-H8PT{r6HrsrO`LGK)_sJ!)=ovUdqJC4yvf)$eA8Xn^se*59|0vOZZSUr8aq5 z@)g8JnU}v#%|L3>0uh-i9_@K3cu*V1fYFA;3D-aGYIw(7sPutP8qwNbE*OHDC4P-O z(ve8Q>CKPWa^4FtS4^$3#&ym3btqrTzv(t_km-1vn1|xi0ReMY3$?23OIQkVZpH{^ z%Z?cF2A#_c3(N!j9BbSt8R^( zjKh+S9Qvw{I*KKD^dCJp+g`*c-2*8Y36t0jIx1?#ad!4G#HB<(fV;I_Qz?t%M~rMvYi}?qX6|eWkFe2*8t}ZuQlc#V{5B)@W$@Gbedm z|7iM)D|;i|4rWr538Nvklz`ReV>XjO%tSPHd#quhX|-55w-q>;67E!(H-6@z#tgj6 zl*vlnoUSbX)_tL&cQeW((%C(pku0Lx)x}aIMe#&GF}?gMN?gmC#D3j_ z7RkDKTw)&$jorHwu7x;XqDWw~uVq}>(6*>Eb;_^tLHE&v#7@l1mXu>HoHO@YC-EW&J~y=pQ$yqMmq1j$Bd6>$XU`VzRyi%2TVSlh~UIT&lqaEL~}mgbsFjYJqkVu zsiBc1Y(@Ve!%XojV6}E%K)LLRi()9j z>=fy~{XNf3>)7~VISpjc-xhgP91vFBBpYdwWa&p_kj_X%R1{^Xij~xd+i9hzg~75s zBvmg6U(Y0+7JF2jRF#Zp!{7%}oNlCprN%v@P+%B}V51c&(9KCjkw%l}ysBIZMIR&w zwev{~TV>PD5T%EyEyAQ&vnXaz@&_w%H$IB{xrwGJ%@nrkoe0bzI`h~$6{%UH*-Ed$ zH5bS$H`6Ed$b``qL@05CIyme37E}%Ivf*FQh-wdXv?Lc8l*ey~lUo_GFbHo)mcFEj zNP%2;t`uz_M5_?%Dhvf(^(*fF*nVe9+M}?Oj{YfcgUf!~N63VOE|5#Ak+xhzOijUQ$Ah zCgMx#!E=gDW?o!OgViNA3L3Skr?0aj?y!L%Tm%j=!h~k6P~0vCRTF8( zB$9Buwn91)yNv@r)DS4z<(*k)b+^MuHw@7lZou(!gQpN%hiWf?zR_|Ah5u|Ij;Hic z1h4XJ_9I5YPlys?7Qq2XdzLYC?ja<;1fLhO&PqCWGeIql00o)$6s}KLOh+k$-Kc4} z6ifdIgvf9i?tWVL>S+nvs)}=uXP0PgUp7Lt=;Htp*4%Z_>=J2~xz3zpxJ#;x)9)>5 zu5BE@K3{tXH`9FaM)tX$6Iw9*9z-e3~GG^;np#Poym3jqX-B$v0&%Kx|kQbUC|l0t*t ze(`hH3kPVuC8Qf%*O%y*lF|sO=3&SJri6>K4J}Lgna+mBhK)mqImxQ_ zw0+SDrSxjVMc5>J;p%jO{8;s0c0ev@`yAzr16-<<#|eCfCuLAbOc9@^fAI4j;ueib z$7>zT#d6@9{=Iy)zibe4a*@~9AZiejF3`m?tzon$Hc9@jYpZK0+sblw%-Jt7)^-)R zm^N~~)JFMwb|_${kq}MAPa&3(Db^hwjA*8$mz;oO=7Vz>Vm~=oKt5EwRWzDVxW=3c=jW z3_1X;@d8`&fW5ke!?JrBFyvw*LN+%2N2iw;+G0Q%k~uq|0T#OmOVIGw=BgMJYW^m@ z#9OxAfhlaQK9OGL=~@y(P6~EVJxDQ;c1-qfH9@EyMxQ%u_Qf-wZ^ZVW+Syg&EqfKG zELqJevrjq$he4j2s5z8nOt^<*&K*pvSc|A_T76h^)>7WeHnz$7NeELB(;hrrYXOuv z$i%Kpc~dmcD6n)(*CO^;gF))6iGzr0veNBeO#;*5$xZPwr7-{!h#}Czv!RSPqHMIn zCjo}4;qK!$l=8Dp4W7tuw5FJK@(Or?u?^cRs5MYAoReO(r~9)j$dD4L^VXr>iB;~? zZfA+D-(Yai52*is4OHkj+ADRXVdD|>rL&Ej<8ELFWm|Cjs9b>X&13{t9Jzq1%@~3M z^1qF@_5+!-QWXFy0n(9p(Ko)Ts%ay5uy_uj;u*A7>3)j1))1QXrEhvteeWpf_#Agt zS6L+ilD}6Vf;YgirW?kgrTNNz_y=XP{|I>2Cot=`Mr#X+rYE*At=MaF`diN;RI9kF z@`Y#Z7{opgIeB4S*_p-0aPTbUnXG)p%R_ZRi<-owN8ZCYio&N;Xo8jrbM9}VVGy7< zO|&n1au^vF8dXb(>&TYoVsL+OZ+<0Opm%o`tY%WK)m?0?LV6h0cJRBt6l!C#&sE4O zl~P+I2Xg2d!I0J_K44bjJ8p^&vNo>rD$SZj!B!5isz-h@eF($S=Odu|LF?P_^^KTo%j63=l2YCom_{wAIb zaXu{6$rpzh1oY>`|Gz9Z-%bF)1HeOs-X8X=YidCMeyjaAdjUGd0)n)^!Ct5M$akMT zZ9QR^r+*FY=TM!OV?1d0{yZ%Np;k#A0f*Lgq-YSg^v3T3cQRSY+AmR5$W{iYg#DXP^zU zo^snW0j5cdPG0EhAqFkO$&!k>yh{0ld(MTGk)P~$-9$K3n9DDAt{ZTs%Fy1s*GCfs z!r#A=AN#kvopK-Wp~da1vN-wLCu$p6exjdEj@#>O6^ZG_7fMV62(;p&X|$fdGP92!ca&XU+VK3s?~ zn|w6*?4KSpJ%P3)3Tyaxw|f5=LL?Po#|RDb!VJuSIt|#YgxR8pGz2zLz(K>x%q$pa zx?KQn?M~-;tJ$-+W%FY}hos}NU}a{xh%$mML_9=^5Kl^dvHI_WircN)Ca8x(He3Db za(_8mpB4gfyw(Hz$-OC(dR4P}~hIYEL>Oo2J20K6GsO z=0cI(+otc_I?MK?(eR?UFH2FoWw_Y-SqY26DQrFi%BoxvJ(EB`VW9p?;n!nT zD-lgTR9b7l*DOVu8Se0O|71O*BL14)Z&`9G!sUqeT>`Wc5We3N_DYf9Z{TU0)8d2D zrByvgla_s^A0{rP3wZAiMPg}IX~mHUj>Nx=#oHr7E85LC;INSs3{}<6pkC6GO_(Vi zGMy6tR(TRoMQSk7Hq?egZ*C}f(kZt*&>SjTKjAe*&kt)?qF7OXy=FT7cj_kmVb%@U zzLG7NV#*&JWI{|a(iuMw;|Z4e163_y|jx!JLZCkfy5^QHF`?tqNnN~F->789y{tw#~rOPzRc1kCC zgYw+3LDvqWfpK!J><4(JT?BY zgLMKo->F{vw!wrZd21v-J(_L_LxvUmUAIh3Sbr#EE+r=lq?;`vo|1gQbbMy%pr+~* z&viR!qz!S8xC7=%tw46IH9*TK9N=K2rKj_Q_F!(ka{+Yx>esP|hsoP$Gs5@KVRrtB z`=t-~QhVQ`4kj$Lj+v^6N9sW~@%YLKFnyaDuO?=@k-BuU6%Xt@8&w<9`4qI7s;SK^?e$ zzQK-96a(|~n6%0{-{-8sNHyT+c8of8u@TF^J;9u_$Hni(2vdDYpF|&Sk=s}t0+KZr z9bzyuny4;UBb-+W6BClyPuOWv4pOfyBgs4NoE|c-$sVdJc@Qp8r%-50wlIr?DKpDr zUqdxO$Bmt}Ev2JV8nOl$iCQQ(x(5fj0Xu~tejNIFdM(d3(Aoi$^|XBYUOO4Cf?M{5 zrC@=d&Tc$g1OzW*^aYdN5Ej?;t1;`r%lqFRuNZSZ-;2k`+^*p?AMNGk77sUGB_hJk zO{M#N$l1X!Kg@Q$;zt2f1&cS6deqjkd?rYj@G$BQu5~y3b+!Umk423)=c>5 zcgYZ}V!U=9Iu;gM+K0WPer>Kt@kEIP1OynsOU}*xSZAVgD#8cY)3#hM9`m-ZUwho8 z5?j!=_9eK2d0s^sTRFw;1z}njtG@wed1Or3NfSsT=tR?LSOsm2PgM6m$Wmg1gR(T$ zV?!>8{K)Z9dhc}q%@+75(i5&YDt)*ysYl1XuV(TlYGZ|a?GuP=guUd0tM};klsU&3 zFr^6;vx_7!LjevfMHLkdmh_IVe=q^B_U-fs?p9$sC~GsBeBDf&VJx1X@!I;w$o7|$e3plwZ?Q4 zp*xZYrat3_)PSPj-u+YaMmv6s{$@#kls-%R_tq}PlF_?2UKqAPX3U3vqIJjPCsOq& zqGP#yvbjo6Tzvih>n~h%dr?yAHCiqfqFsa%&v)HE%T)vgXm7k&!tABeS?|y4J-V1; zJHIi1?BoA^N#o~+vTo~@i2U+% z{d)o<2S>em>?Z4ZB}_~vQ}(=4rNps}7S+K&wrCnl>bWv8^ycNrVOA7p4VJAj1pWpB z9u^Raf{Z?u2TEAI<|%Fhu0SY>a%csgv^3+9(rS3rwhO{X-7H0ZZ@&pF>e z20vhoXRP(CJLa61meNw|!?R`sCum7Cy>(LVdQkkl{Kg3NB7MVY5hP6*EwPQo<_q>C zqY^&2#jY<`d$wd(MH_iSq_}pfZxH794bIWPmy}KBXzEv2h7nAJK6^I|cg40{%Mxk3 zOJM*)%FDY;5CNTdo;-f2*5ptbZ?4R2Xz|f0J!THp>@=dC&a~wZp946j$1DmdQ0*8E ziv>2-HTH{w#^;@Qp_i2cbs(8wyik;cnffe&w-GK16>E!Ca0OOqxGL=5Yt-RnYHY9= zvJ?5alk~J_Q*MmxethkjU7@~PiUgL2LP|x#wCDJi^xv<@DWCc7bmaeXBEZy@F+}(H z!0j+dp!oMuIqVkyb(1`|vM4++#xs4#*(hCC#u|Sj@~0H9d6$n!!HDnGy#89I7F5$tc0j>0F+GhFMfqlW1cXt7we8Pl1FVNMgA4BpUi1;hpokBw z6f~?>EY}p88^a>0iW;g2TN%HOzAdu)lak4!)J>DTU@(3U*hpp!<9V^8mRx1S%rwFo&C zEnr&l_gCOtl#hMp)I+IQ@iKwcbki8WR#sDePS$sFmL^%dUIG=wrrJK4VMPm?i=g#n zx$361Y6}xKkALSO+d4~IuEgmRNR-bEz^|rx?#yfY$?V_O8`etxeqr;Wn`{|R$3zO5 z!o?%?15-Lmo8g6%_uj}(7Stv@Nfi7HsK2id#+AhV=1}=9(|#&XM7XwIG+G=gU89(P zXY-1zYj2a#uwR+I)(O#f$Om-J$?j@?Yim1XdR3|QLebOAQop)h<8Vq8iTAyA(>^Nf0BDD-(rJMNk5*RdtFtWj97FGRu^UAyMMkxDgJwroFKfkX6 ziFJ{lqMH4bdBMMAayn=Jo#O5dW!Gy|(S6wJG3K`>wkl z5{Yp*yV7G$81!uSkaUFpZ%Z) z*SNYUf2A$b!)nM~s7ugCuJJ2pRhOXa=wL~=iU8-B>B}}U+v{+-#$k+pFo%McC|a#G z(_4*b8h|&5NHtH*uyk9aFxL=d8SWhAf`qUK)`k9J-@P z#D^%bz`C8*{J0tQEy0DBRY?cKD+G&pNOJJJX=>S`FRD>}y~@{9Oazuc_R7TAS`MO& z-~Vg%d@H>eX&p;@J*&+3dJcw<&uY<_$S(V(4wAeHV*KvF#ZHNjM-otXue-4)Ac>ne z_x?dPVbU$BT(*C0XUh7k#y$rQ2#qh3D{9n3ZWCEQHhx)NN%&pN($}7q71!VXxWic- zQp@Iwaf7>T=4Ddnbg@5M_f1X&D^?QeAvO5go_kh#L@0di=TzCJ$smVW<^h4se8 z1ZHH-KME@1-;{DZ21~XP0_lb!3B9ZoHY2U=9kCw zOqAc#CJjk0vN1o>2Q}agnj`+5kL^E9Ff-KKM@%-U!c>~I=vr&<76h_I!=MCcVL{#~mDEEE7Sc7ry*h6FY8fj>@w+{ZQB+3HDhXB|*iqB*p<}Q70 zYZG)@Zw-xc0hlgsPk)X@-kqvbg-o7fq#lm`V)|z*25~chU14Cs9RuANK-n zfdPLt##rNBb}W2KY?ujK(qsu&A3Ay8tgnN`IJEtT;UkZIzix4s(WMfMN=Fz*Br&O* zpta&vcMy)~m0N%RUSCCebvhNkbd2;V zG{wVTxU9R3ET>`VrIjj2E1#~f@kbvsc2(ktNeOqN;ZafWB{PN(4C8&E4JvNRMoy+` zAi(lNt}4UJvQDqARSP$R%4ZF7N{;979R-sOinWV~=(l zRYpnOs`Jbj=y*80yv-}G1mESx&klAU zDDm@F>!Gt5mtEKh)T;+km#}_GEz!qljo-mZE+q+m{yn0D*Mfr2|20Zy3_Gtqc`r@4 z(dM5(B9QV0ls&|OSf#nm>GP6O`NT{HUQ}b*QAGfVTl6PDm zb?LFl;RM6fm~T1+1|i?KJQ*n=8{q9&XGYW~`jhUMSTFnZN48e~QJ`=2!6mjdq2kG| zh!ro3m8Re;s7LyI9@o|&D*ty$4*TCS9I1cA&R;wct~KlG@I@|1me@#^fBKt{Df=Ye zl1x}L-wnGMg7^pV{RXoX?gy_?Q|2qUD7AQ7V&UetHY?pJX6wrH1EV0Xx!p9#6CIEr z$d^qE!DTm;1x0m?m;o<=r>AE&kA3y^`yZ@=f8Jltuz1}1?v?%5S#7$$byh;3-_APl znGZN?fy92;ckg=u3v)-%uTzPc@Fubh}+^(j(*3Msl$tUmybX19b;D=mMf{%{a`&<3J8ublq_G?# zb>wftVbRlvVrnL)@AE`1mzEPmHC{xQMc{c)R}Pa~WF+@K*L4yWpj38}dgn zUU120o^bY1NgHJnuw%BqF(Stg!C{L(VC6fCi2LUhn!=7&;@46uG}N031t6pMIKAK-fdwPd+Fq-slT9|rx`ma`uY+EME3r5oh-my zjsMQWNMER1SN?!+C5B9W&70#9NxA4t>oJ7)_eSd9m+r*9Z2=5PN&o8TQv6^;Z{}s> z-NQq=bOkG6%IehH8P}&}+V>~;Jrv-Fq22OeS54^7oi@+r5%Z;TyaN}JBJbzoK7!MLOqE`YXSIj+^D`?_ z|4RJm#c(r(k}Ey|4!@zG7Aof>%C00fjZJWMi*-)CQCC}mU&iRMjLt=x28)y4`@MS` zkyY&IXpN|Bbcb)Q#8DD)tG9R0gsC*XEa?%eWK7sXFgmPe2c_ooNaadjK7T?-5kx3QYzGYF6aKiY07@iLMCY@8Yxah_l~D?Mq6SVMGtp!^ZD*@VO%NeN7GY$J%SiZ-0S4n zqFnUMmfAwTWS*ObeCkG`Y8UNXqZfF4kl_rv{+8YGjLfeZ2r9 z9bojEPpGWNwfHqY8C`wIV9{0-77_Jyf)1ew<3RYXNUa%*rR|tqh=+|;SHNU@mw2e6 z_)by+s^uSFY)?Madd)QBcSpW#e2t>IVfRzU->g+Z2`gvw3Zy3yFOPJB{Ir;9Eb&-i z=xH6!_sH0EK^RadH-ZP^WU-t1GWBG6W4#ermvx?G?mI&c$o3q7Y%&oz{SP$08#~z3PW}R z+jjV=w6Rrw25K`p2f1<{Jx4cmrgx}CF1+UWESaG2kIp;~;ILN{0$u+L&WP}9Vt z@-X?tqg>5u>%{$(b27*?Tu?!7A-a|MhXe#QS>gd`TI7 zdv-v;B=~*`=Heau8P+S66s|N2E2}yKu9||Q&N*ly+*5ay$h*JZrYBFYP$Hzdu`GQXl5rC1cbU?IgL?C9mg@5)@@{Nycw(x zrcZxjC35IYv~`0d3RTg2V|x7Hf1{u0xxrJJl_FN=C+p&(dgD6m7!$o0Y7=K_u-IaG z;`nN(+AHE#wSq5$M!Co~Y7*!>uLJ{c#4 z1F)ID@BSB9T3QN(;sUlYV3H413IJ-@N{@8!9io<3Be^D1I#4E%17(63pl=(gHfRCX zVfcBOt&}E!L>etX+DdOJiA8U(7SdTU{NQX~bGqEU#HqDKA4|;KO#x^+B$3f-kOB=AycKM?jMpODOliZ z;Xqab+-aD2kmxUke>C^4#v*r=;}Y8LmbVukAB}>Ci7E<`y}Zcf)O5MV9EG7~_Zwx^ z(>thwJ$aIH25y-nb~uDK9rR8RsMkuBl-g5vvJLLK6#?N^Z|5m!`x}-`L0lvz48$D z3;u!yDDI1A(g{?Qrp$JlW1SXntG;VdN=z{SuFRrKU*w``?Q{+`M_6qmqh%V$ai0P~ zx+FbI9(loor=C?QXXd8eya!& zBMy6s;d=S5i3tgJ7Jmfs?(OYC;i5!Jy3Y5_D#EO?H(v#b46#=7LNAocyo5nPTt^Pv z7_8LG(~fx#^cc8YqlnctDB&zWzz^Q_fhNN~IcSTeK-H~9n5fd>MyP{jEHC$3l|~2; z>P)?8T5cptl%sHLCxaZMg2hlUz%m+su@Z>t#x&clZEW>zn>m)gDMAP$ep>ENXei`Br6zTiKENj9iC4S3mM z=H(K@Uk5$c|DfA^teq)scHvJZx`r?@Tr`&LV-dEhN5l#0meHispMdIj$hx&sWc_(M zf=@XRV)3HEPBDQ2z?+m$Zu;C)_Ef&hd)$H*8JT$hoI*IHwgJA2(QMV!hd; zXaBQ!R21LO1p9qKrE_1qtRs^cN0X0_FDpO)yM8tHFlXZ48D(^f^Om)xCER#D=I21x zkl<^A;NCYeenV^P2(!tfg6Q=p)hi&jv}xn-8w-&fNYZTcy`j_jVSMn$iF|{1Hopee z>F&dlKR~_3pz0YI>;aaUm$e_SL~krLXk8PNBk!Oi?}s-w-Psunu&>-Ez4SpOe;kq3 z$3Ex?1xEc84_(u@r^{b*bFIMOD%$JH{(6>pPSAX(e~|%+G|Y2u*VEk1T*fhTP zT>y+&PczQoYX)<_$Y^|&S*{gleU`I-m6XMggn9tTS-M6}9*vLv!i zfqeHpexR6lCW)kGQ`Tu=1f&`}-j@Td>QO#Lwo5rhR=AkUN@j@PASja^t>GBS1{g$% zOT-R<d~t%HK{fT5%4U0u@kcKAED(4*+COhHY*oB{4SCVHDfIQ-;sv!=Qzrfo~Lv5_9D)>M}%vEDT|>|#*Po!|MnT7WnA z<>mdG&)EO+57sc?1qaBSZ{~IH4rU{2B$)p&gn$J$U+kq{%o3pRF27Ms(ci-H_mae> zlKwp;-5ded^bfy9-+Nz>Tn7Jpe(XUMt^K~?-Fa%1ra=1_$S4SUZg{h~zgav3ey8Tc zZNJe{f#h$3w;Q6R#drU+tk0>z*4P^%x#jE<$oAIz&$X*j9^tqJ1X*od_Qt{4Oy#@@ zWsDpR=&@W$-sM1%@uHf32lWUf0yn|I&;;7=EJeD^uR;tlzH>*36ehS6}Bq7 z^$X3$c1K>#I3oIYNcAg9rbSW=jk98KATE5@U%vzPCKx%2akHx>5QRW`@tiRmiLKL^w;E7`|;pK3lrGRIU z*)sisTU6K)74L6);J>6>z5t7U%9J$h#so>zs%A^)ZZbic6&E~zM=tr>M2{@<(*3J| zg{~4tE7u0qXNk)Ft$Mzyh~y-6{cxQ+5OX`4&OP=jC2`QM$K`M!qXAR`r)&*M%xQak zQqrCP#%0ibhrwnC1=0h+pd3XMd+0r%PSg00B@RFn{Kmb2gzz6X3m;X_pUzmFeNo>o z>6U*%zenjG-w>f4Tdz)U=nt=p_0QJjfFzFSv>C!WAZ?$!2$WrJQYoPFXu5&!Q(YxM@0(J5enevrd zPS4<~jkzmUR1xlSz=lSgi@0pDy5`p|2hT*$9i6TF7G|Uc$#-{PCwu1Inc6BGH;^<| z`<-xzM!hmZdc|k2f+CamksPIt_zEb?y6byHhha-ii3y?eiQAx^Qs)&kG#f|C1ecD5 z>-yXHk{K6T`iVxn`*_qm=eouvVJtbuR&c~^b}Vn|`j;TG?AcMzp9?DItxYeWS*aMg z_!UlVwhyb$OOLqI%UJHL1KJZHX zg{Hxqo9|PIdznid#?fy!ZA8u!{#^L!lh=uN%orC8+fHpE?_yu2zUk=beA>%OrB}Up zdI55J-#?!? zEnwGsC%TS>g3Gc@9F!}BuVLWVkB~})W1HyOQWM-Ru_eAcjFNX<*2yD$iC4?$9n(^u zn(~*Vj!;Ljl2PZC;Bhj{Sm>S0l}42lDet$aJ9A_Gl}Ey0%6T&V?Mkh=<3CA1FY_M;=mEcUS1*w01OImY zy;0n+D}msYw-4JJ*}0>6^62I#Fb+6+gZ+31-+Koazn(<^d!I}f-FClQF86SmTwRPO z`0_L=z=Mg8-|BTv1a-gRO%CL=Yco@#6~{kxbjp1-nlb5yh)d&cXj7_U!O zdSQ$xyYv1{Ev2GSu*@5V&S0TC+^F;iGXe`dq(9QmW3es(e&U<Uef2jJzc0x3W@2{Fs+lce62|0L|{KCXtJi^`W3sQEzL=esvm8OL$NSY zK;v}q?aqBn-OvNipw2~@j{(g_s!mh0>ZvcyAV0q2B1ly?Y5N3IiC`xJmb#9kg>CER9=5&CMUvBHaHvF-QS9JKfiBHCHyCp0ye!i&XHg?RdwlG(`Bt;G?-r}o+V z&3!TGKeEH}+mKR^{~}B&=0cHap?*8^b?na1$r-3;0WxyD0=ob)46r%SzW|a<%M&3w zOn9Py3f^6}O$R2vWo|(IXC*!Uo_}aT{=C8lqsxH%Fq;1&9~Bk#0O$sz_XK{b0rDfn z2xAi>**Z&Nv^#ja_yR+=w?W0&7|NR$5^$2Tnn;AXbQA8KY9z&R#s5M>{k*}|u$)!= z`cuAdR~b>HuDye|=2Z*a^x5WP29iDeIj{!^v-_INrK_}SdhVW}fn~|eww!h%B!iXm z(Bu!!hM-%>IwbIYb!+=+WL28)uPNiMu*%}a86?#+A2mN@Racl*ZqWI@?DU$r$5xrd zK_+Ho0P8@lp$d<WN;F_s5d4c{_BxlQ&o z-vO8L+|(RZthsC`)){Qi^jWgz-ETzGFBj%g7O<6{&A2Ptd@OovR^ny&5*aSsBRweA zbsbe-r+ltV^&c+TiP>)PoZG^SK#2SdBw8@7CWHdZo^PM~hu@jq6K^0{3c+Re;K%W| z1RRI9X&lw}y}+c`>MbJ0;<@21MC&ca?L&$WLDWv(=^}UqfJwc@>h#{c2ZFWOe{K&{ zBmqK!zKyaf*BLJ}4t8V|0p$r zesEVER8Ovvi&B`}I-v^6E-@ddx~xsHKi|{_sX$OB2}`po<_e6Z=8%|rdwIqtfdM~rh5W4A$kZ-#S8cO4j>8_AcUHSmjsgS>+NF_` zY{S|uEqYa1>*0#J^oqL2E;=P3xvHQ7289E($6ZXu&{i}n9f8yaJ#|sX;f~PwI@d-? z5(8X|L48XG9%S151&k;pyKJ4Fa;|1TQthg6sz7aJV8L0_ZhH}roDwvB?Z6i z0YzQVab^&5h{;2w$u{sd1pFx?hu>ZfeqHu`JvEtrW3pe}wRGpcA(vku-LJ&KkD0;9 zJy%y8Z|0E4$*mXVxnrKUIL-eeDc8c)N11!RR38a?rLrXjX2j(%Y!G!Alt{9l_(k%&` zwnc5z$Zc3iYqot1HJ=B*zR2QGf@wZgUknzr=9KBPu%W~?UEV3F&zqVs_JX=vtkj{h$NZ@*}{iLHxjgK25>Xt!0E|jIKcewBw>=VjS z>|Z~e5`?y75pYH>;oTWUz2bgHd#$cbctKr0HMIn=?B!^6pJk*3E>!QPf~%rnVDiItK;`qBpCR>JeDV8}VNXAGKyK@uZF817a( z(X33~fXChrl@RN9of$0`?r!J(9G*ZmZXE4k126xtppW1b2CKSI=_PLe#{EWlY>kr$ zfM(do@VTjg?plLB0tZC}fv?hl4Hahc{c2KVQ`pXLj&<7tPKF*4_4M^QOb4^z%DY=C zhK@j)+Vo1d6IL)ZZ5khExifySgMs+Jv+6U`gF4k94>z8?RfGZt2Fo=@5M#V%zx}X={mZhGo=ypmNkE4Tg0^Bft#!>#Gq8YSR(0EoS3!GX$yS_ z6OOXWM4C~WFO{+uT$(nx1~u9h$q`Fc$$Ejzstv-(DQKMIPdm(g%ry*t?pj?bDcw6@wXQ*mgNukXikV}M*o z-R2vd_AR>ZJl2D8;%?XknDOIoBp(PPPv#wpLPvS3&OYbOqKR>iU%@KIx0TTSrq@ge zCl^W^vkTZN%F72MepBR|m5B{N30tw^B|oO2#~Ah2zw_20aayIrP^ZnsM9&$?Ed)%6Ji1RA$nYkBdgvL5m|+l_>?9Qy(mz!b2BiV*5%Z zU3D#FdYSYzqs+@tTrF3=x0@O$nY!PEILsldvn&|?LCCs6C+78b&V5;|4$^raHxey8 zxWTp=k1xX-nNRRrakR|gsdFCW zc)9G#cWe&D-|2TDDVXYF=>)$7BjsbKLRPzu@H=t;(u zg)f$zEUS09EYqZ1|VOCe$ zsD_MgfK@dRwOFdc5FuY8M;J+tS_#b}Rog)(En=acHHT&4q|w03(&q+_W@% zO3)QmX}9Cobkiwphq~7U>MrqWGyq1a`Us}PN^YIiJV#4B-m#-$^zl?>R#nSJ;~GD* z=1iq=SF@{TV%ojei7L4MlGp4h(>@;NMYJ+~_L-Hb(P3$A2A_y@*C8oHaH8F!pWyunWY#Q7Y>@~rU-Nkv4o~3x=`V2 z6W}qUe+@5U?6;M#Yb*5G5|$iV(|P}%!*~qts!U((9w$sx#vk|qLrVyy-P;eDo!s^& z~~9jw75 ziQtJdL5pG85ro8L$>U?xlgp$Bf89>Mz7(#g#B)4gJ0*KTF27Qag}Z&?{KVg_38zj7UM5D8$K>ThF!4Qg6Zu3g7Tgga=E6 zl^HjC&RF01;s)G)AEu@?YqP{oaFD~m;CwXk$C9QXaZ8&`bl~&2eRXxUaWV9H0BGtJ z1twxiqw!2un2e|I0|Dt^?>QiK`TBJi$f2akbkGuSeCF#Ibg+!L{J3AbD!;{ICY0tL z?zJ#3;ew@6IAXfftV!x1^0;3+nyC@ck|FYi|7&XE5cjgm zgtcOvt1_~ZO%~_7AKKf^o_(#+3`Mp`ldMoOmtMC6@_*ArVPnJjN9?^K@O}z)>dd(dY*m)$|S5=`!nqWxj@`TBS)v(No;5h)80#XYF=g1X8g=cOPUk z$Slq=W;J(wws2^iSRuB?_I5^N!e=Q_*N(5G3hS{Ba*q)3LgFK38lsbfJ*H`s!AuL$ zf}igbGPu1j_BxqsacJjwD-ZZBVD<4tHkJy+<#|SuQbqaKbw@6{Z{}#nBfEa$0_P0YVfgJq zu;DujmJMp!m|>&0)g*IxjiHsHlQ-jGVlxbq0_S~8O&h8C{>jt~lOqn!DV^_zciAWW53@Kt6sfCMRk&rB#S6`60ulF|EC35>Yxehyig-s z6W$CoiIE83pry-z*9m_uYbM2P19&FO1fuaH~ z{kJT9e6rrUuDZH9*cRcKE>Xs!fPCz&g{E(Q5r&NWpJ(NbX$6f{5GwD?QR5Gv+Z!D@ z&(KFj_tq@hf2p0ArZLz~rdjYKF)wG!(HIpn$fP9$K7uncGD%n)*T7P`vyqlwuMK)T&uYUACIEMT&ueSRutsQFAqnTe>0W;gd_H+5y*dwtHX9@hVU< zr~FeczlVkt13o%6^;vcnj9Pp%@g))QXEREPLZ?9|BIlIA7z4T~~-e z+6!B$?D7<0D*TQa$B+cY#<>qJ9%P3YmQJ0v>EsE<>uVi5=zr7qAfI1{E9??AVyS!@ zG>5NAudg!b_|#)>%R!PSy$6u|=G3JiIK;j+rE}5a}b{J<$5O&Vi#9(ys zq|IPh)FB1P))0GJ27GZnX({Z1!ib3S{?zxwgnALuVO>ubol3lhb@ zF|c>6cjO#uuIJMF4}>3}4@#{iZ)j9G(d|nj8@i!KUK+gr+f8cD`3qm5!qp|b=S`pv zxTt_ZWfo^hxC^^O^_vtI@Z7c5j00P}fr$yURj}7L_7QPC=I?0$7aJucELN!bF~riJ zF67Gx-FI^=LK_`qI-a`-H8yvA3hkOqM)k2o8b~VJZmb+=aa7+~OK)ncAO^Y2L_;J6 zGd_$69+w(DONRI@lpldR%H>@&RM$^?z;BF0%p3ct0w3q!GfrZ5qx~%JJQ8)6vd62- z`GwqIpu-#15sviiwsXiTQ)7{K#C}~aW`nf%O4|k3gQO7N#^9+WNHIHK5kl0bc$`~h z)llSX+o*D)r-NoC{E_*4OKR`By;5~llvVx!DJi1@o^)Fw5>xD_ut|ps46n=sq{x9Q z!E`QMCp}zys+mOeBdQTG=j-iCa{x2dn2u|F!nO_cSY4OoI6b2OeKm~BIRD3>(h5}a z3XK0dUzeAPSY2HWy?^}18B$%F&-@p<{>9{3^;F(~<~Q3veHFT)PK~AWIy`C1F?f_% z{1mp0IE{Bj3_2ufb)a{6%dzJJCHLk78n{H4dV8LNJ>!4D>RCyPY*r+Din8T7L9V^n zeBZt2JjUQxy|T&R?tN;n4UcSRev6*MrK68@dEuv{&RDZQ&T3_AFh=IbQD(0rGB@@* zI`=igX=WF{gZfm!)A(<@R;z~TEsYfjn>B9iR3ItIx|-SgU?nd z8T?y^#2E+mwd%AZJ!sw=HfPOft2#Z7QzLlKo8L~UY}GUNe^QnA<%1>sj?JN9q z0eM@!5sIuMl{3z`!D3)N5O5c;+0uCww~ znvx&P(EK!)I4bH(oDLx#Gn0sO6P2c|q+I^?<9oqwbMS?953;y7L#|DA$FJEb`b&LG zt%zHAv;Bz8R7|R#H2Ix1d~8%R7Tl&<{12k|0PO%pa!3TR9OQx7fJM|;qmhW`p#F6{ zJ$c>$zj+RhY15T6&VvN*-txmVllG0UrNw&(xh?H9l+mEfi{+g6&qY6q{51Er5kiaP zfK?qpcC;YO`rl`Z0sq5)X5hDBCI?!Z+X0Hrbe`iQl>l13b`mtn{#b_-^x4AU_z0J* zFpO~moVs1+pa)2pgB@1!H^eF>g#+40NXcavP<9k_5H~|B-edgyR ze#-Klj@Bb$$-8U8g{uorOLJ*YZe>PCik8fj?4OD}BrR6|@(?;zMU1=q4Is^EQWBb{ z+Mu2x*0_1<*gAD-Oh!IQGipryKxy@sIxZOcPmD5>Iin1D{K>98NtA1tc`T@HGkq;M z8~p;Y$jVti$6%zwEI`m-eFV+Ztu zOphX7(DzCIvv1L0oiR$svOohyg>UDlP}2A29`n91l*N1LuU}ex<}M>}=64jO(EBUa z&~@bgF0$Oxr&MpVB-~&XD)e&iS+vkS!HUD zo*JC({|6waR-ASN0OWy3IfiK|3L51K6-?!K7kr&-2gaNmJbcY{Z8H<39OLK>gFZb~ z%Wx5n9GnA@E|}mhJ~T4-qbCe;5G;3SKXf=E$4W#UWi2uLhSo-j25W@|W0NIQx_{nz zwwOxZL~3^0nnH<_2v$W3*G+)U-6uL%B$LI)(^YX0>N2a(BQ9t3=zr$53zN&f{6I5&O?nuXfk~5qkfWD3k zRk__{TV8k&x=OiQ!}w?z(hbeXyM#7YKDEbOGBg9jg-}@BqpjIgT=vbpcb#bM~tRb1EuC$am1|FV0q#G1Z8i6R_G$_!H?6!<*rNW#$hfYH<7r1@I4}ScO$SfFU$wh>A zy3?B_%V|K^Rg*qCBP}c}tP!$@p*MG=Q#EuB^K)7;d2+Z!n3N+9f8$659(MQDeHAJ! z!b%{?W)RZu=N!u#^SxFK&Pq>W-mekpYxYKZ?yZ06wIx5CM9DV|b20md`erFh+d``h zQFMrJmjI{ z+X-a>#Z>fRrWopJaP(@yq17nLYc`>&D0BJhx+{AygF?iSIaS@-%z@6i3qdsOCc~7W zQg=kroQ~ztpIn@h7M6+POH(#y#o#yYnQM9F8om!2aA9eT4Kl|XXj|Ubfrv)@uH>S8 z<2v0$48o9LuMTBMr690?8NC!o@i`Ts2=R~Dh=;l(63!gwQTO)d#4)#T&24Zz5 z3~gW(cE)+19B#fV$CYr&2W^}DAwm(a&p3l@!b>P-QrM)+(JYB177(=_91`sW^ZyQO zO9vI<;7v3^D|x%K@)p7=|C)-~DoZKeIM3xrr>WGkHsK0qIQoEj04`@*_@FFdkYI4b zvG2;Y0tU#^no{RoXMjmeZ=3-QD&5uX`Q(SUgi9N2F z!$tG>1vI-Bh)zP}>HDO-w_uM4V5x!Yq*yw^kb+E!dq# zApQZFvP`QI>j%Hyy&n!uv#)B)spb7u{Rf(8PR*O(-6kFD@3b&WbuRY65!5pjv;>DLP!10b z!Hx34HRHjK7F^IEg&ndJEBp@w6nxZNh#w7x1)jK*O#Pab30>0D`h=W$>7kEua`%#N zF6wsnRxu$t`KgbpL&BZ_pzX}a2lFYGX#A&jK<5G_4I7M@y(hbjTR)SfpOVv#^@9v~?9c{={yqQzWCyrEclyp~JmUex%T zk<>;spJI8qy=kenChlBdfW={cm~(T9SQiS<#6^(a6@`vIee~O<`f;jS4np=8 z>5t8n)!#kd5RHqP50>+NL%xEfI4h_KmGE)g)L|v*hXTVNt7p59;b`2#nkr+-#Kkq_mHm{tK+Ex#w2=oF zN6fs%zE`ss{&W#N^(-voCu@FlH$O4lTI=fp52amlgf7bxw;xF6%48Dj18`IP;3L88 z5$SW1fePHBPaS>BCkN;kj~UL78KjS4XBj9y+^m22xDRC@_Hv{1*EIQT-n@@c`m9F9 zX~oU95gU03cRW8el}z_{bF{@zPHNNE|L}Lwt)0HWnSx|wiS(l*ANnMhg1t$8M4)v?+0C9Bg#8?OhMB-E|gobX_V{c&}S!`DaZ`F}K>gI}L-yvDPQW!qS` zy=B|xvTb{{tYzEQT6Qhl%eCq}-`_dsFX+|teV+UN;JV&dNW5r|(agC~=^%<#Qa7pr z!#Zm@N2?$aUO}7!eE$iq8JG4WPMFl55J36gov*YW>A3EXYE2HHf|!)x#z=~ldhL>^ z@P-eLgnW-`1J)W2y6E62 z0s&sUcC`jbgIrv`v=QWEH6YZsz-|8I5 zRh)Xv!+1=#NZd=?j2a0XMyA=p$hQCf6rNu|kU`1OA&8-8_{+zA50{dL>wVwjL+Lq! zHq(PEMr+F*-BAf^KZB7|p@}xxuFERw#YYnIMr)7Tvk2Q`P^lq^JPC?DoWh zAKJ82hbl=wM_bt@Wl`kILs8286SF(yy0GD~kzr4|P6JC#B{etA^P3)Ijg|7|rwqS= z7G1q}@`W{wzzmb%B#)?0lIUIY6J81dkNx#M)yK8hN;DKnLk=P7TIUbkmWGwo=j3Dt z>uQPfDrvg}37A(n|A~HoR;7O}>n*M!824X^@vr+l`dHwa(3m!qtMPcuQ-(uFRE>~q z6l6mvWzi)zHnK>2Op;fjo-xVM(%X{o`wL?G=kgP1jQ+~SMwcmJQ~+6O)02hUr3ZT~ z2q@-z#juPR;=u)}hv)fyezFZ3rymB`3Dzd~2rNHyhgO%J{x(g26Sl)#FS0->wKmD3 z78e%>9k=skirjO*j0r{^+#-NSy!E*Jg(>^+lX#W~uCbJnFh-viW6M>`t3y9Ze+3VyJnxyQXBu{61A`SD; zpiODv!y#&^ozBeab~)kCrC4K02XL9s5PxQ6-G#=)82vlofvyhjVl~pbr!9bmWLCon zzNyMLvR0F1&s4S|`3oPk5$d22nZGCfV7qx`pSA5N_|C-a=pWHpv}xKB@<7|G5*-u- z4gpS@^?25k!KgK>Vs{-lEu9GaX!EfQqcu z5zvkAWNMp#d41}MIO9uliLkJY49BZW-ZzZ5x0i-ipp~s*67UdW9_w0&^OYzJExd1@ ziKL>8xU^lmmbQIz8?UKazOY91#c}QP2x(lQ4|nKm#kN5{PafA%*`peyScIP^J>K03 zG`7*xH9EkK@mu)?hmIz_45KJURZy;jzdXak8C74w!-XmS-0vqnCW1{!9|cOu2sqN~oDbutA&c!b=5TUy##l6Dn(WQ_Hy{-#&0f%*dG2>IW$u3+UB|EafZ z?%)t_yIceC2s}5>3`UQSt(NN_<%=C!M=p+5EZFf3{GZK%m<&gOfcOuVp4$_AQ6oM< z%|u^8tK1;Q?3p50e=Run_umq4g+G_h5Cyl&G^$(R1iW{!qU}mQWNGD4%BFZSBs)p+ z9ij+ddJ?WWGM7mW@6aP_l*Q?w#l~`B2U%j$`Byy^lsX#H#v5f(y2aJcUmL8pMpN^Z zJh|G);d0#sbR|9>pvWzE(~w=l3+>#O9wZCQ&}3aJrzYf<(Q(s981R^q25Kf5oMz3C z>oD;(C55iUPCJIJI<#$#v_$Wi)^;T1r<{}%bui)R>WJbVpjE^MKJmc)Fjq<+(X;Fk z^q1K)R99P5S<(^brKz)Z+Il0t`bR}@#%%YeF2!Oj+?bVzXKZ`hX!*XWEd5*i2GPBM z-B#|K4A>yt_9lkxrXx^w@JCJ=guc-S2~O_;dJw&C?=;{N1gTS2RI!D1^$aQ}xz_}) zn_viMTug&TE$a1dY1h>SmiwE2Av z4M}gKhm!mI3Rgd$;+W(^tcp&3*G1S$dE%NP6|QR6_VV!fDGw z8=reE3)tG^E4@VNXzCas#I60WEo}wf4>z5KSKv432yp4B#?2aRa~>=NQP-jA-@J*X z>J2*s7i^kCxSZDefMZ$QZXf#iRp|Ei7Et{FCp!o@3mDZ1{FOaYeqLlOxU|9H6&SHwMvai5@FgQyR|i&NTG zuCte7x`u&y$s+u1RQF@uTSDZK4C=dDvadeia}=QsJ5PU@>kvgCaEpjvCyf9Lu}J%Y zeiT}*t^c(}0`;|IF82uI7IEwq@rf?ZX{zRKih+KYGsHz!nX@44E~#{gHVZ37=ug2+ zI`slQ_Xn~uetr(==`td_?RK#U-gYy*SqYS)^&EU$nXBR)&H!sjlN-nB5h87NmL0;^ zEhW#z-?#SO)%7+P(3DP367$^GGl3SY4BDM!QN!C0$g&Q~Dhwfp2?D6PS%yzrlY~OE z-#o4mHjsq^b#DX!7V4iS&{-e|;Tc%H69{%m=8aBL%?a3~4gvRx3|;%YeneM7l>NK zLu&m{Mw!A>#dj>aTdOd&HmtrN;@K&(goq&Ii3%rl?(W16(QckKuWUpn2RB6RAy%Z1 z#D_%N`l?dc2X!R%wd4!z7j$kY7g_2p$EoA?)+Gx*?D@{1TIlA3!x!i&QPtHwH; z$3X_xGX{_?+{*aVyE^N%Jaby{qm{n=rlzvZ7Oh2m-4>z^oomkvcZtaTRv`90w6OoJ z?n4>qJ}&-ywrdnN01XNU2T+prKl%ajY@_@8`=xom9#kvbTSu_P08j%+p9|>8V&mig z?x!faSC7IwPq6aZX8!8XN19w}r;CS!thI5f-{{QIQ-QO{IJNmo6noT8JS^H{Be@NRz4O{kgL z=#3nkU8TD9M!D95^XcqhTLa!K^MgrnG>$kGRPGZA#f`+s*k)tpnHkcUX4*6G8?wWXMzZJy{k^B@b$(2lWCm6&o+O9-P z+ZAmlU~l4yF%L6(F3>uGgw;>>90QE4w&To5h%MUtd zZ?8$Ay97Z!pTq)^H$Z6s!l?jN9w77t01PIRhAo?vHn07#tW_kP0H6|JGXSDLSL{jG z!PeoFU!Ruw3>*;`z*s4afd2)6GORGV!dj%aP5USgHN5pN?VYKv!4Ndd;d5B z%b8yCeL6ZnJ2H`$D#{`~0oi73jnPnZ1rBLmLPpE`4d08h2TE{zHs8kIN{Wc^+qXsX zE829^pp#}*5?w^m*-#U${u3E3PCRs0rCAwdsb7Occh|dTdRO>MX1CEPJx0Y|&U1y+Zm1wu>Jz)uL=-t1VnMFs;aK1e_WNxY<`WeY^Kin3gBAAf&5m$1O=F>YF8J$ zyaYZSDNaI1Z?=?u^@j~L>*MrdBkAfQzJbKeNS0@qYI3BYTPeDfahq3W1x)P4|%U5+?#NnvAwA zin{G9nt1iM-HyzN@^~jH1^W2C%X0-k^MPo-R?OzC2K157cbJ+91;Doq%rs84yvlqDNIID|-M<E)zT^LjS^dgmcc4s2Om z3$hJ(`>Qo<$s&eL>RF}-CCKY-Ev5iA8Zb@zubQjt=#T@1WFv6|fQdf+gzm5F)&FY& zPELq!^E%g~bojY!Bj%BnzM8N_BF6xQa} z8GGfWXrd>#-8`7tk|sk?K@8irI=c-8t~&pKA#=5ZU3R8;^UIcC+mlyG@4KwOU?Uqd zSnn@;(kVmRC)>(Tyht$8!Jx)8Y70(N7i}TfI}1vLBjzv0`)lN-k;uHx6CYx(O_?(F zUXy#!c)f3P23DxuPGcXH7gvw5d@LFin>fh1C7~^pi@9+047Cd!j-h%s#wPB^9sWt(osgi@YtW@VtvmZh0^1=-Ta!I72&dA{e1MJ@psipH0hgQmSK1LW*UZ^B$l1pXvhqLqo`zxp=f$1cbbKp zzFxI#$SHmkj^Ye2bersx~iu~F#mliS;*W|Aj5S-?&BM< zXkA6Hm;z~-*kWhScbF%4B_Ep8`vjek5l5ZMg~2d#F}Se63h3<|MKB{a!w}i#20h3)!=f1BuIYC@s_|DJuT42~%P%c8x&~cHVkgjsz*gh3 ztZ_*<4ci&8YTnj04|=y|(ca8kDUjx@u4&pS$jEi1q`JCZvv#_kTG8t9JO8>XUp0W` z5fGqh6b*{n2FU<>>u%k$1X@8-An^ICR<0|;|K9vmEM9H z0~M5$r+`%T(ur+mUQHsu>ZRwVR{fZ@tT~Z9aZyzt9Jvb{L!H}A#g}j_;@U&a5@%-) zo!`(uD3lmb84)z3>`b7Cj|%}d9#NQr zGa?BvkE0)U`(9S-T#Gi%vnsWE%(Z7;K#iQitiKD`@BmNHXD+Um%a@OB)c3%xm+CF@ zoUfqq{%ul%Zz$lEs5(0O*kySS28BF=+V9(=>07|+kPXT)we2!w{Nx3wd?rCbv+UoI zKuO(}0S}hXQF%{MBbNV}qoWjkgOBn8a>WYzPET#*TWdO@flf0+8PE*_yI^3T2;ik| z?&cM_bG6*(HBnoZEuX$7tg~pJEzg;E2B$eT!aT`IUEj|nnCI}4$^9EJgbJp!zb@=< z9v`~X%~+S&o@FU!XYG(ky{ydIh$eVi8+|<8pK%N6B^bWJSfpxZEIF4$fp%(QhVq)> zrmfb6*yhg8 z=+&IS_{tYBtQ>(V8^FWYXgU2CWJrJi_n)sd767CRf~+kEfQRTvoa6<~(Q8uI6PPgq zV?vqHm;a3IkiyrHpbWcx{@&aFP5AsaEjW5REj$fS)xi3Im_y?C9g_DTQ2P4LLb>X{ zi>-GikO`O9{Tz4eUVjT33Ou^C=f1k@zS{8sARugA5)avn9B(GN^+X%5bLrRuZWzD< z|9|n~0F8HDRL#J12il|_7la0%wRh6b=>2%@J&JSm-HWGhbhq8WG4w?rWNialk7fNw z0F*$G&iuIXZMq|!8AMJ6X44=rjQsk(^%SZhOQKtdEMTURD`6KGuRdEy3V`sEX7xgn z6Q#D_ebLQUD23flKjDb3B^vGLn6k%FRm==dYZ>REf*O&B|3^$j!;#}oKTElhjPJ z=>gA=*tZo}Lizt24fruTtDNh(3lAiFw*wX!;792KfCJluB=4-CoE8vh1oT6oLM`ts zEMN)Weik0|*?RpG&$e|F@1aDW_5|{Zj@W`UrJ!6&lDA`Na8L#&Ku`G74=Z#XG-3&| zm3sJ&dR(9NzMnDe`CWd?+gr8F6O07w(NU^g1i)R!z%n2z3Le-6aJwS=4PHuv2~Mvo z7k-KZyQEx-0ek702H}x_;{oXR9py7Fq`=b9d|&g2^Qtw@YF*cin=pHiX~HXDVst43 zz)qq|4;Sl*2nJbkj~hcqrL>$m#cT@W!)PX`TbHf5sq<&|GFti^xm|FhReiTCt!sYO z(csoG{dEscE^_|MriTgyq8Q1kYLyX43C~!?XJKpfUQ)2(;>x(wR&uib2v*TwPvO@m z4`>K>f;Jg8S%qNHIcf!JC8RGV{l%o~LY0zF5QYiLUiQ5MFDiB(>#6oX(_jLp6lMy5aw@TXQ-$JPbb zwCb!gw8`p1p-Vw&1Li~xcve-5JARkYp;v{?C^ju4L?BmenHju zWj^n4)c<^x2l$Xd@v&{b&+H)5Myt4w`w^(3#|7*+n)Qq^Wx3uJm8w2iopehp@aFdX z0|Y}3XnhZRXw9zZVoo1#kKgvkl6o9f`0GC$iMc4C(D2iAllXc?Y}Y!zNT=<)xHn>d z`@$3drC!6-Y-}VFPQV?aCcG$|QZ<8(Bsn zUZtxmw%=>DkZKpFrL`Q7Ws6VtR=2H#5>Cg?v(yti(*6xsvNk|OaXBlU)*TAJKjLGe zItmA2VYE6xG5(snUgusL_|bhD>>8s4x8NI6t*oCdaS)AG@j&R$Yn^qW^>cGZ_- zzaUbB2`rcBR2Fg$nL3w7sOru0&tlbJho~f$PhU&lenMQ2RFgvIHeyHVVARqM9-iS@ z4fKJ*MvP(0dOS6PsC|)*N8&e=Z_xJ8$~#{EJg}r=dO~ioHtZHIQ&Q#D*(~Dpj)FWO zU-lPE(-iBK(m#AoMsZtuF4tD$YNPT9PCCZ18C<)`OVFToU?fuD8(bkBn`(X}hh4J4~=&`(O=`8v)bybK9ZXjD~> zB2yZJt83x6NBnW|PGLWZ-p3255*%J6!?QFEln+Omh}s7r=?9nB5y!_E^1u284}@7%4IWto&oGEM*T6sWJ@zH22A4!pQU zY!(8$FtiH~{l^-#k`3AO6o5jyPeE1dCryDQk#&2g=+P*tVCBx!4TIq1ZN+vSpSXX4EqN!*mbyHyr})!gW0 z*NrT?qBu+P+gV?8NV?q`tgZ-W*);?G*v&-Xopt#c5ntABip2uUlNKc_Y)_5!2b7q2 z1FhHgmO^sc()fBUrf>k!F6{kS9t-{ui`@psx4{dz7CK&t>9>NxJJl2`!Js`Jbre1rvNhXV1$(si>55D~tWP(l@d2 z6I`g8%qpHU&k2J8BfJUIKI@a=D?UEmmsza{m1r~eD3u(;;RDdj_k_}EWHwe_^d*yMKrqERq*bk8G|FuaBQz@=T;vP;!1;x$U? zLK+<))!Q_$shYtDnNNbkx^G{Wdvihda#X)#ageZo4%7t1g`!|S###s#>1u+z%S_ey3WP2Cj+-ztct1W|$_dFLs)_ih z16?y_TOdnzw3c=&E_3LSTX5qkjkH9B7-*{y5C~$cIe#buzOC%+e;T*J<<3*paPy{>EvGEbhp*0^3VP$G`3(Ul=u6|c zOwO}gJW&rN1UrvX@Q!-W>;VJDBj*4P9DHp+*<|BKcB8VFIpWe8!j6~0;4~9uB+y`{ zP98`hwCKw5a)AG#Q#p9`-y?SY_vB0r5FDf!epdtQhV?axdXistkKdr2y1n*5q&C3M z`tP*%ogSEVN)vm9f*1hE1t3t@r2l_)(=KM-wx<7qrsv1&*7Wo3(epx?(Bd^1)YCqV z@Hi;>-TyekKhlnC57A?CP4D z&Fz@{wan{oR@%dk-_p{O?o$j1P(|R+^9^w2`&?-O3uB*&UCRdsUTXJu3RHYNfi`zvDu39&*0+Jq*TNp>o30oXM;qNbRLXL z5L!qwITG-cCZh6lbn{rDf3QNwFzCim7AI!~Q(T{Jf}dx_S<74!#n-!cd+`5^Gtw3M zcoJ}7%9K=fHX$bpw_3#Qxg0;R_OW`N8#qUDVe}p6p6+xD*_-2SA z)tJAr{ohn~$UE@Rkfy?6G@;83Iik`i*%eG%GZSkAVlg;*Qo$#&;h^WhYL{NV2Vo2; zJpKN#`F6Q}rKiKd!JptB3KxK?8$P^u6QAnxbrk9LXj`5ZKx7$29VrlGky_HKo&<^(B7fpGX=9XWz1GX${ceS$-kB`{7D@)?^d zpB(S(=Hs63$Qg(stTT z8M|f==A~jOScQm=4zXnJYf|UQLO%}gjF1;|mzxl`80ELP{e@Lx zL>xg?&-?<5s|GB+B;Aa3o=VJt`jFFzGWm(yOQbNdc?-Ts?pjC)3@lG$C=R{AXdV&vH5~VHDoi<&Zl!U2$j+`Rok~AyDU= zWSZdxUL==3jRpPb_Dgum3W|oUR5D0PjZUtr9e?5ygBqR?s#2?2<9le z{3c!Usfr4MlV?G-8>1q8L{Al$s>r@-DMr$(FytTf4;IRRoY2{dfh69LS+7+YL&V-1 zv@JM%nC0y!h_2@heS^oMYQ$A4EnnF>4hrpd`Y{%G6r!cBlZ;J!^vlgav|vwxuYmCL zXThA#9?w@qUdB%`j4UibIGQtInX-dv7WHU65x{@^`|K-T@7o%w@=$Trv$|kM zFsOutRNUfbI>paQ2_;!A3*V2&=r-MJX~c4v^d_z;6^PsDP?f}y;yUYY_I5lx(pu5>d%^0xL-nwW2CD(5ZRu6#a$p_?^-&}yAubOQ7u5H z&Yr?2Y&T~8MCOm2(4%vW7l|*?TI1k^Onqd;L+5#^Xdf@U_WafWV{{s9aXN4*5c-Es zLXz&{q6MgTa99i|^QOP;4grG0LX~n>VPVA*l>&`Q&QPsQ8`Rcy?|Q>?x6K`Yte{ZN zBH+`l-UDs3-9JOLX+qTjqfTHbzq@O)mCg*v;)?zFJK+VmdD|s7vai@e`%695h!DBxCrSxttjRzE(efTDVdYhJv3(**WN5N5_O+@kR*tvev(M6 zX4hc$4ss)-Y^DBesUaj&drK!<+loQ!^;Bnf$(w$B6IO>oaqM!e<*=#-$~aSZ_jDlK z^e<3=yWLYGNz%<8?*RY3cq(~`9h}md>g0{*zj%qMmwWzL3y!52LNQAlFJUP#afp>k zm_smv{~n!zEPCI}+yS6nQTY1RVPejld#a>}d*qsW*>Rzk=y4Q#RAJnnW@U+@re8k3 z?^ds3QDhrEX4qp0io0aHsYt7xz8nQ%;yG^O^;KF1#kAB6BSnEu^p>nc8?#-9org

#sV$13Ux!auoan*k1{`_0m^_X5JAdCWd!2sf?!1P{{ zG_m%wyEvUBecI_-%lzXT%JAQb3Aqqj2xMhB?%}^VHq|X@9fP!@jA?Q!E&3jGbyo<= za>6{3U=AceF&1%S^Eud|)zu5&4tA~y+i@H^EP#3EMx1d`xa&r}G$%Z#lcgkB+QiEB zm#hP&WLHq1={HvB4GL^qZmLNK)+I4w7*nP58qw7?Z!87!F|#F{Vyp_bo|DYO7yNwA z!P11WSFDMkFEM*OD{j->b>eckUUoDQJtPZ~9W^oL!*z@?m=Pj|8T-)<2V=Zcv-3E0 zBwZZ4VeAu83S%{aMcEkLy!gk|oWYKP{F6!J{doxfoHuIv3 zcli-$M%LFAZ%ljbIn9Cbfeqzsgh91ghto_N%!POtF=7$K{`S=yv3xfKy`X1!My5a! zL;Aw4gcZ9Lz7rj&bK8fMcl+G)(K)hR3=#f%I-|^-p{=iffhO)s5#dqcw{D?axd_^X zjGM9l5Dv)Q8%?-+c1IwK95xv;VUv=Q;``&M$>>3G(tU2%!XS6!mshD->#{cz=T=ml zja?ENuqFHXybgK8An)o8WbBH7>($CVy6}_}k&BvVDy~NcmX$ydz>Pq{>t$zcWyz#Q zoqj_{ZeNimLRt4yCqUz?s}li&3;FPXKn5Tjv|cOLBd<3jOc#=Ixh128m=kK0A-aS& zs1bZpyK-P3jnQEt+LS00FvA_McD5dT6UVqe>2n%oe{-Fpyp+BnJmbsnaz&-Th(f=!pnw3Bd49moR8 z{+!-yd{|R(w}sg)6clX+^4_hSJ=8Vf0Fl#8OF)Pv=+*^53W|dFSoK=x@eYF;##z*Z zg9IseRyMqLML4+;4zq)CV>4@OI)gxII7+5RqUu6uefe)fFnIVQU&+G`vsJ^|axI2m_P)B}e={yb-@TK1Xyw%V zlhCK;_=2OXUbz@7lA4m?$ar|G%Jnq%*T?p}yVE$c22)U4(kvHOsvp(Qkk>iibUwd8^TPycW5zPlQP;>7ldO&ku{;I|C`=*lwvQF- z2Gn385PwKUl)c|RbV@RmaM^8rqN0k4i9rsM_?dbkh2lXWrV8vz0gV!1w}2(~G?Lek zy40|fm@C2q{GfB!e6cOFw!%2T%LB}aK!-?LRN|0Vc zNIbzD5J6J{ve1=go$egm*6fl=V72BU(14q)UhQU>BH7vC(Tzf^8>E6j1_kKtu{J>aN?;D+;qd7KIV~iX?lIZsLUqGuny>uKbP5OUEav z*Ix$k5^98a_hrjp@qCvKI9sq5M&{x+vbXaMmpTYNV@#K9xo%&1Lh!C$uF6A#NyKKxTkNsG}Ck7+4V3 z2c;AG+RT;=&EqbfNDmVtPjStx79QT!M;O}rLBjdF%lT2a`MxMME_v|a-~fgfYKbZ$ zn~Xg7$Qdwk*BJKx26kK^{_JJu+=D})N`<8q1@J<~ZCf;IM-Q9q323Dc154{7AE`Uv z4eMc-*4v)djzI>^8ekEIqSE)D=G64O+4viGmE}o;ZaPz6IF!@p>h+drr!B{=o+-d! z)c*1Qs_Tn{JZNNP6 zU!Kb~prkvs2jGI#Aj*TI%)Hf9-*uAHmKT&J%Gb+|OXK96g7Na6b zH;hb#63ag(nvfZBAfTMMz}y(|^9IK#34B66T<N$7h^HDfbkV1gcdZwjF zw_e@qNS(5?RIQsj8I*0_)avMC^H~m~VU-aO6o}CcgJk)DgotQ;^exaT+8-d>7exLB zj#of`6crWqDL8ZbNVaSqu*QYcmaOx(rA*xTpP}e4AAsg(&nzDYy-qs=VLgzru*V?d zq3L-#-knBd)>+3!n{xWxam=0H4)vSTyX<`(kKxJvr`7DQ*LuU5-?{g`X$?UO*u>IOZOoceR zgu7-6&Cs@k??Dp>##J9DzsF@5yL@H+an>WY z3`0@+-M@PJ@gFLIDM@Olq^vA|$Lh~eu}I)UHYrl6Tm%e1K%EVoXp75_e-~pH7uA^! zx+1N!n4*sjj>xb|TyOc2bhNVsu_ry`2(f-6f-(tc0{+r~=v9vIhmM|y-z`zbwz&S= z++}y;dQ2jDf0kgfIY|bbuE1sf1)|O1jBEOq&qmZ80#Km>nWQ;6!yHq{ai*O+!o;do zD_O$Xj>H+pRGBSQ^52pfgJ6HCB>z^3xr`*Nkw$S`q%495qO8OoK4E4;7?>j1P>Ggz zd@io7AJ%Eq_-Q;2Ay*>;bXz~9=_Oq|XtH;`IB-iw>qYd29uc(u1? zM-f3KzWvjiNac;y!9b#elEam=33g^19qxF|G>55p7EQq1 z&iIF0K&w4seNvoUv(5qV3T||HVFJcFA|k51>04liiU&lO2t2GsjaSk!5rW4SZf(jL5MW&3E3# zv+fY1|Ds5}t<`st%A(j#sN>=XE)?c>t#$NBy?7AGz)!$Ik??}oED&u96gCHlg=k|B z(L)@-B}0!FG{ODKwqE*B#tCRL&kFgV*hOuGk#>L|Nr!UDvE>u0YQO%P;rNc1L1abO z&9eO}1Vjpe3><)Pf!O!DKmMihUf`kd*?0H zrf+ZF(1s&>Y2jR*f-`D$E=p$xr3L^*^=xwCPD!xACHveXPAFpjFaNkOJneAOvAXuM zx4A!g*p1cD^0KIrv5rTUL~>l|9B@W!= z<3eh>Cil+Vt-3;KXaib^9mG)7h;+(vv2I02t2;u;j5lsV5jZ5+k)xe!UnPy7&5CW! zv$g_U=eOIasn6+o4>Cv_UIE?RV#ms5&42XQlse4kHWSF3?7XQ9 zz()3liCV`A(tVHQRDhpboHStnZJdW4-e;slEgR4~T> z!-_S&4<;uok{E3r-W-DS4MB^IqN!&)JTGm8;QKi*#$>^?S$SEXi(xBO&Y(OM`#%LutsmjO~ zdslmvj2@l@tC}of{=+!wZ@yLo9^{Th$15RIx(C0( z9#4FRCn6d|5Ti&L7B0kQ*)KgSp8^qiEtodDF9jv6Sm9X53GniWNK9zn0Zg)VC7(;a zTqWuuxT>^>HF|DgTy>hsF8TL7q8`wW{=LB;PbTU%Wa-{rN%oCTD8A*Le)JL|>D^M4 zmq*;(+*E%2nf*IZ`@(HrqpDQ?C~}xI)Ll0_JNxA9tf-+Od3SeL@?K}=At3xw*KwsT z2uM~*1JQWRC)00ASp1^i-~B;3Ejl_nxIna&wD1eM#~&}t*cN~5B(y*_>NUZ@dF_rL zW4F1qJ1N~~OVxu8tr0a73B-c<(P;8tzoNhov=6DmlN|$pt)v7xWqb&rq6=Mh?Y3Vx zyIr^b$+wqpIwpqPiX74^1Bb%08Ooc;#7sYed!c4bBTmrIj^%mCx(VwdUPMgI-};0_ z<)ySXho^*u>5Ee2^)f#GDO1|$+;Nm)F&Vt!7VFpe_I;m7J!%SXTNA;xDCw^%9WE%< z11Tz{0XdHbh;maH6?>TdI`eb2N{PdKLXMo=uR=G?<_3C*HSLF4vU#dSMMZ3D9VN12U?Z7U z>R@D^B~N9-Z`N}18P90&;6J&ylX7wdtyiUO*(*IT7Dk$_E5qsN=vFQsB9T3Rr5)fo z$zuPjA>*5_ed_m?2xs$>yD7uCR6Se6ic>t>>0 zo-8Tra&WKVSfXXBw$PLdF}*Cf`75y!DKxwxx9Sf2Fk)a_yct>U(QMjcU3N9&B$Co^Wug}A^nDG@L@ zs{j;mXaR)S?~+zgS|~EbapRQyNMkah&@}OgJdL{Kor(kdIp-(bURyxA&2~tz!}njN z0k(8>ZGsk(6et<+TzY4gd-pE`j$Diy&a|O$t6vTd4_$uq9!WI8a)0{8MI~8HSOH1r zt=h1rtD>TE+~{m%6!`Mu&Cbrg(&crVJkd);LUQ!}dSwaR@B();;u|iLOf=PTii|RF zeYlwAv~5oE85I@uC?rCJHw>lEaD7%1tzniK-rWXkYiqa!1Vul8Mh*-NB8oXG1yR3rxi5D5p#F_qH!c4m0 zy+c;53YLpQ_Xb70E3Zelfw~Z_yen6ha5BZKNLoMG*CcIuoqSce?bWFL)KE|y6$V2q z@&eBbOeedusP+RNwS)`x$*H8B9=PA^x*Xnt=l4sJutTo~8Z!bVBBY~(ugic1@XZR+ zmGWB3$-+M_tHP=*9CO7CW7zD`(bDGE)v*F_ktxQlFcG-^2onD>;Km!DnAih#!V1A7yxa)wf%{9GF<&joJqL08e!Lw}AK_vZ!AQz#1K? z9A~REIf-%1c|4XVYyBMo{JS?J-#E5VA&?HYxt_YWaki8CvnhkIg)6})pCoo*N8eue!OR{fD7}K! zg?YiElBhM^pr}S4#VUY!nW)pi+L7$6iYE9f#!V|g6YuC&)-u`Cs%h)Xyr)T zs(y6*`kgdbUf_zQSurG&P9mFp?GqyCVbB+F?wH1FHnf}UHkD3AMSIM+*H2{_!v6MZ zHsDfA^0(8xf#ZY{2GR^0F4_i5!%^jDH>t=exwUpyCC~ZQRh}}Tw*WElm{_x?>{jZ? z$OXsbiE5YS#l;~3$M?d*|Iqc;VO?%r*C--L3P`sgDGkyR0)ikd9n#VbA`OxfN-5pa zptOKANQ;1gNOwzjfAjY|-+P_+T-P~&?Y)5w_wQb7%{k^6W6m|Au<;V7MnyGF$kWqP zlB9e%tX(@|M=BJ@Y5Mh87Bl8f!vPMo(?_izr~acyF(OQi7)%<#>$YWkIU?Z6`{Hq) zr;?p(%AXhXzkQ@3r||Oe&F{HuH+u3xEhIiaODl&@9Dy3q!6PRdl9K!(D(Vpzm;dnk zi0CbA)P-bZf=w;i;fXfwNR?>Hf3%e!o(tOI%V5!8FnHQARq4@s-a*A*6r_A>YF-A#% zd&6qm(tBu%Kio-(zWKN>LK*QnEue)=fb4nKaNDay#7V)x>Cue#L3p?~j>FRl=SA1-%8#g{T}&N9y68iBGL zPcjl#j9a9pD<-!ek;s!A1@iqSepDo`fBJi0@@b7wno@E~3KXOZAla+bWv*D zvvF!EKcJ-u@QL^?tCCtgXB|)GGGI%S7XO9DyVX}5 zgDd}u=G&ixs#tbCb8(laxkfAY$ya}QzPcIam@X&^aiAztcW+?L2zb}ry`H;jOYl7eRHG>WhmDoo}{e8X6kR;XDsn{yk0jlt4}$6$)vh zM3c3;x|)!X@aLvS6-oJg!9CB30han{>Tr8CwHJB#p-dG|C#R-<-W8aFhBG{`f8_mB27#?yt35MknKtN*B5 zO)vI(O^KCP{Gs65SSdg5piv3uBq^rBm(o<`ju$p|Fz%B?>C2a@4=RmRO;^|<13MkL%^re; zLlfwtjmIR_0=lBaO8II64AKr(9xP4;%$Nh>HzJ5TmTnIGu9e|}iJ_+yPf`)7!u&gC zruF*o-@hfDoq6CeXT;^o^P*;cZy?yZ74_?v(!}JX1?BF$XI0n60wir^RODWnh0n6H zjfdpM5@RqdNFj4ky3dtJAIiw zM~9tOpWaA(zNcx1Y5SVzm(E7Pr3Pl8UF%i9PVO9OEU9e*8RiobuGlZpLY7D#ZZU7o z^Pm3l4;tdUUy2zX*61UPJWhxd7s-afvVUSXjFI`WE5ZJ+iH>t%mcBVtwzuj);ZYR9gsckwe8uA$s2n?&G=m+?H-P)1AH( z+Ad*jy%Fhae?Y5=K|RFCMD?pM#HA<@)6!BQyKt-}6iu;;vfM~6guZX-*1IP(c>ANb zqdzcskeapAD~m>r1&%FtnDJ0mz8>Njma2Hx=J&L1`@?ol<}_oBRsq)tr&=PbiZFxi z%gT$iJbDRFV(f3dOC{>Nk@DF0W60Fz3Xl>|d>^*Vv7q*F9k`H-Mhh{=EhW1fwsNNs zlbJ~&N&8F0M+e7z5(=RBidpvk0ZEP5a1g`w?mSIn(K}(GrjN>=n#G^sv?2W|H7sSN zUTIgD@tp8&?_k6U#ydPb92^;WYG6RUn(Cr7rQD)KlC^qr!IbkE&d$N{q{Hy&Xz;W> zlc;DKqK~Ixw+*YrpfMTYbJKSnlIH#!f#Ug}l+YKd;QmQz;P%7>Rq<`==$g`w!MSvepzo{XyrYM31r@j#&!-Fd|`E#t12>6Q5wvd|Z6R z7ubrI8h&&kwZJvbrkW!gNgex8J8N)~;_B*Ak4kJ27k}t;(+M8b`A;gB0VR^HvI&uT zE%#76KOF76&u2MIK-=vfM5Vc)^^s*972CU_yQhF1bC*UAGaL_HuFW=9J03IRLfwDB zUiE_pXOzHnsMna)d*4w%jb^zoL#63oR7BpzoGl!jSz1|T<>xakiIu7Rp{rmUV8*Hb zROF5y%8?KO?~)P+4LTiIJUl#9uY9oH4q4LE(FI0EV*e6c#HN=s0S+HT)R+j)rbNIj zka;C*fVK%jiln3Gp6m`ssbs`MpF6p*cs&bL|HkH~(AD8^K6q+55vdkJ;?l~mc9CsT z&$veG-(izmIA`lt4ikyr9Q!_wjHpjDJjfrGgQB{sKLka)~+!;Mv?{GcCiX>2L9#cIR)68OF(K(8QCQ0Xco+of7<o_S|kRl=)*;sA;U#4vF% z=2vnVmY7gG^dT zjEi^P?WecLL>A`VJGTi}m{HDOb%rvEF$yUf@nBF&si}w2cmGt|tuyvkVDze!RBL`( z^9+-rzU~E)OgQrCdt`_3Cb>rsEPtj7(a^H)(+}let9~>sU9F;T6|!Myy3`47L$z)F zokFSQKpkcAqVu(TyARustjVpstgKtbqt9QzJ_<0md6r@sE|t(H{qiLh0Cy&DZt5t+ zgoiB$zZCJydE9@0%L7?U8+f+g7Z6Y~A*xVY6bS9khij_za>;+-1pb?C&Zwy1!NkH^ zJrrzQ<3DoCF4(h$!lS84tVGkMTbEHJOiE8wf8$Esr+s%<{!v1D(44ln-k?dRiQMli zm=;ymOK)tGblzTDrkz#)43msKR11PdvTu8t#7ENwE(Yo7xCf4I-KY75`()SwuYv>S zxiTblh*2)*PUI7RauNDdqk4BSI^LEvu2Px%iK)4H$@o^eOYG;rfS4k}dw~l;&L2ZM34;&c_dpkwKTRuwY_mX9s|wqN7u{cHp(z z=G|co2@J-YR(<>SLR(u_Lt`|+ESi&068(5a2CG(x--m3bXgnBdKV#{ctN-;N$;Mhzz8)t5^IWbkNmx<7)Tp(p{wW^xMaegpq1b1I_5AItwE09M7A3o+xv9 zjTvV=D6$JT{^*|_o&4_sAI-dItc>4ZuJDrcd`ol``aAUu`+bBV!e)f`Ybj}ho?7#x zL=J8QJALpt!f<3@#U^=(qR?uiP8%lY<9Fx28BU*>&?{t_XxATEcmZaC2^*iJ^!JDe zidh!~(&~tVFcW&&_!4EW;Ia43jkut9dE*x`RctaOs&TwbwuH^Ye2- z2umIth53KWjN2olINV-;{2woX*YYQ=(+#cW-h`$@2B4LW22V}`?qeUV?AN`$MT}=eVZH22U)x_twtwxEXE}TKTf$L}@=Fb-f&(+>XMTPD| zrKIiNp>pNPeRR*)I;{x_8-;L+THyH;+J_I<6X!<#K4fF>3iQ?Hb?1#{!?l)yFBN{< zv@G%B$b~G|AReXHJ&cjB#w&F5*D@r4GOSR5x@Q{jGR~_5S_);cvpP zU0of=UcT8YRQ7p(vYMdpjKSG-YO;32Bv0`I0%DS*Jjp1%hEJgKr;>XZ=0!->!5I@6 zcwbPW2*`E^eFsC7f30gsS22m%9mZ(VbedY87ZL@OxRy->-r#CVH@Y_(D3}vGeB}P? zQ~ukd-G3LyNHTXA;!9Q5Hq*`>Vm{J$4cZrwJv_ zNjQyC%$u}ytdGnhRl@CfL}R6pC3KGsXWCu>SM(5XK=gzX;c=gZz9G|!oU7BtC>N+y zo%;F4kaqu74(xYQH~>)LbOa>4DF&%__o&n_4LlM4KpCSIj|#7g$;rvN*niT+L|~Vs z_qh>&w1s{<6eKx&eWseuQ{2^V^7c^27s)FMx18P@Ez08OeTmN9lPx8R(YYb@ho;>l zpY?L}u`_d%B2jaQ)#Y|YS9ndwNrw=*u)R8$#r+J zbmRTg!FESs)Oo=7%!rGHIsAveNv1MC&C@|HU0Q#3!#RCMb#~H{=g(>IPT8aX#dp6! zGPr$9(KFQW)@Kwx2Fz6l%63~pxD&hJ>sK9T#ghYLmN>&LFEc>BU%zs6c6D*5^w;Wh z%=q2-uo3rt6bs#RyG4XWC_TS6^cfK@_4R*lj22ro)ZQ(n3=yBT?Jz#&4*RqE2i~K= zH~Z=EAxpEH>#LHN_52IXru?u|#Lm~~fI3MZJTcQ*$&TPKfp4pcZNo*%x6aPaybn@l zm(t$M3^fkuIW$W9`ij9l0Q!!ts0gAj&Nd_d0o1mrQ}zP){Vw-PfGpT~Hc>`)h&l(g zZHH7qm+SU%QSf_BN*o*5?3W4wQF*xd46b&67`S|#hu(5uws^X

g2tn(^#??EF-GxzF#V$zh}~+IqhPnSv>Fd6KK9iL4GSo{0J2lm6w-yO>AZQ&FnIw z2FUL#gZ%duNFTF3s=Kh;j>LZckp#`rmDF+czTQe&*D&U-I#xon zTkT!3;_B>N1y2%?d&}A5Q8Lj}$&fo}jQ9O*qq!2F9Qko~Bg@6^T|5yYo=Ew$lv`qy zn5?m7mK$ZvOMZ4*dJ7;K^TUU-uTg|948+7;Lwo7 zvu9|qc&RSGgw(a!Fa2(AMkXzJo^b!>-g{$`laIl}&Nab4q~(xPCfmyQpkL>bEHYq< zsMTn?6^D$M-CGQGg3uAE0!hk$aG+~Au$?Lv<&H~P4PF59kQw3WC4Q`bwr#794T|2i zlCj6zTispOd%5l3(E@rebI|b5%{vFg%o#6E`H66t#;U zg$0!_UzLf{1T=(uO#~U;>eJdo;hK%-`bV09og^Gm?K)0nOvuiHNdhyQQo)c^|<#3d!Lh`L(yet{7*K!_a zX7nR!sBv@$z}!0ur&U!~$E2o;%$rpd;XTKkx13$FgTk!mipTUbQ?vpS;R>c1ZscJv zww3RnG4?pauSTLQStwAd^b`jC6nUG|GIx)Rp(I+gAlvV4} z-ErB1Xe(ZHvrMkrzr+|?;+xgFM+vQc#P0X^_a7b~ztGivZe_KeGd5)#)UB>oz9$?^ zh9UFp8EndD@yiA1iR(q1;n@npj1dgN%B;y+Uv#BCJkGKU&3?&HO71S4zy-coX=!O@ zuU_r#_i-M;)>Bbcl>j}dX2z2h`hhHnJrAT3`^}-+9)N9n26z8bPFy#7oj4!#3n+j0 zQ&d!BHj`Ke?>ZMSsI1NpzRv$A5reg}S^ z>2IzjEA2tG{GMkcV)fzYt8Ybh1klUTGcd$_{K#u{&Uu-$>MFdxz1<1orzh8_jPn-8 z&eZU4!3lwKAEQ@{wHvRdD)G!c6CepKL~zggF@o>oR(D~1)X+n zeLbtLF6rk_1%8Jah3DbEgyRa5X5YiRUF9evMp1N#`XRu6Oh{0B@uFf5S*9MF?3X^1 zX?v6$Z^t}XK0|Tu-&s?eQDu@mC3ZhBrrsX6EKV?Mv!3!2;e} zcM?%WU?;eO+`;jWjzzg~`yID`f8T;Wq=;(xdQ_uCyF38oe$#SoL6}^?Bw{d)c60&7 z4xM6KKW`QzEA zIHU)jaSHwPd`iR$Wdb}(r&)_Bcb2G=$A2hw2>(!nS2!>C$`Ml)m6uK~cCF6%3q%JE z(WsidDDzFFEQ#-@&Av-R_cGcThvNW8&*IJR`xG&<&q1ftDm$VkiKy$i^|J?G^46w* z&=`BnCr;8K1q?l+HEa~=%y5*}74en~w%sMn$j-UgG6p1Roq#V|XF8%D(u}pDrlycf z=74LjG`|Z}#DUnlvevz!WB;NZB0JoIA%Pz7JdE8 z5-GpZoE&;Q&hP7LJb5U|WuY(h@YPu5?i^$w1m?QPgR}+&rY%l!A`_ zu#zU#x(``c78W8nSKzXEk%yS%Va&D6S;DOYA#Y}V5;itA`NBtd>?AC9p{1iKfgr3@YGw(z)ya@G4RgsXM~+- zce@@;29RK?k+GxEO#}pg3!r@4dYjJYpfdEWk%NImOn}6_QxSao(5KEJMzt5Gp(Q9w z3CxGzdR;weyPXF!mB%I zXzTy}{n$J*Dc9b;xQZ*Ho!5xToj?;LQCFMJ%VRXt$@~7@Q^`q}|M8`LO-y`XS4TWe zq7{YM)aRMVJHh{WId47V@l7Bb&%75J%bVYu)k@#pNATB^{*pSZK?9R+8sGQk$Epe; zscY*y?3uEJ29|4V#_nz{(gXj6J94rmZ1<*IBcdeJG%09N8XFsV1q9-N&{0%;Z~vN^ zdhmQbcs5mOH9#+~fP~V{&W@0n_=S!R+3SmJ_a8ea%6RJ&dhV|26JD0(+G{&I`SAA4 z=Br1Fd_i%Va_XXLI9o{(K};6evN6IZl4B^|-(1~f8!im*B=HG<@=0BFtGREvYCsj!7BvV#VU8W;K(b^|UNItG;|GN-Jbho@J4g z-6&y}Z_?G-Sx{U|hlgHf-k)qm@KDLT4Yj^+*~HcsJAW9XY%TuWA`mY?{CY2H%KM-n z5O#dV^EE%er_li2|nq!cx3y$sWfmH~2R0TfKGFE<0Zl9`+2)+wBv zGVil}ve`(_A-f?wUjUllzI_|?e?)jAJ8e%d_xmNI9(vqz@RN%g zy>b&&A|j%Dlch5pVQ;RZ-k#s?3O17X`oy_?4ZE*l0xM)Ug#|~EQ9FLIOVmVSkAho| z-Z@?#o0?A{kyw?G)Ty-$*ZU5-g6coT3iOHutY{;58s_UFYeM_)xXRaMpC=qUIuP(c~Y;QdlE zvyxm)$@zE74I$7P_#9~)8gB6JfM*&GjTq_e&mcA4?4Yu;6Ru^{gD99;syC@@bs`Dh0gpZO>s z4KkJAMBNb(_Q1A=8y7IoqMb7?hLaZ6|>%-__w#4d#(LW ziWX(3>4F2{Q~}rdQU{6Q$WfCXI)Yn(iAw!2DCRDT;UeN&@p|@2{9PwI*V{X_#}hVE zLQO?Tgpw+tl0hZc^YYC!DvFl?7AB_qdTs(EsR+}c#kzq(7pYvVIXlwbJMF1FUUcjs zBXX_r@x<77q(-1dPC3LH*s7k~Iy^d3%BNSOJPKu)31Z+mus~UnNm9)EO!2tt4 z{R1|i87FZ2Z%#S9djCeERf> z-Lk!Q2%<||lvW0>Q78J{HQcZ&=p1In%o`5=t>fWomy8cjeq0@HOidT5g+v zG0s53BSkKAPKubSl(7WkY29jnKPk@c{(k;Xi+5EG$+V zelshXo9T3#R}M{0fo&YeBHhEhK-#pZiaeo@sKP7R`iy6$_+N~PySrf3(^{+HJTj(z zi*{Fo%wg%(I(?2Hyn9i%j7!uQe zFxgXPenHx}>;6>gG#J;tM7NrSL%C(*Z(*UcSGBwug#N6D;?-JA4c6}2T2m9J-@w|F zm}Hdl({a3C%x#BjXqxBXx}a@fh?9GSx}g~_TCar5K8{pScuz>go|H`3{2}jpU8c#G zxdQ=@hhIOwrR?l7o)x>j)6A)=vA#0Aio0-h?j+brMoQYU?uw6&!j+_OdgTkXJnVe> z$B!vW$0$B+9KUFvcT|DeYI19(YFH`dqmyt-RdOMVy4u~(L0)e;G+}c9Mu+WO?s;Ub z`BlG;=At@!$itvC0a4WZUDWt3!bA>!cndq(|GuQ#eQ*dMpu7Hc%0z38>PXAuRV{^C zPRJQ!^nJ=;tLN9ct4ZZJ;A4!JPNAF+iw%_%STc``_yhz1pe{VX8nJ!r*D%`kwM+5v z^;!gzPROMsYFCTXJX&-rhpbY@+Is%NL0k9kQgdJ{5}yUyX`A>(H&%+ybGf$zeqt>Q z36B3vOtPCJSPVdsf}jdPj9biCq@E;k%t?q05prv4VB*$2_!vEqQ-t!D8^+ZOsz_eQ zv-3NEN(E9D6l4p%*j`OT9`-d9{;jPN2A=B-y}i8%kyQM8Q5@-Sjl=yEemmXWtE6yP z@}j6su$16U{+XQ}`2Kn`yPQJ)!w)>!j{s3BpP%4Kf}R*OZJ(c=9RO3mBV`t|DR#Bl z))Wnj4C|-25^pM+Lth_wXx@VQhl#!| z1y&@1S?_}!TD+P`MS1zYpdBk0@8Y5&*m;CRL{7ltI<2O?L6)G%xxBpmf!EC@r;cR$ zPIxXRDX9k>4flOdY2QAf$-a#%iGJtK9dIvo8gZ?0P^2kXme#fp#DW`lvl+TWiw%1p8J`EAQ@PER{b8AH65qj!fjFOe!R2?5?+)16O(K>x~6 z<1#63?kCo5Z@1#85h3Eo!FZs8|Ni?|_Qi|eRYFC&UYU-0x*KnV(+J|v+k<6G7&+;J z$2N1Jmb<>bMtxZ^!t>I%)ZnR}yR89G^P>D%L-suXHJ1VbU^`Lu(7wnw<_Q)4b0sAN zqm`SVA4+22{#M!Vd>Hsc@bJM$$^(MM9>pQY#rqZl1yg&j(L&~x;^zV&;C_nEzH$`tlKYaLrp@H{>OTGEeRZc&G783crI<7W>wdwmxLXkCAco2 zHSudaTeZR){i<@0iC3@khlO$z(pfB()T=JM#Sj>jk}{{L$Xd>K`(bz+$iCetO(&vF z=cA?j7qd5Fu1=pmetZhT6iB<=GreH|`ACc=zu5tPMeweG`M}m<3X%y1Zi`N=Hu492 zPx%(6*tsmNwBIYyMQUanhns6_%y4^57D|*m!lto8KAZRQ0oIA_fxAc?K5CU=S0@R! z@FoM!wc+jl`=ly{*^(`5?}A$C1yAICIU0EUov2xhCvGKWXFq^yiYks_q7b`BBkt8Z z+#%{;r>E`($`yHe=BoLb3eu-s&ubHA!v5yMGy({d$}%!{;IZXjphLQJ999%?0vvLE zHG7kWm?R~?%@=EAjDV>3&`}@)JaPRzIkGNReLgff88L0&WyFPtjv^^9IN#TUWgJ)W z7s_R@he^{n-8Cmk$bVx?TqL|))jIzMoAR$s%VMyaIMrN3AM#JFgrdGi#<(!RMv1uH z3c-KOgc?>=h_*cY;)nFVs}ly(J^KJPE3w)R2D>d{8NjRumC?4RE8SbX zfa&@-E?rb_90AJgkEkh2ca-wA_8_>_uqQPB1FL$`|FKHK=L2t2)~la|MIqKZA7`BR zUzGbKvJXW%3`?<292Kce_`=vM()U|0KF+mtd*jyiEoTD}IW#mRJ!@I2Wu?`unZR)r z|55peF0}fnYH5Yy1@PJYQQ#p{;u`0WF3q;#BJJ+&eIP38)3&FBNw5?c7&zs7vDI*O zJb4LYfaVbc=ZL*CR$><~CTvRgV5si!@81ES(}64g@lHb=LhN(J_Y#q zZ>5E@`UzdD6FxH6b3oNWGP86#d&AjOyV0+bKvvhmbuZ}SQp$G;z*9w)b#|`!DyaWl zBP=-5A%%V3$zviejXWV=i!U-bru2VURwZL&S_sLB{VS-`A;I+C>o2?_4}V*al;)Gq zyclK%)&3#te+crG_NNgTQC+}j--b{Nq)uFFDy8R6!A(flO0c1N$Hi(AUVy-id!U|u zUGQBB{@tCM>m33%W#aIi213DX= z6WoV_qAA%ZLm(f1ehM5Xn5Kbcd7+`v0Rl$h*ROd{8_|y_J;k#|69JBwnS~|1yGM#M zP@VNj_N%WAgO-bv@D{SEXNfV|(5S0!em(O~MTaK_y2OZ=959SfVX>yCdDDiIQ=R^I z&4*w|g9#Y1a4CtM-BuM@6$WEARV=vHbY#uevc9Z^%vO=8dlF4+*K~uA76x_g>;eLa zNAUbMU+WmnGs+Ko_U^92M6M;5j0;L!u~Qm6LjMWdSrjZ~*lrl$ZGrr9_wHRVpZ^BC z4ZOPla*-APa;mCaB?v^k#b)W}v#zm%ibCcWxYCOx z0X0Dl1hp3NC&y8#fo?5j|22)ftGc(G{_Ab$;gN*6s!$?FOfXOMvVQs(G~|nA;2Omu zg&jq!G%W797XbSX8&ys1(Zf5o96?RdEK4Ko(L>Cq<0vI58A&;x0u`_6i^P*u!GK3Zbs8ary5){_d ziAoPLFexnxe+oN2HU&93WZ-O|kf4UR^li2u;YsX}d-VrBs})DlinRE!OV^5|FoBZ;lbo84j>n73s|Ue&0pMkW z7uY>8kY7}UsT2P?A+8$vsl%LcxyB?SCV-a&;zUn>e=fMNtx4h~-+_r)oWr`>r^xst z!4V3=uMS4xMYvmSB`cJA0qUi&v*0Jn%DAkWC3A?8x8n^SE^8MMy%!9UK(b?N?5C{GCBHb?i8>R@V1sm*n(29)TF5yFN(zNK_;yNe)b zkg>4@uC{cv4Ob74T7bJP(W~JYvCp)K%T{zBJXW-dQWg2J%uWv$F9ew7PZ=*Wmipmb zV-e1SZMZ!qQ<3ijQygf~U?;oCB_GZVxzUgd5M?5N<*765l^~45q5^~n*3|^V56Pw? zY5+eMqRZ4BC?rXtrusKKV5WK-5D5pwc~7$Y2P$ z!@Q#)qSCMZSJB7J#+Cytmfhqx0lPJ}z`GDw!dru*N?09{)s-~;kE6>@8($aV`(+5`zu5D~Q5E4pCPA0z|yE!-1 z_dQ#FQr33ypK+1m*QDSqQ&qi(NUM;U<}egt2UB3&N~HN=QbPWVa5gW`eoc`XiZhjs z&K~kl`OKIvU%mvtKx|x`6vAGGNy5jWTv|k-{Hbsqq&wJ;kHo~Ndv{)9u3@}6%G(+q zE&lgwx$$#av_X@%5MT)T{YLmD|6@hgGVox4ap9If->(v+PC?)cAPeg%GNxacT!BBf zl@w00=kx%|8n8jC5(dL7t1YSx>RJxg$^-aO^{FuUNlH+KNe3q2)<*i^2<2xqVS!Xx_D1!&hINX5f?$){g% z%5OL7Smetu>Qqa5{s}s95V`p1NY%jLSCK|B@u+{Nf)(FY)T>v^l3OnV&>=QrWJ~fEg@7>IW?$3A+hoVTAmtz_ME%oi^v(rb z{h^YPJj1(gBE!j{e5K1O))stWdv)L~cK^TJ72ESYO8F7r_W5~Zh|U1M;Seqyc`{X* zD!ekT{QG0Rr3DG0N%}#J<$gSFaTe-#8j3m_YH4=*|4*J~uX!mtrUoG?l+FFDwoXh) zKu9`*u4{M>O=pa7sGU51-&MvPJf=kcE+3D@hiX$fj=&Q;Cu%QWDjFCVsQVchF-J><0yn6!ZK7Jfb6S^8SPjU14{4nlmx;ct0;rw$_3$pn-b zut5_1xI3@W4mosp)9@x4X4eKmfe$TD+~n^gtR=}9pDnK|wr)TceZVrXd4w>+LpMim zZZ6V_0?aKV1arFVmbjj3PNauXjkc5;- zLQ$}#9MJ9J?8?TZO(+{1G-R0rgbA?0h}aY!5dlkf-KJxa##d;4+QXDl=5?}No2K$- zJHhh>ra+a3vb}ZnAXKVjV**)*)?%t269zs16<<>ev=!g7_2uN|DsC_kNrHVs$;<08 zG?AE@nL+YLw5{;>Iu^=Q^rLNM{`4MJiIg#2+bNYE@cM0C{d;=)ecy62o(1XF;^**O z1Qvv0JMh7pRbRZoFJH~Th46&%v5a;F1Rz72&ht(+2-%svxthHV8I8pA!|tlOU%b&? zG;Hk!NcZ@N*o~MZHHh|FQm_39Ph(JQ7Z-?tp&5R)Wd#p$ zV{AkkU;xkrfxSv~>LiQHQ?n2jgR14AT2|*LXa&$L7>O59`Ae8}A&@7Q-k3iHd{1$A zSPwr$B{SwEcPhU!el#Y*5!&902#+Aw%OjpbQDC~NfVCZX1Vkfe7WVAp?b^Wo{r!iJ zyb0J0@a0=D;@Mob_(}jZPMf^sOZ~80(BQZuLPJ=d5FgLKDiIo&^n~UKBx}(Af!GYM zsHhOqD#@#mRbAXa{1?3NN`)DpIb2dtkK)+}O5@QY4XBK|Mty_3Dy&%Fxg1SX2}~pRPzxPSzC0FqhlWc55NjhZmFVBGgkc&5ppX;m zjUu+?;GjPg$=|;xUtW4o+o=>&&l5>iv*gMw2XnG^sV&Gv>_8#E}k-a)W+uC=wwm(Aydj)BfLwlm{|C2x!kX1S9$d zFR^Ij9`z>yF)>7`1go3%<9#k5?^UifDguw`X1ryW64PUoJ72z0wzye?lU>rnpw)5wC)M{j`kJEl(1mbuu`0&g3 zLL(rgPGg=Vh?$Bb9FiuAG$f3Q!9L!=y#OC9! z(q@A*2(1x-VBopRtVfF&^e})sn+u_^pM#f-XkdZfl?D;^C3botDDpgdw7Qi>GQb?(HsE*df`FSG_5XNaru{Yh0(D5`JX93iQKHABV2DZe zJzqy?;J_zKoHQZu62fT#XaL#h>ih^Xo|$0V4@&P!xN{97Y7!j6&;b`V1INtV+M)4?_|23P8n|lAA=6HI?KJB99F1aCwqh& z6+00UJ6j@vG1K?=z!^(rq^ig~Ks;Kd1=vFbjsJ3XJt*~?ArJKYK=cO`Na8pUf5*2u z1JFC1x`%9RU^tQ%08D628Yb8toKspFmEzEpgy7E+ljRZfs3UtW%%KX=2S1L;#lK41 zsoEH*@OO(1ufjV!W%dsan5J(aPYbW6dvQSL5e~G+Bj#t%Uakm$n=+AzRTD|#)?ZK< zfJ-Iy)Cabjo?r`w2^VDDSJ%))xeMdYlVBv-0eB`~$=v!oGxMu3KfM>xC~u<71oanu@h7PiTrkarSH6g2Gm-lu=s7#ei0nTONjbV0WI+VCA1dD z{$HULQBbDu?Lp)6KNvj)ZOC80Z?FJI@}ka`9*~^C(l|qlo@7$8QCFpF9bAL7+j3>v`(t#t&(X07X{hbfx1l_yE8F z3M@iFNl8v^t^2Q1)J8%6BO5#Y^z`O=Nt_jITwE6rA@-pz--ipd4iIX3Ug?D_y*ngR zSc)_FLI+}e{D0}2BNf*fR1*CbDO}N~N=iy2#|#qQm4}_P#6mz`tbz+TdAE^W@0;VK zT}_8&1U{QNaYX67_i>*|xly^cBop))%Ru0%V1pthywwODM41hMh;Dz1 zsSW;jP)n9Z^IrfslagvLNnd2%n*pL$s^ud#>j~GmN;C zs%tFRZJcBb4KubW{J@ow(D!N0_&MG^dbu`B-WMPO!|y0~j&!ckjzEq;9Cy7M9Rvjx zU?MmH5HJxYKZK(+(uS^Q?^oS$NEatMju~IlrFgbrw16wp?Sc$$wt4tJBYM`n#8uMhPCV6*ddcO zK-SfV2{fsG*Jr>A0GxFDVNyx(!$0??FrG#tK&U*iCtsJiLDbn)ZI_&3Wl14E9M1D%t{*^lP?puz)v0S~J){3)D+X!9>WgY#cyFaPn^XA| zL^5R{eF27#{Q1Mt!>08gN7W^`yiFlW0;dd^5TS5En~Y98f*#S*cS4=Lxjr#%tfK|j zcL!qd6JmA|zwKW{f$_J|O91F(Xex08i%dCG#{hA0TIixg+5lE`A*#_|q9;>>2L&X2 z|DV=Jum=aC;l_Ua_ycUy0}whfTM+3Aq;g>H>BLW4aii&hgF_xApIGU@twf8fGo>gR+XTU9Rdh~Z4fz~ z3xxC-yxk06ZaV9C*hk>O`Oy0nK&k?3j|c;`;C%xYb`gR=7Ery2q^IxP!$2wG9t|ua zf(mz>^*Mn-H0XFmd7v-C7%>TGn*m$H+=s{8a~s8_D+s$&)lDRZIgRSANFGlu89d5$ zKfu1V(9R6{^&BF$>?R@_5Fn8u>dEVq<_xX?CCA@*27Dq=&eywbEwsG74Q8T;uweT) z6ZHoL1>3ARbF;Tlq)|Rf|Dd@|j7RcBU1hM1n=pJL=ntusV&dm8xY`$)Kl9H^LINuZ z?pSLV$A?7khY~ICb@;2QA`9M=h_5w{HZG3jVxxQ1eBC-f8Y4|;PMUfl6#DsKrSX1q zC|1ISZ?o53Z0r%YQ0F&G&K?QUrJtr*qPRO>U4`J@|KPOP`Oy2oZxjj*lktjIKnBVH zP)~TtD@)$3;IScP6&vIf?+~5Egv5dc;F!72j=E7yn!w<+^MOlGT1%TrQoUU zX|1vv1_|?~_c)rGnfZ2s+04w$8b_zn^XD6f$ZDn;m;F-ZJ7)akV?4b6UDrQl zP((pX1_sOx1C9p^>@&BjrOtGK33&O{)azSjg*KZEEOq{u{d5DHzj6LGFiZ;m+x>9u z9wimkV|8-(Pe7eLpryS90--iA-PxZ%8}@Wf_Hy~0y9PJQKQjOM#MYJ#(k^XWkCB5z zsiQC023$7LS5{U`z*}$%=W%ashz{;XMzYiS36nujt`wuGKO;pmzkmARZDr-7cs88? z1d|}z^tHB@G$bTsYV+E6#aX^E$-3ahpFi6N8Y28X=!i&Jo`tXs11zM_b4eN0XiS}&x=ca88M$C)XT#*f7f0lW_;kIg8Z!ty=*O@1H?TlB4Kml=^#pcviV%b7;lBKk% zDIE)E*;xnzMGI*ljL<`D3ZSpCse})Mtyk`%IM-1c`Wz8K-id%4ya(Xs=*TwQn4&6+ z0cvkxM)AU)I=Z=aZco?OdtWv{_&^-0%}d@_y@a-t-xTM)J4qpg`ukiQX901To}T`< z{tf59fB(+Cw;>R#x%(V#X#5=?H{M_BiS98gC@N}$GDEmgQ%j44CrM#m8}cFu2logF zZo`djNOn>FVV;>t(FIf_BqZ?2Mhic}{? zkSTyjK?d10F)=Z-u8s^m!?kaAsK-LS6qn3D*~Hx2otN@HoeyPZW`^lrnD7cOwg#Xg zLY<$VmsL;*0v9dJNt=VI5bzJB4B&LkXn=aArluwpapwXX{4GO6L&yq7higMf6TS8S zCaST}a47xXzrPFaY&2LQI9SJLpSOTn2nr1~h29dd`Lx69x<^5Q<>lqY20l#*35j>_ z-*>Z4RBk^%H{n|3~d7Xy@gXE+h7zsdf_mBO!hPi563SFp zON@a4hb%ZWIEeJ@*|Wr?q}PJ0>-@ILV*-?xU-p-rg+5S=hQE7QrWPxX}96=!=4_H_>>c;xac(7rh6b1$cIwmHvDK;>v@7}#@0dg0qs#*k5 ziUU$0{O)xaUsEH%sE~*R7r%g435JN!2?~nTY-0_3ofNgcSHk-G`scRSOC736 zvg+APw~QzO`?9?$Rm;Oe=()VSF~}cYUKb=B58Fut z)mgS&L!H40KU z2QUPFpKa2kqa!W>fv$4XE-r@|5tuWH29Laj#|Cm!Yexs_-rnBxI+AR%wR>EuHum=R zwXW+g{FDRnkT&Z6l!4X(i4(jpKXT;ajI6ECf1ki~XEagKMjXUyc!Xw_iR&(NcRHRQ zTEUBN>+in{ErHg> z7LBTnWR{BEbs$sD<01na=D42Sxz^i=r-X5{aELW^8I|PaH|rqM;$UZtu_!|z4}SC! zu7Zt;i4lCgL1hQ!@GU{}1a$I>h=`QIv;bedi_XQp%;I7Me*jxZf4=dT z?y{)op=_3hfyL{)8Frt#NTtlp83O_XjcsfqAceF;IXhZ&t`D{oFr;i(C0rbAB*I}K z;O6EQ^t%>GO--#`+#1u+)MUA&(bv(D+gz0`h28KGE)sf{RptVoOaGfU5+FrB0r&h# zlRAs^)2Ap9DBytM!mt+@INvn9Fc{Q;X~1if7#kaq;df021216+eW(ia570eEoJ02` zs(J|`I^0ipX~$SNq3sXmIKk(Z0QBQ~I*$fG1_$1mb-la}99OkG1qnFAHFs1v66jz( zCtt{9_#Bf#o^m?=r=yT2tT8VNy&^E0lm-|8tW#=n-$>{!q!kp@_7ITbMTVpOR1VfhkHxw-u^N9n1W5=D*IaN(F$yZGF~q&UO+Js2jNqai?Pgz5sNsovUy5GU z`oI_7g@vgy-*#E-yqo*+Ep2izkAD!e9IU3Kq$HQ!1TW-m6PUTPdvqjiY;2sba}Nn| zwJh@O+vPAt>}QGqE(p-*=;%*iSPG+3YQe%|nvErh369V$h_Iz8T*rovB0Lapa ziNlaXJ7Ib7h=@?BsHom`m_Tji$c{9r7hV_#7f=8_N)G!cRF*yqWxPegH`Xj`=hA zAifuqvu>WhV2{(r$nHW*flF7Oat010CwfN4BI}|hqDO!RR#sO{*MH|4Ma}~NRKJPC zW5~v)p=EhM9C0gCD(rneJcW}D!z3K%|I^#G$3vO6;n%Ec6q;mPQJHtL6A3%jCg+TC zSZUXxwb~V&-#6(c>zc0@Q++Dd{0NF+8*bgAx!jrPjezcctDpzl zZDUH8>_1w1kfJmbzYy4O+=i1^%z%@|9UOiA`o*6f=UfbmkNFFNek(c`@cs8j*=GKS z5ZBb<5GIzDh1A)laRu{hEgg?AJw!B3Ux^v#qQ%?2ZZEpT`S@+!*{TfqZH=Z3{U#(o ziE0-LHY_9H&liu0S`rgeX%SBJ8ylmiEb!f%65 zm-UWm+v0m!`*-ZVB=?yT)~7@dP3~|n+8{?GRJmsJyIkILaxi6H@$x;Hs2B)Vhc%b! z)C0jOhlV;UH`SqG1bpsN9&a9^6uft0L4iJ?IV}ED*OF-t0XT6CEvWX-QqP zPogpeXvHsLVIYbWZLKY}B_nh3p}A{9b+xp#s7pc1&Q?^gbam6p%gc9EJ{$jwIcJW8 zk58_A40pK)Pn|V8$u-ZMzG0scujcWyM8YC9&e;DzPdWn5JbaNvZ3NQnu$w=OylKrc z#-2=j^vDOY*8t$y=9ZR$8p#TJaAcrD38PM`ar^rE${k0SWw`=Kw!P_|(b0N$a&nSw zY<%V$5t1zOd-t?}=6x=0&EzX%`ET`R;C!~AgpyuxKsh{o(Bp*DPJLutyDYFnv2cZ7 zY;-i+!eZgSAmC8Ec##fLO&1efOLWP(-mn34H8vH5-TV>H7TGJDu=9{Oblr&k1iD~8 zTxM9An@d6A3^iQ*6?%IG21c%}5y}{FtLxNO4eFcSpNIUe8YaSduZ8Q|50WkDs~m|f zK<%CPPg`2la6_wVYRDEGLyR}k+s^#nVc|M{if46{fXvJW#@&zQNRb%RN-gOeA{>T? zhip$*-ClpkRor6@7%G4?himswL13f+zNS!5w`UC(cm2cLpd@5@En<}f=x3pNz5XJF zap|nyi6?gij|ocwNLx}?wv^4L)^&0vIE=QNV>^*~0k2L{GeZ}7Y6BWD5d4j&mo4^) zuL;Y2`0yc8N^)?usbH$VcFWjW2z|$k&dYOw5v3TV4OF9^Dv+BvMDMzoy>WSxyP+6g za7n->Vtx^SR~YhI&F$?CsAdg+*7`BwO~mL&2^;x!++J~Ha;ucZ-{@qT0~+(`I>>HJ zH(&ehSqw6!s4Pr6e0VWLc1FoYK z!^0Y2Hc@X#N%3hyk?4Max|x~Tj?FKjiA*H#P*bx2EwpnjBDnBfyj?GRzJ8)bKPjdp z5?h0uHkC_RnbF7GxDIF+0~{Uj!w(($US4x#GT9`Uj>PpjrZ?Q#6MZf7*IHU~fT5v3 z^ypDnqXnyeT`J_im1Jjo?^n#F;E7>i!ck-$mz%YF>&ui^^>giN!xx18T4fQxh3PzRFR%N<{n;&n6`+(c|L4=E^uSs4 zV@cR>Y;`Kct?A_dh63CCe2a+E&TWWMS{E%^gfRk3^49L;SnYXxDJ}TSO^^~kE-uW8 zZ@Gtg7&Kag@U!1g@bVfk`kzquA8*(f%DMyI|vr1--JwS+ME#NO|!BV@3pAG3 zwYnX_Er*MCp{HI@iffT^ZcOThnq2H+;F-r$^N1q* zd_D9klD216moM*!?WNe*?kkU~iyG7Sxft*fr(S+n4MmyfDQ)COX7{4w7;a4hFB$qP zG*eZKD$!JHG#-gc;8vvgmhBi9gSx4#Gy}3pXlM`+Nf8b*aNFtk3`q_LUF;FNxEN@) z=kiY6kASj3`+_HhDBpRL5g*ZlnUKG`rJ>Gkl5kHCBy9=NeQ@XVUup1svd&JubRLNY5j|2J58qbnleV!SQ}71FvtpQTy-cQpVv%U{ zRVYI40b-8nx1N$EBxpcr1RW;vXUM*x%53`h!}y{zXAT&7m6E8&3ImHWG3z6UTWv@7 zug6R{4WLL8-zSOCuZ9O_t?cb3ERSh;TT9D6v;st0di3FUVJZ}~v15?QN=XNX>gvfi zzxyi{3aZe=!7$4e{Ej?GHR8t~Ntp6>sFFM-gsdTVjwhkjUu5L-f@({&ZnzZ|H?BuX zj~IE4qBxU=p3Xn+ub}-ACM#AL8b3&dTZZ}tvDn9m%L!D(!2r-yx%40l!p_x%>@N&G z>>MjG!6*9pX%@LNkr5iX(-R}odUd+!rMCFBN~6v<6<2RaFXCh4Yn)zz`lLE`QNUSz zHcNQ7*b(O{$;Chp?uQqGIai^1u22#t$H!AUrT}%wkiGBBbMx~L(hkW&&@5He)z5Cf z!?CooUTHA6!88YL^iSTO2yV~a2Z~4xlD!F!rEF}|ss9?>)V(9Yja84n?N2F~bsSL{ z1ss5S26AR3d^|wt92eWy~;ju=6RHCO<$YAZ#GUKk>aLU zC)QSDmGQ|j(a3o(2!SAym0LI@tJ@2Og>oHiQ()eGSRNH#tw7E#eM8 /dev/null - -# download data, generate manifests -PYTHONPATH=.:$PYTHONPATH python data/aishell/aishell.py \ ---manifest_prefix='data/aishell/manifest' \ ---target_dir='~/.cache/paddle/dataset/speech/Aishell' - -if [ $? -ne 0 ]; then - echo "Prepare Aishell failed. Terminated." - exit 1 -fi - - -# build vocabulary -python tools/build_vocab.py \ ---count_threshold=0 \ ---vocab_path='data/aishell/vocab.txt' \ ---manifest_paths 'data/aishell/manifest.train' 'data/aishell/manifest.dev' - -if [ $? -ne 0 ]; then - echo "Build vocabulary failed. Terminated." - exit 1 -fi - - -# compute mean and stddev for normalizer -python tools/compute_mean_std.py \ ---manifest_path='data/aishell/manifest.train' \ ---num_samples=2000 \ ---specgram_type='linear' \ ---output_path='data/aishell/mean_std.npz' - -if [ $? -ne 0 ]; then - echo "Compute mean and stddev failed. Terminated." - exit 1 -fi - - -echo "Aishell data preparation done." -exit 0 diff --git a/deep_speech_2/examples/aishell/run_infer.sh b/deep_speech_2/examples/aishell/run_infer.sh deleted file mode 100644 index 404555e8..00000000 --- a/deep_speech_2/examples/aishell/run_infer.sh +++ /dev/null @@ -1,46 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_ch.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# infer -CUDA_VISIBLE_DEVICES=0 \ -python -u infer.py \ ---num_samples=10 \ ---trainer_count=1 \ ---beam_size=300 \ ---num_proc_bsearch=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=1024 \ ---alpha=1.4 \ ---beta=2.4 \ ---cutoff_prob=0.99 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=False \ ---infer_manifest='data/aishell/manifest.test' \ ---mean_std_path='data/aishell/mean_std.npz' \ ---vocab_path='data/aishell/vocab.txt' \ ---model_path='checkpoints/aishell/params.latest.tar.gz' \ ---lang_model_path='models/lm/zh_giga.no_cna_cmn.prune01244.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='cer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in inference!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/aishell/run_infer_golden.sh b/deep_speech_2/examples/aishell/run_infer_golden.sh deleted file mode 100644 index 4701bdaa..00000000 --- a/deep_speech_2/examples/aishell/run_infer_golden.sh +++ /dev/null @@ -1,55 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_ch.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/aishell > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# infer -CUDA_VISIBLE_DEVICES=0 \ -python -u infer.py \ ---num_samples=10 \ ---trainer_count=1 \ ---beam_size=300 \ ---num_proc_bsearch=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=1024 \ ---alpha=1.4 \ ---beta=2.4 \ ---cutoff_prob=0.99 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=False \ ---infer_manifest='data/aishell/manifest.test' \ ---mean_std_path='models/aishell/mean_std.npz' \ ---vocab_path='models/aishell/vocab.txt' \ ---model_path='models/aishell/params.tar.gz' \ ---lang_model_path='models/lm/zh_giga.no_cna_cmn.prune01244.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='cer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in inference!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/aishell/run_test.sh b/deep_speech_2/examples/aishell/run_test.sh deleted file mode 100644 index feec95cb..00000000 --- a/deep_speech_2/examples/aishell/run_test.sh +++ /dev/null @@ -1,47 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_ch.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# evaluate model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u test.py \ ---batch_size=128 \ ---trainer_count=8 \ ---beam_size=300 \ ---num_proc_bsearch=8 \ ---num_proc_data=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=1024 \ ---alpha=1.4 \ ---beta=2.4 \ ---cutoff_prob=0.99 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=False \ ---test_manifest='data/aishell/manifest.test' \ ---mean_std_path='data/aishell/mean_std.npz' \ ---vocab_path='data/aishell/vocab.txt' \ ---model_path='checkpoints/aishell/params.latest.tar.gz' \ ---lang_model_path='models/lm/zh_giga.no_cna_cmn.prune01244.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='cer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in evaluation!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/aishell/run_test_golden.sh b/deep_speech_2/examples/aishell/run_test_golden.sh deleted file mode 100644 index 387d54f3..00000000 --- a/deep_speech_2/examples/aishell/run_test_golden.sh +++ /dev/null @@ -1,56 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_ch.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/aishell > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# evaluate model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u test.py \ ---batch_size=128 \ ---trainer_count=8 \ ---beam_size=300 \ ---num_proc_bsearch=8 \ ---num_proc_data=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=1024 \ ---alpha=1.4 \ ---beta=2.4 \ ---cutoff_prob=0.99 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=False \ ---test_manifest='data/aishell/manifest.test' \ ---mean_std_path='models/aishell/mean_std.npz' \ ---vocab_path='models/aishell/vocab.txt' \ ---model_path='models/aishell/params.tar.gz' \ ---lang_model_path='models/lm/zh_giga.no_cna_cmn.prune01244.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='cer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in evaluation!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/aishell/run_train.sh b/deep_speech_2/examples/aishell/run_train.sh deleted file mode 100644 index 077fabcd..00000000 --- a/deep_speech_2/examples/aishell/run_train.sh +++ /dev/null @@ -1,41 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# train model -# if you wish to resume from an exists model, uncomment --init_model_path -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u train.py \ ---batch_size=64 \ ---trainer_count=8 \ ---num_passes=50 \ ---num_proc_data=16 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=1024 \ ---num_iter_print=100 \ ---learning_rate=5e-4 \ ---max_duration=27.0 \ ---min_duration=0.0 \ ---test_off=False \ ---use_sortagrad=True \ ---use_gru=False \ ---use_gpu=True \ ---is_local=True \ ---share_rnn_weights=False \ ---train_manifest='data/aishell/manifest.train' \ ---dev_manifest='data/aishell/manifest.dev' \ ---mean_std_path='data/aishell/mean_std.npz' \ ---vocab_path='data/aishell/vocab.txt' \ ---output_model_dir='./checkpoints/aishell' \ ---augment_conf_path='conf/augmentation.config' \ ---specgram_type='linear' \ ---shuffle_method='batch_shuffle_clipped' - -if [ $? -ne 0 ]; then - echo "Failed in training!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/deploy_demo/run_demo_client.sh b/deep_speech_2/examples/deploy_demo/run_demo_client.sh deleted file mode 100644 index 6ae4ddca..00000000 --- a/deep_speech_2/examples/deploy_demo/run_demo_client.sh +++ /dev/null @@ -1,17 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# start demo client -CUDA_VISIBLE_DEVICES=0 \ -python -u deploy/demo_client.py \ ---host_ip='localhost' \ ---host_port=8086 \ - -if [ $? -ne 0 ]; then - echo "Failed in starting demo client!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/deploy_demo/run_english_demo_server.sh b/deep_speech_2/examples/deploy_demo/run_english_demo_server.sh deleted file mode 100644 index 67532770..00000000 --- a/deep_speech_2/examples/deploy_demo/run_english_demo_server.sh +++ /dev/null @@ -1,54 +0,0 @@ -#! /usr/bin/env bash -# TODO: replace the model with a mandarin model - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/baidu_en8k > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# start demo server -CUDA_VISIBLE_DEVICES=0 \ -python -u deploy/demo_server.py \ ---host_ip='localhost' \ ---host_port=8086 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=1024 \ ---alpha=1.15 \ ---beta=0.15 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=True \ ---use_gpu=True \ ---share_rnn_weights=False \ ---speech_save_dir='demo_cache' \ ---warmup_manifest='data/tiny/manifest.test-clean' \ ---mean_std_path='models/baidu_en8k/mean_std.npz' \ ---vocab_path='models/baidu_en8k/vocab.txt' \ ---model_path='models/baidu_en8k/params.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in starting demo server!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_data.sh b/deep_speech_2/examples/librispeech/run_data.sh deleted file mode 100644 index 12f2dc6d..00000000 --- a/deep_speech_2/examples/librispeech/run_data.sh +++ /dev/null @@ -1,45 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download data, generate manifests -PYTHONPATH=.:$PYTHONPATH python data/librispeech/librispeech.py \ ---manifest_prefix='data/librispeech/manifest' \ ---target_dir='~/.cache/paddle/dataset/speech/Libri' \ ---full_download='True' - -if [ $? -ne 0 ]; then - echo "Prepare LibriSpeech failed. Terminated." - exit 1 -fi - -cat data/librispeech/manifest.train-* | shuf > data/librispeech/manifest.train - - -# build vocabulary -python tools/build_vocab.py \ ---count_threshold=0 \ ---vocab_path='data/librispeech/vocab.txt' \ ---manifest_paths='data/librispeech/manifest.train' - -if [ $? -ne 0 ]; then - echo "Build vocabulary failed. Terminated." - exit 1 -fi - - -# compute mean and stddev for normalizer -python tools/compute_mean_std.py \ ---manifest_path='data/librispeech/manifest.train' \ ---num_samples=2000 \ ---specgram_type='linear' \ ---output_path='data/librispeech/mean_std.npz' - -if [ $? -ne 0 ]; then - echo "Compute mean and stddev failed. Terminated." - exit 1 -fi - - -echo "LibriSpeech Data preparation done." -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_infer.sh b/deep_speech_2/examples/librispeech/run_infer.sh deleted file mode 100644 index 2df5b6cc..00000000 --- a/deep_speech_2/examples/librispeech/run_infer.sh +++ /dev/null @@ -1,46 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# infer -CUDA_VISIBLE_DEVICES=0 \ -python -u infer.py \ ---num_samples=10 \ ---trainer_count=1 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---infer_manifest='data/librispeech/manifest.test-clean' \ ---mean_std_path='data/librispeech/mean_std.npz' \ ---vocab_path='data/librispeech/vocab.txt' \ ---model_path='checkpoints/libri/params.latest.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in inference!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_infer_golden.sh b/deep_speech_2/examples/librispeech/run_infer_golden.sh deleted file mode 100644 index c407cabe..00000000 --- a/deep_speech_2/examples/librispeech/run_infer_golden.sh +++ /dev/null @@ -1,55 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/librispeech > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# infer -CUDA_VISIBLE_DEVICES=0 \ -python -u infer.py \ ---num_samples=10 \ ---trainer_count=1 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---infer_manifest='data/librispeech/manifest.test-clean' \ ---mean_std_path='models/librispeech/mean_std.npz' \ ---vocab_path='models/librispeech/vocab.txt' \ ---model_path='models/librispeech/params.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in inference!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_test.sh b/deep_speech_2/examples/librispeech/run_test.sh deleted file mode 100644 index 0a76704d..00000000 --- a/deep_speech_2/examples/librispeech/run_test.sh +++ /dev/null @@ -1,47 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# evaluate model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u test.py \ ---batch_size=128 \ ---trainer_count=8 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_proc_data=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---test_manifest='data/librispeech/manifest.test-clean' \ ---mean_std_path='data/librispeech/mean_std.npz' \ ---vocab_path='data/librispeech/vocab.txt' \ ---model_path='checkpoints/libri/params.latest.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in evaluation!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_test_golden.sh b/deep_speech_2/examples/librispeech/run_test_golden.sh deleted file mode 100644 index 3e7e3b4c..00000000 --- a/deep_speech_2/examples/librispeech/run_test_golden.sh +++ /dev/null @@ -1,56 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/librispeech > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# evaluate model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u test.py \ ---batch_size=128 \ ---trainer_count=8 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_proc_data=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---test_manifest='data/librispeech/manifest.test-clean' \ ---mean_std_path='models/librispeech/mean_std.npz' \ ---vocab_path='models/librispeech/vocab.txt' \ ---model_path='models/librispeech/params.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in evaluation!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_train.sh b/deep_speech_2/examples/librispeech/run_train.sh deleted file mode 100644 index 87e08721..00000000 --- a/deep_speech_2/examples/librispeech/run_train.sh +++ /dev/null @@ -1,41 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# train model -# if you wish to resume from an exists model, uncomment --init_model_path -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u train.py \ ---batch_size=160 \ ---trainer_count=8 \ ---num_passes=50 \ ---num_proc_data=16 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---num_iter_print=100 \ ---learning_rate=5e-4 \ ---max_duration=27.0 \ ---min_duration=0.0 \ ---test_off=False \ ---use_sortagrad=True \ ---use_gru=False \ ---use_gpu=True \ ---is_local=True \ ---share_rnn_weights=True \ ---train_manifest='data/librispeech/manifest.train' \ ---dev_manifest='data/librispeech/manifest.dev-clean' \ ---mean_std_path='data/librispeech/mean_std.npz' \ ---vocab_path='data/librispeech/vocab.txt' \ ---output_model_dir='./checkpoints/libri' \ ---augment_conf_path='conf/augmentation.config' \ ---specgram_type='linear' \ ---shuffle_method='batch_shuffle_clipped' - -if [ $? -ne 0 ]; then - echo "Failed in training!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/librispeech/run_tune.sh b/deep_speech_2/examples/librispeech/run_tune.sh deleted file mode 100644 index c3695d1c..00000000 --- a/deep_speech_2/examples/librispeech/run_tune.sh +++ /dev/null @@ -1,41 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# grid-search for hyper-parameters in language model -CUDA_VISIBLE_DEVICES=0,1,2,3 \ -python -u tools/tune.py \ ---num_batches=-1 \ ---batch_size=128 \ ---trainer_count=8 \ ---beam_size=500 \ ---num_proc_bsearch=12 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---num_alphas=45 \ ---num_betas=8 \ ---alpha_from=1.0 \ ---alpha_to=3.2 \ ---beta_from=0.1 \ ---beta_to=0.45 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---tune_manifest='data/librispeech/manifest.dev-clean' \ ---mean_std_path='data/librispeech/mean_std.npz' \ ---vocab_path='models/librispeech/vocab.txt' \ ---model_path='models/librispeech/params.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in tuning!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/tiny/run_data.sh b/deep_speech_2/examples/tiny/run_data.sh deleted file mode 100644 index ba55d284..00000000 --- a/deep_speech_2/examples/tiny/run_data.sh +++ /dev/null @@ -1,51 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# prepare folder -if [ ! -e data/tiny ]; then - mkdir data/tiny -fi - - -# download data, generate manifests -PYTHONPATH=.:$PYTHONPATH python data/librispeech/librispeech.py \ ---manifest_prefix='data/tiny/manifest' \ ---target_dir='~/.cache/paddle/dataset/speech/libri' \ ---full_download='False' - -if [ $? -ne 0 ]; then - echo "Prepare LibriSpeech failed. Terminated." - exit 1 -fi - -head -n 64 data/tiny/manifest.dev-clean > data/tiny/manifest.tiny - - -# build vocabulary -python tools/build_vocab.py \ ---count_threshold=0 \ ---vocab_path='data/tiny/vocab.txt' \ ---manifest_paths='data/tiny/manifest.dev-clean' - -if [ $? -ne 0 ]; then - echo "Build vocabulary failed. Terminated." - exit 1 -fi - - -# compute mean and stddev for normalizer -python tools/compute_mean_std.py \ ---manifest_path='data/tiny/manifest.tiny' \ ---num_samples=64 \ ---specgram_type='linear' \ ---output_path='data/tiny/mean_std.npz' - -if [ $? -ne 0 ]; then - echo "Compute mean and stddev failed. Terminated." - exit 1 -fi - - -echo "Tiny data preparation done." -exit 0 diff --git a/deep_speech_2/examples/tiny/run_infer.sh b/deep_speech_2/examples/tiny/run_infer.sh deleted file mode 100644 index 3a345f2f..00000000 --- a/deep_speech_2/examples/tiny/run_infer.sh +++ /dev/null @@ -1,46 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# infer -CUDA_VISIBLE_DEVICES=0 \ -python -u infer.py \ ---num_samples=10 \ ---trainer_count=1 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---infer_manifest='data/tiny/manifest.tiny' \ ---mean_std_path='data/tiny/mean_std.npz' \ ---vocab_path='data/tiny/vocab.txt' \ ---model_path='checkpoints/tiny/params.pass-19.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in inference!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/tiny/run_infer_golden.sh b/deep_speech_2/examples/tiny/run_infer_golden.sh deleted file mode 100644 index 72a8be06..00000000 --- a/deep_speech_2/examples/tiny/run_infer_golden.sh +++ /dev/null @@ -1,55 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/librispeech > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# infer -CUDA_VISIBLE_DEVICES=0 \ -python -u infer.py \ ---num_samples=10 \ ---trainer_count=1 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---infer_manifest='data/tiny/manifest.test-clean' \ ---mean_std_path='models/librispeech/mean_std.npz' \ ---vocab_path='models/librispeech/vocab.txt' \ ---model_path='models/librispeech/params.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in inference!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/tiny/run_test.sh b/deep_speech_2/examples/tiny/run_test.sh deleted file mode 100644 index a58f5d10..00000000 --- a/deep_speech_2/examples/tiny/run_test.sh +++ /dev/null @@ -1,47 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# evaluate model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u test.py \ ---batch_size=16 \ ---trainer_count=8 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_proc_data=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---test_manifest='data/tiny/manifest.tiny' \ ---mean_std_path='data/tiny/mean_std.npz' \ ---vocab_path='data/tiny/vocab.txt' \ ---model_path='checkpoints/params.pass-19.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in evaluation!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/tiny/run_test_golden.sh b/deep_speech_2/examples/tiny/run_test_golden.sh deleted file mode 100644 index 8d3d25c5..00000000 --- a/deep_speech_2/examples/tiny/run_test_golden.sh +++ /dev/null @@ -1,56 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# download language model -cd models/lm > /dev/null -sh download_lm_en.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# download well-trained model -cd models/librispeech > /dev/null -sh download_model.sh -if [ $? -ne 0 ]; then - exit 1 -fi -cd - > /dev/null - - -# evaluate model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u test.py \ ---batch_size=128 \ ---trainer_count=8 \ ---beam_size=500 \ ---num_proc_bsearch=8 \ ---num_proc_data=8 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---alpha=2.15 \ ---beta=0.35 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---test_manifest='data/tiny/manifest.test-clean' \ ---mean_std_path='models/librispeech/mean_std.npz' \ ---vocab_path='models/librispeech/vocab.txt' \ ---model_path='models/librispeech/params.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---decoding_method='ctc_beam_search' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in evaluation!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/tiny/run_train.sh b/deep_speech_2/examples/tiny/run_train.sh deleted file mode 100644 index e03a8aff..00000000 --- a/deep_speech_2/examples/tiny/run_train.sh +++ /dev/null @@ -1,41 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# train model -# if you wish to resume from an exists model, uncomment --init_model_path -CUDA_VISIBLE_DEVICES=0,1,2,3 \ -python -u train.py \ ---batch_size=16 \ ---trainer_count=4 \ ---num_passes=20 \ ---num_proc_data=1 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---num_iter_print=100 \ ---learning_rate=1e-5 \ ---max_duration=27.0 \ ---min_duration=0.0 \ ---test_off=False \ ---use_sortagrad=True \ ---use_gru=False \ ---use_gpu=True \ ---is_local=True \ ---share_rnn_weights=True \ ---train_manifest='data/tiny/manifest.tiny' \ ---dev_manifest='data/tiny/manifest.tiny' \ ---mean_std_path='data/tiny/mean_std.npz' \ ---vocab_path='data/tiny/vocab.txt' \ ---output_model_dir='./checkpoints/tiny' \ ---augment_conf_path='conf/augmentation.config' \ ---specgram_type='linear' \ ---shuffle_method='batch_shuffle_clipped' - -if [ $? -ne 0 ]; then - echo "Fail in training!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/examples/tiny/run_tune.sh b/deep_speech_2/examples/tiny/run_tune.sh deleted file mode 100644 index 89f8adf4..00000000 --- a/deep_speech_2/examples/tiny/run_tune.sh +++ /dev/null @@ -1,41 +0,0 @@ -#! /usr/bin/env bash - -cd ../.. > /dev/null - -# grid-search for hyper-parameters in language model -CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \ -python -u tools/tune.py \ ---num_batches=1 \ ---batch_size=24 \ ---trainer_count=8 \ ---beam_size=500 \ ---num_proc_bsearch=12 \ ---num_conv_layers=2 \ ---num_rnn_layers=3 \ ---rnn_layer_size=2048 \ ---num_alphas=45 \ ---num_betas=8 \ ---alpha_from=1.0 \ ---alpha_to=3.2 \ ---beta_from=0.1 \ ---beta_to=0.45 \ ---cutoff_prob=1.0 \ ---cutoff_top_n=40 \ ---use_gru=False \ ---use_gpu=True \ ---share_rnn_weights=True \ ---tune_manifest='data/tiny/manifest.tiny' \ ---mean_std_path='data/tiny/mean_std.npz' \ ---vocab_path='data/tiny/vocab.txt' \ ---model_path='checkpoints/params.pass-9.tar.gz' \ ---lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm' \ ---error_rate_type='wer' \ ---specgram_type='linear' - -if [ $? -ne 0 ]; then - echo "Failed in tuning!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/infer.py b/deep_speech_2/infer.py deleted file mode 100644 index 32d15f12..00000000 --- a/deep_speech_2/infer.py +++ /dev/null @@ -1,126 +0,0 @@ -"""Inferer for DeepSpeech2 model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import functools -import paddle.v2 as paddle -from data_utils.data import DataGenerator -from model_utils.model import DeepSpeech2Model -from utils.error_rate import wer, cer -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('num_samples', int, 10, "# of samples to infer.") -add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") -add_arg('beam_size', int, 500, "Beam search width.") -add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.") -add_arg('num_conv_layers', int, 2, "# of convolution layers.") -add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") -add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") -add_arg('alpha', float, 2.15, "Coef of LM for beam search.") -add_arg('beta', float, 0.35, "Coef of WC for beam search.") -add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") -add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") -add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") -add_arg('use_gpu', bool, True, "Use GPU or not.") -add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " - "bi-directional RNNs. Not for GRU.") -add_arg('infer_manifest', str, - 'data/librispeech/manifest.dev-clean', - "Filepath of manifest to infer.") -add_arg('mean_std_path', str, - 'data/librispeech/mean_std.npz', - "Filepath of normalizer's mean & std.") -add_arg('vocab_path', str, - 'data/librispeech/vocab.txt', - "Filepath of vocabulary.") -add_arg('lang_model_path', str, - 'models/lm/common_crawl_00.prune01111.trie.klm', - "Filepath for language model.") -add_arg('model_path', str, - './checkpoints/libri/params.latest.tar.gz', - "If None, the training starts from scratch, " - "otherwise, it resumes from the pre-trained model.") -add_arg('decoding_method', str, - 'ctc_beam_search', - "Decoding method. Options: ctc_beam_search, ctc_greedy", - choices = ['ctc_beam_search', 'ctc_greedy']) -add_arg('error_rate_type', str, - 'wer', - "Error rate type for evaluation.", - choices=['wer', 'cer']) -add_arg('specgram_type', str, - 'linear', - "Audio feature type. Options: linear, mfcc.", - choices=['linear', 'mfcc']) -# yapf: disable -args = parser.parse_args() - - -def infer(): - """Inference for DeepSpeech2.""" - data_generator = DataGenerator( - vocab_filepath=args.vocab_path, - mean_std_filepath=args.mean_std_path, - augmentation_config='{}', - specgram_type=args.specgram_type, - num_threads=1, - keep_transcription_text=True, - num_conv_layers=args.num_conv_layers) - batch_reader = data_generator.batch_reader_creator( - manifest_path=args.infer_manifest, - batch_size=args.num_samples, - min_batch_size=1, - sortagrad=False, - shuffle_method=None) - infer_data = batch_reader().next() - - ds2_model = DeepSpeech2Model( - vocab_size=data_generator.vocab_size, - num_conv_layers=args.num_conv_layers, - num_rnn_layers=args.num_rnn_layers, - rnn_layer_size=args.rnn_layer_size, - use_gru=args.use_gru, - pretrained_model_path=args.model_path, - share_rnn_weights=args.share_rnn_weights) - - # decoders only accept string encoded in utf-8 - vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list] - - result_transcripts = ds2_model.infer_batch( - infer_data=infer_data, - decoding_method=args.decoding_method, - beam_alpha=args.alpha, - beam_beta=args.beta, - beam_size=args.beam_size, - cutoff_prob=args.cutoff_prob, - cutoff_top_n=args.cutoff_top_n, - vocab_list=vocab_list, - language_model_path=args.lang_model_path, - num_processes=args.num_proc_bsearch, - feeding_dict=data_generator.feeding) - - error_rate_func = cer if args.error_rate_type == 'cer' else wer - target_transcripts = [data[1] for data in infer_data] - for target, result in zip(target_transcripts, result_transcripts): - print("\nTarget Transcription: %s\nOutput Transcription: %s" % - (target, result)) - print("Current error rate [%s] = %f" % - (args.error_rate_type, error_rate_func(target, result))) - - ds2_model.logger.info("finish inference") - -def main(): - print_arguments(args) - paddle.init(use_gpu=args.use_gpu, - rnn_use_batch=True, - trainer_count=args.trainer_count) - infer() - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/model_utils/__init__.py b/deep_speech_2/model_utils/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/deep_speech_2/model_utils/model.py b/deep_speech_2/model_utils/model.py deleted file mode 100644 index 26aa1470..00000000 --- a/deep_speech_2/model_utils/model.py +++ /dev/null @@ -1,307 +0,0 @@ -"""Contains DeepSpeech2 model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import sys -import os -import time -import logging -import gzip -from distutils.dir_util import mkpath -import paddle.v2 as paddle -from decoders.swig_wrapper import Scorer -from decoders.swig_wrapper import ctc_greedy_decoder -from decoders.swig_wrapper import ctc_beam_search_decoder_batch -from model_utils.network import deep_speech_v2_network - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s') - - -class DeepSpeech2Model(object): - """DeepSpeech2Model class. - - :param vocab_size: Decoding vocabulary size. - :type vocab_size: int - :param num_conv_layers: Number of stacking convolution layers. - :type num_conv_layers: int - :param num_rnn_layers: Number of stacking RNN layers. - :type num_rnn_layers: int - :param rnn_layer_size: RNN layer size (number of RNN cells). - :type rnn_layer_size: int - :param pretrained_model_path: Pretrained model path. If None, will train - from stratch. - :type pretrained_model_path: basestring|None - :param share_rnn_weights: Whether to share input-hidden weights between - forward and backward directional RNNs.Notice that - for GRU, weight sharing is not supported. - :type share_rnn_weights: bool - """ - - def __init__(self, vocab_size, num_conv_layers, num_rnn_layers, - rnn_layer_size, use_gru, pretrained_model_path, - share_rnn_weights): - self._create_network(vocab_size, num_conv_layers, num_rnn_layers, - rnn_layer_size, use_gru, share_rnn_weights) - self._create_parameters(pretrained_model_path) - self._inferer = None - self._loss_inferer = None - self._ext_scorer = None - self.logger = logging.getLogger("") - self.logger.setLevel(level=logging.INFO) - - def train(self, - train_batch_reader, - dev_batch_reader, - feeding_dict, - learning_rate, - gradient_clipping, - num_passes, - output_model_dir, - is_local=True, - num_iterations_print=100, - test_off=False): - """Train the model. - - :param train_batch_reader: Train data reader. - :type train_batch_reader: callable - :param dev_batch_reader: Validation data reader. - :type dev_batch_reader: callable - :param feeding_dict: Feeding is a map of field name and tuple index - of the data that reader returns. - :type feeding_dict: dict|list - :param learning_rate: Learning rate for ADAM optimizer. - :type learning_rate: float - :param gradient_clipping: Gradient clipping threshold. - :type gradient_clipping: float - :param num_passes: Number of training epochs. - :type num_passes: int - :param num_iterations_print: Number of training iterations for printing - a training loss. - :type rnn_iteratons_print: int - :param is_local: Set to False if running with pserver with multi-nodes. - :type is_local: bool - :param output_model_dir: Directory for saving the model (every pass). - :type output_model_dir: basestring - :param test_off: Turn off testing. - :type test_off: bool - """ - # prepare model output directory - if not os.path.exists(output_model_dir): - mkpath(output_model_dir) - - # prepare optimizer and trainer - optimizer = paddle.optimizer.Adam( - learning_rate=learning_rate, - gradient_clipping_threshold=gradient_clipping) - trainer = paddle.trainer.SGD( - cost=self._loss, - parameters=self._parameters, - update_equation=optimizer, - is_local=is_local) - - # create event handler - def event_handler(event): - global start_time, cost_sum, cost_counter - if isinstance(event, paddle.event.EndIteration): - cost_sum += event.cost - cost_counter += 1 - if (event.batch_id + 1) % num_iterations_print == 0: - output_model_path = os.path.join(output_model_dir, - "params.latest.tar.gz") - with gzip.open(output_model_path, 'w') as f: - trainer.save_parameter_to_tar(f) - print("\nPass: %d, Batch: %d, TrainCost: %f" % - (event.pass_id, event.batch_id + 1, - cost_sum / cost_counter)) - cost_sum, cost_counter = 0.0, 0 - else: - sys.stdout.write('.') - sys.stdout.flush() - if isinstance(event, paddle.event.BeginPass): - start_time = time.time() - cost_sum, cost_counter = 0.0, 0 - if isinstance(event, paddle.event.EndPass): - if test_off: - print("\n------- Time: %d sec, Pass: %d" % - (time.time() - start_time, event.pass_id)) - else: - result = trainer.test( - reader=dev_batch_reader, feeding=feeding_dict) - print( - "\n------- Time: %d sec, Pass: %d, " - "ValidationCost: %s" % - (time.time() - start_time, event.pass_id, result.cost)) - output_model_path = os.path.join( - output_model_dir, "params.pass-%d.tar.gz" % event.pass_id) - with gzip.open(output_model_path, 'w') as f: - trainer.save_parameter_to_tar(f) - - # run train - trainer.train( - reader=train_batch_reader, - event_handler=event_handler, - num_passes=num_passes, - feeding=feeding_dict) - - def infer_loss_batch(self, infer_data): - """Model inference. Infer the ctc loss for a batch of speech - utterances. - - :param infer_data: List of utterances to infer, with each utterance a - tuple of audio features and transcription text (empty - string). - :type infer_data: list - :return: List of ctc loss. - :rtype: List of float - """ - # define inferer - if self._loss_inferer == None: - self._loss_inferer = paddle.inference.Inference( - output_layer=self._loss, parameters=self._parameters) - # run inference - return self._loss_inferer.infer(input=infer_data) - - def infer_batch(self, infer_data, decoding_method, beam_alpha, beam_beta, - beam_size, cutoff_prob, cutoff_top_n, vocab_list, - language_model_path, num_processes, feeding_dict): - """Model inference. Infer the transcription for a batch of speech - utterances. - - :param infer_data: List of utterances to infer, with each utterance - consisting of a tuple of audio features and - transcription text (empty string). - :type infer_data: list - :param decoding_method: Decoding method name, 'ctc_greedy' or - 'ctc_beam_search'. - :param decoding_method: string - :param beam_alpha: Parameter associated with language model. - :type beam_alpha: float - :param beam_beta: Parameter associated with word count. - :type beam_beta: float - :param beam_size: Width for Beam search. - :type beam_size: int - :param cutoff_prob: Cutoff probability in pruning, - default 1.0, no pruning. - :type cutoff_prob: float - :param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n - characters with highest probs in vocabulary will be - used in beam search, default 40. - :type cutoff_top_n: int - :param vocab_list: List of tokens in the vocabulary, for decoding. - :type vocab_list: list - :param language_model_path: Filepath for language model. - :type language_model_path: basestring|None - :param num_processes: Number of processes (CPU) for decoder. - :type num_processes: int - :param feeding_dict: Feeding is a map of field name and tuple index - of the data that reader returns. - :type feeding_dict: dict|list - :return: List of transcription texts. - :rtype: List of basestring - """ - # define inferer - if self._inferer == None: - self._inferer = paddle.inference.Inference( - output_layer=self._log_probs, parameters=self._parameters) - # run inference - infer_results = self._inferer.infer( - input=infer_data, feeding=feeding_dict) - start_pos = [0] * (len(infer_data) + 1) - for i in xrange(len(infer_data)): - start_pos[i + 1] = start_pos[i] + infer_data[i][3][0] - probs_split = [ - infer_results[start_pos[i]:start_pos[i + 1]] - for i in xrange(0, len(infer_data)) - ] - # run decoder - results = [] - if decoding_method == "ctc_greedy": - # best path decode - for i, probs in enumerate(probs_split): - output_transcription = ctc_greedy_decoder( - probs_seq=probs, vocabulary=vocab_list) - results.append(output_transcription) - elif decoding_method == "ctc_beam_search": - # initialize external scorer - if self._ext_scorer == None: - self._loaded_lm_path = language_model_path - self.logger.info("begin to initialize the external scorer " - "for decoding") - self._ext_scorer = Scorer(beam_alpha, beam_beta, - language_model_path, vocab_list) - - lm_char_based = self._ext_scorer.is_character_based() - lm_max_order = self._ext_scorer.get_max_order() - lm_dict_size = self._ext_scorer.get_dict_size() - self.logger.info("language model: " - "is_character_based = %d," % lm_char_based + - " max_order = %d," % lm_max_order + - " dict_size = %d" % lm_dict_size) - self.logger.info("end initializing scorer. Start decoding ...") - else: - self._ext_scorer.reset_params(beam_alpha, beam_beta) - assert self._loaded_lm_path == language_model_path - # beam search decode - num_processes = min(num_processes, len(probs_split)) - beam_search_results = ctc_beam_search_decoder_batch( - probs_split=probs_split, - vocabulary=vocab_list, - beam_size=beam_size, - num_processes=num_processes, - ext_scoring_func=self._ext_scorer, - cutoff_prob=cutoff_prob, - cutoff_top_n=cutoff_top_n) - - results = [result[0][1] for result in beam_search_results] - else: - raise ValueError("Decoding method [%s] is not supported." % - decoding_method) - return results - - def _create_parameters(self, model_path=None): - """Load or create model parameters.""" - if model_path is None: - self._parameters = paddle.parameters.create(self._loss) - else: - self._parameters = paddle.parameters.Parameters.from_tar( - gzip.open(model_path)) - - def _create_network(self, vocab_size, num_conv_layers, num_rnn_layers, - rnn_layer_size, use_gru, share_rnn_weights): - """Create data layers and model network.""" - # paddle.data_type.dense_array is used for variable batch input. - # The size 161 * 161 is only an placeholder value and the real shape - # of input batch data will be induced during training. - audio_data = paddle.layer.data( - name="audio_spectrogram", - type=paddle.data_type.dense_array(161 * 161)) - text_data = paddle.layer.data( - name="transcript_text", - type=paddle.data_type.integer_value_sequence(vocab_size)) - seq_offset_data = paddle.layer.data( - name='sequence_offset', - type=paddle.data_type.integer_value_sequence(1)) - seq_len_data = paddle.layer.data( - name='sequence_length', - type=paddle.data_type.integer_value_sequence(1)) - index_range_datas = [] - for i in xrange(num_rnn_layers): - index_range_datas.append( - paddle.layer.data( - name='conv%d_index_range' % i, - type=paddle.data_type.dense_vector(6))) - - self._log_probs, self._loss = deep_speech_v2_network( - audio_data=audio_data, - text_data=text_data, - seq_offset_data=seq_offset_data, - seq_len_data=seq_len_data, - index_range_datas=index_range_datas, - dict_size=vocab_size, - num_conv_layers=num_conv_layers, - num_rnn_layers=num_rnn_layers, - rnn_size=rnn_layer_size, - use_gru=use_gru, - share_rnn_weights=share_rnn_weights) diff --git a/deep_speech_2/model_utils/network.py b/deep_speech_2/model_utils/network.py deleted file mode 100644 index 7b4b8ab2..00000000 --- a/deep_speech_2/model_utils/network.py +++ /dev/null @@ -1,302 +0,0 @@ -"""Contains DeepSpeech2 layers and networks.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import paddle.v2 as paddle - - -def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride, - padding, act, index_range_data): - """Convolution layer with batch normalization. - - :param input: Input layer. - :type input: LayerOutput - :param filter_size: The x dimension of a filter kernel. Or input a tuple for - two image dimension. - :type filter_size: int|tuple|list - :param num_channels_in: Number of input channels. - :type num_channels_in: int - :type num_channels_out: Number of output channels. - :type num_channels_in: out - :param padding: The x dimension of the padding. Or input a tuple for two - image dimension. - :type padding: int|tuple|list - :param act: Activation type. - :type act: BaseActivation - :param index_range_data: Index range to indicate sub region. - :type index_range_data: LayerOutput - :return: Batch norm layer after convolution layer. - :rtype: LayerOutput - """ - conv_layer = paddle.layer.img_conv( - input=input, - filter_size=filter_size, - num_channels=num_channels_in, - num_filters=num_channels_out, - stride=stride, - padding=padding, - act=paddle.activation.Linear(), - bias_attr=False) - batch_norm = paddle.layer.batch_norm(input=conv_layer, act=act) - # reset padding part to 0 - scale_sub_region = paddle.layer.scale_sub_region( - batch_norm, index_range_data, value=0.0) - return scale_sub_region - - -def bidirectional_simple_rnn_bn_layer(name, input, size, act, share_weights): - """Bidirectonal simple rnn layer with sequence-wise batch normalization. - The batch normalization is only performed on input-state weights. - - :param name: Name of the layer. - :type name: string - :param input: Input layer. - :type input: LayerOutput - :param size: Number of RNN cells. - :type size: int - :param act: Activation type. - :type act: BaseActivation - :param share_weights: Whether to share input-hidden weights between - forward and backward directional RNNs. - :type share_weights: bool - :return: Bidirectional simple rnn layer. - :rtype: LayerOutput - """ - if share_weights: - # input-hidden weights shared between bi-direcitonal rnn. - input_proj = paddle.layer.fc( - input=input, - size=size, - act=paddle.activation.Linear(), - bias_attr=False) - # batch norm is only performed on input-state projection - input_proj_bn = paddle.layer.batch_norm( - input=input_proj, act=paddle.activation.Linear()) - # forward and backward in time - forward_simple_rnn = paddle.layer.recurrent( - input=input_proj_bn, act=act, reverse=False) - backward_simple_rnn = paddle.layer.recurrent( - input=input_proj_bn, act=act, reverse=True) - - else: - input_proj_forward = paddle.layer.fc( - input=input, - size=size, - act=paddle.activation.Linear(), - bias_attr=False) - input_proj_backward = paddle.layer.fc( - input=input, - size=size, - act=paddle.activation.Linear(), - bias_attr=False) - # batch norm is only performed on input-state projection - input_proj_bn_forward = paddle.layer.batch_norm( - input=input_proj_forward, act=paddle.activation.Linear()) - input_proj_bn_backward = paddle.layer.batch_norm( - input=input_proj_backward, act=paddle.activation.Linear()) - # forward and backward in time - forward_simple_rnn = paddle.layer.recurrent( - input=input_proj_bn_forward, act=act, reverse=False) - backward_simple_rnn = paddle.layer.recurrent( - input=input_proj_bn_backward, act=act, reverse=True) - - return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn]) - - -def bidirectional_gru_bn_layer(name, input, size, act): - """Bidirectonal gru layer with sequence-wise batch normalization. - The batch normalization is only performed on input-state weights. - - :param name: Name of the layer. - :type name: string - :param input: Input layer. - :type input: LayerOutput - :param size: Number of RNN cells. - :type size: int - :param act: Activation type. - :type act: BaseActivation - :return: Bidirectional simple rnn layer. - :rtype: LayerOutput - """ - input_proj_forward = paddle.layer.fc( - input=input, - size=size * 3, - act=paddle.activation.Linear(), - bias_attr=False) - input_proj_backward = paddle.layer.fc( - input=input, - size=size * 3, - act=paddle.activation.Linear(), - bias_attr=False) - # batch norm is only performed on input-related projections - input_proj_bn_forward = paddle.layer.batch_norm( - input=input_proj_forward, act=paddle.activation.Linear()) - input_proj_bn_backward = paddle.layer.batch_norm( - input=input_proj_backward, act=paddle.activation.Linear()) - # forward and backward in time - forward_gru = paddle.layer.grumemory( - input=input_proj_bn_forward, act=act, reverse=False) - backward_gru = paddle.layer.grumemory( - input=input_proj_bn_backward, act=act, reverse=True) - return paddle.layer.concat(input=[forward_gru, backward_gru]) - - -def conv_group(input, num_stacks, index_range_datas): - """Convolution group with stacked convolution layers. - - :param input: Input layer. - :type input: LayerOutput - :param num_stacks: Number of stacked convolution layers. - :type num_stacks: int - :param index_range_datas: Index ranges for each convolution layer. - :type index_range_datas: tuple|list - :return: Output layer of the convolution group. - :rtype: LayerOutput - """ - conv = conv_bn_layer( - input=input, - filter_size=(11, 41), - num_channels_in=1, - num_channels_out=32, - stride=(3, 2), - padding=(5, 20), - act=paddle.activation.BRelu(), - index_range_data=index_range_datas[0]) - for i in xrange(num_stacks - 1): - conv = conv_bn_layer( - input=conv, - filter_size=(11, 21), - num_channels_in=32, - num_channels_out=32, - stride=(1, 2), - padding=(5, 10), - act=paddle.activation.BRelu(), - index_range_data=index_range_datas[i + 1]) - output_num_channels = 32 - output_height = 160 // pow(2, num_stacks) + 1 - return conv, output_num_channels, output_height - - -def rnn_group(input, size, num_stacks, use_gru, share_rnn_weights): - """RNN group with stacked bidirectional simple RNN layers. - - :param input: Input layer. - :type input: LayerOutput - :param size: Number of RNN cells in each layer. - :type size: int - :param num_stacks: Number of stacked rnn layers. - :type num_stacks: int - :param use_gru: Use gru if set True. Use simple rnn if set False. - :type use_gru: bool - :param share_rnn_weights: Whether to share input-hidden weights between - forward and backward directional RNNs. - It is only available when use_gru=False. - :type share_weights: bool - :return: Output layer of the RNN group. - :rtype: LayerOutput - """ - output = input - for i in xrange(num_stacks): - if use_gru: - output = bidirectional_gru_bn_layer( - name=str(i), - input=output, - size=size, - act=paddle.activation.Relu()) - # BRelu does not support hppl, need to add later. Use Relu instead. - else: - output = bidirectional_simple_rnn_bn_layer( - name=str(i), - input=output, - size=size, - act=paddle.activation.BRelu(), - share_weights=share_rnn_weights) - return output - - -def deep_speech_v2_network(audio_data, - text_data, - seq_offset_data, - seq_len_data, - index_range_datas, - dict_size, - num_conv_layers=2, - num_rnn_layers=3, - rnn_size=256, - use_gru=False, - share_rnn_weights=True): - """The DeepSpeech2 network structure. - - :param audio_data: Audio spectrogram data layer. - :type audio_data: LayerOutput - :param text_data: Transcription text data layer. - :type text_data: LayerOutput - :param seq_offset_data: Sequence offset data layer. - :type seq_offset_data: LayerOutput - :param seq_len_data: Valid sequence length data layer. - :type seq_len_data: LayerOutput - :param index_range_datas: Index ranges data layers. - :type index_range_datas: tuple|list - :param dict_size: Dictionary size for tokenized transcription. - :type dict_size: int - :param num_conv_layers: Number of stacking convolution layers. - :type num_conv_layers: int - :param num_rnn_layers: Number of stacking RNN layers. - :type num_rnn_layers: int - :param rnn_size: RNN layer size (number of RNN cells). - :type rnn_size: int - :param use_gru: Use gru if set True. Use simple rnn if set False. - :type use_gru: bool - :param share_rnn_weights: Whether to share input-hidden weights between - forward and backward direction RNNs. - It is only available when use_gru=False. - :type share_weights: bool - :return: A tuple of an output unnormalized log probability layer ( - before softmax) and a ctc cost layer. - :rtype: tuple of LayerOutput - """ - # convolution group - conv_group_output, conv_group_num_channels, conv_group_height = conv_group( - input=audio_data, - num_stacks=num_conv_layers, - index_range_datas=index_range_datas) - # convert data form convolution feature map to sequence of vectors - conv2seq = paddle.layer.block_expand( - input=conv_group_output, - num_channels=conv_group_num_channels, - stride_x=1, - stride_y=1, - block_x=1, - block_y=conv_group_height) - # remove padding part - remove_padding_data = paddle.layer.sub_seq( - input=conv2seq, - offsets=seq_offset_data, - sizes=seq_len_data, - act=paddle.activation.Linear(), - bias_attr=False) - # rnn group - rnn_group_output = rnn_group( - input=remove_padding_data, - size=rnn_size, - num_stacks=num_rnn_layers, - use_gru=use_gru, - share_rnn_weights=share_rnn_weights) - fc = paddle.layer.fc( - input=rnn_group_output, - size=dict_size + 1, - act=paddle.activation.Linear(), - bias_attr=True) - # probability distribution with softmax - log_probs = paddle.layer.mixed( - input=paddle.layer.identity_projection(input=fc), - act=paddle.activation.Softmax()) - # ctc cost - ctc_loss = paddle.layer.warp_ctc( - input=fc, - label=text_data, - size=dict_size + 1, - blank=dict_size, - norm_by_times=True) - return log_probs, ctc_loss diff --git a/deep_speech_2/models/aishell/download_model.sh b/deep_speech_2/models/aishell/download_model.sh deleted file mode 100644 index 19aec554..00000000 --- a/deep_speech_2/models/aishell/download_model.sh +++ /dev/null @@ -1,19 +0,0 @@ -#! /usr/bin/env bash - -. ../../utils/utility.sh - -URL='http://cloud.dlnel.org/filepub/?uuid=6c83b9d8-3255-4adf-9726-0fe0be3d0274' -MD5=28521a58552885a81cf92a1e9b133a71 -TARGET=./aishell_model.tar.gz - - -echo "Download Aishell model ..." -download $URL $MD5 $TARGET -if [ $? -ne 0 ]; then - echo "Fail to download Aishell model!" - exit 1 -fi -tar -zxvf $TARGET - - -exit 0 diff --git a/deep_speech_2/models/baidu_en8k/download_model.sh b/deep_speech_2/models/baidu_en8k/download_model.sh deleted file mode 100644 index 7d92fd52..00000000 --- a/deep_speech_2/models/baidu_en8k/download_model.sh +++ /dev/null @@ -1,19 +0,0 @@ -#! /usr/bin/env bash - -. ../../utils/utility.sh - -URL='To-be-added' -MD5=a19d40cb3b558eb696c44d883f32cfda -TARGET=./baidu_en8k_model.tar.gz - - -echo "Download BaiduEn8k model ..." -download $URL $MD5 $TARGET -if [ $? -ne 0 ]; then - echo "Fail to download BaiduEn8k model!" - exit 1 -fi -tar -zxvf $TARGET - - -exit 0 diff --git a/deep_speech_2/models/librispeech/download_model.sh b/deep_speech_2/models/librispeech/download_model.sh deleted file mode 100644 index 9c0ec278..00000000 --- a/deep_speech_2/models/librispeech/download_model.sh +++ /dev/null @@ -1,19 +0,0 @@ -#! /usr/bin/env bash - -. ../../utils/utility.sh - -URL='http://cloud.dlnel.org/filepub/?uuid=6020a634-5399-4423-b021-c5ed32680fff' -MD5=2ef08f8b608a7c555592161fc14d81a6 -TARGET=./librispeech_model.tar.gz - - -echo "Download LibriSpeech model ..." -download $URL $MD5 $TARGET -if [ $? -ne 0 ]; then - echo "Fail to download LibriSpeech model!" - exit 1 -fi -tar -zxvf $TARGET - - -exit 0 diff --git a/deep_speech_2/models/lm/download_lm_ch.sh b/deep_speech_2/models/lm/download_lm_ch.sh deleted file mode 100644 index c719f9a9..00000000 --- a/deep_speech_2/models/lm/download_lm_ch.sh +++ /dev/null @@ -1,18 +0,0 @@ -#! /usr/bin/env bash - -. ../../utils/utility.sh - -URL=http://cloud.dlnel.org/filepub/?uuid=d21861e4-4ed6-45bb-ad8e-ae417a43195e -MD5="29e02312deb2e59b3c8686c7966d4fe3" -TARGET=./zh_giga.no_cna_cmn.prune01244.klm - - -echo "Download language model ..." -download $URL $MD5 $TARGET -if [ $? -ne 0 ]; then - echo "Fail to download the language model!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/models/lm/download_lm_en.sh b/deep_speech_2/models/lm/download_lm_en.sh deleted file mode 100644 index d131636e..00000000 --- a/deep_speech_2/models/lm/download_lm_en.sh +++ /dev/null @@ -1,18 +0,0 @@ -#! /usr/bin/env bash - -. ../../utils/utility.sh - -URL=http://paddlepaddle.bj.bcebos.com/model_zoo/speech/common_crawl_00.prune01111.trie.klm -MD5="099a601759d467cd0a8523ff939819c5" -TARGET=./common_crawl_00.prune01111.trie.klm - - -echo "Download language model ..." -download $URL $MD5 $TARGET -if [ $? -ne 0 ]; then - echo "Fail to download the language model!" - exit 1 -fi - - -exit 0 diff --git a/deep_speech_2/requirements.txt b/deep_speech_2/requirements.txt deleted file mode 100644 index e104f633..00000000 --- a/deep_speech_2/requirements.txt +++ /dev/null @@ -1,4 +0,0 @@ -scipy==0.13.1 -resampy==0.1.5 -SoundFile==0.9.0.post1 -python_speech_features diff --git a/deep_speech_2/setup.sh b/deep_speech_2/setup.sh deleted file mode 100644 index 7c40415d..00000000 --- a/deep_speech_2/setup.sh +++ /dev/null @@ -1,38 +0,0 @@ -#! /usr/bin/env bash - -# install python dependencies -if [ -f "requirements.txt" ]; then - pip install -r requirements.txt -fi -if [ $? != 0 ]; then - echo "Install python dependencies failed !!!" - exit 1 -fi - -# install package libsndfile -python -c "import soundfile" -if [ $? != 0 ]; then - echo "Install package libsndfile into default system path." - wget "http://www.mega-nerd.com/libsndfile/files/libsndfile-1.0.28.tar.gz" - if [ $? != 0 ]; then - echo "Download libsndfile-1.0.28.tar.gz failed !!!" - exit 1 - fi - tar -zxvf libsndfile-1.0.28.tar.gz - cd libsndfile-1.0.28 - ./configure > /dev/null && make > /dev/null && make install > /dev/null - cd .. - rm -rf libsndfile-1.0.28 - rm libsndfile-1.0.28.tar.gz -fi - -# install decoders -python -c "import swig_decoders" -if [ $? != 0 ]; then - cd decoders/swig > /dev/null - sh setup.sh - cd - > /dev/null -fi - - -echo "Install all dependencies successfully." diff --git a/deep_speech_2/test.py b/deep_speech_2/test.py deleted file mode 100644 index 53f7e17a..00000000 --- a/deep_speech_2/test.py +++ /dev/null @@ -1,129 +0,0 @@ -"""Evaluation for DeepSpeech2 model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import functools -import paddle.v2 as paddle -from data_utils.data import DataGenerator -from model_utils.model import DeepSpeech2Model -from utils.error_rate import wer, cer -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('batch_size', int, 128, "Minibatch size.") -add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") -add_arg('beam_size', int, 500, "Beam search width.") -add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.") -add_arg('num_proc_data', int, 8, "# of CPUs for data preprocessing.") -add_arg('num_conv_layers', int, 2, "# of convolution layers.") -add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") -add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") -add_arg('alpha', float, 2.15, "Coef of LM for beam search.") -add_arg('beta', float, 0.35, "Coef of WC for beam search.") -add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") -add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") -add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") -add_arg('use_gpu', bool, True, "Use GPU or not.") -add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " - "bi-directional RNNs. Not for GRU.") -add_arg('test_manifest', str, - 'data/librispeech/manifest.test-clean', - "Filepath of manifest to evaluate.") -add_arg('mean_std_path', str, - 'data/librispeech/mean_std.npz', - "Filepath of normalizer's mean & std.") -add_arg('vocab_path', str, - 'data/librispeech/vocab.txt', - "Filepath of vocabulary.") -add_arg('model_path', str, - './checkpoints/libri/params.latest.tar.gz', - "If None, the training starts from scratch, " - "otherwise, it resumes from the pre-trained model.") -add_arg('lang_model_path', str, - 'models/lm/common_crawl_00.prune01111.trie.klm', - "Filepath for language model.") -add_arg('decoding_method', str, - 'ctc_beam_search', - "Decoding method. Options: ctc_beam_search, ctc_greedy", - choices = ['ctc_beam_search', 'ctc_greedy']) -add_arg('error_rate_type', str, - 'wer', - "Error rate type for evaluation.", - choices=['wer', 'cer']) -add_arg('specgram_type', str, - 'linear', - "Audio feature type. Options: linear, mfcc.", - choices=['linear', 'mfcc']) -# yapf: disable -args = parser.parse_args() - - -def evaluate(): - """Evaluate on whole test data for DeepSpeech2.""" - data_generator = DataGenerator( - vocab_filepath=args.vocab_path, - mean_std_filepath=args.mean_std_path, - augmentation_config='{}', - specgram_type=args.specgram_type, - num_threads=args.num_proc_data, - keep_transcription_text=True, - num_conv_layers=args.num_conv_layers) - batch_reader = data_generator.batch_reader_creator( - manifest_path=args.test_manifest, - batch_size=args.batch_size, - min_batch_size=1, - sortagrad=False, - shuffle_method=None) - - ds2_model = DeepSpeech2Model( - vocab_size=data_generator.vocab_size, - num_conv_layers=args.num_conv_layers, - num_rnn_layers=args.num_rnn_layers, - rnn_layer_size=args.rnn_layer_size, - use_gru=args.use_gru, - pretrained_model_path=args.model_path, - share_rnn_weights=args.share_rnn_weights) - - # decoders only accept string encoded in utf-8 - vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list] - - error_rate_func = cer if args.error_rate_type == 'cer' else wer - error_sum, num_ins = 0.0, 0 - for infer_data in batch_reader(): - result_transcripts = ds2_model.infer_batch( - infer_data=infer_data, - decoding_method=args.decoding_method, - beam_alpha=args.alpha, - beam_beta=args.beta, - beam_size=args.beam_size, - cutoff_prob=args.cutoff_prob, - cutoff_top_n=args.cutoff_top_n, - vocab_list=vocab_list, - language_model_path=args.lang_model_path, - num_processes=args.num_proc_bsearch, - feeding_dict=data_generator.feeding) - target_transcripts = [data[1] for data in infer_data] - for target, result in zip(target_transcripts, result_transcripts): - error_sum += error_rate_func(target, result) - num_ins += 1 - print("Error rate [%s] (%d/?) = %f" % - (args.error_rate_type, num_ins, error_sum / num_ins)) - print("Final error rate [%s] (%d/%d) = %f" % - (args.error_rate_type, num_ins, num_ins, error_sum / num_ins)) - - ds2_model.logger.info("finish evaluation") - -def main(): - print_arguments(args) - paddle.init(use_gpu=args.use_gpu, - rnn_use_batch=True, - trainer_count=args.trainer_count) - evaluate() - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/tools/_init_paths.py b/deep_speech_2/tools/_init_paths.py deleted file mode 100644 index ddabb535..00000000 --- a/deep_speech_2/tools/_init_paths.py +++ /dev/null @@ -1,19 +0,0 @@ -"""Set up paths for DS2""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import os.path -import sys - - -def add_path(path): - if path not in sys.path: - sys.path.insert(0, path) - - -this_dir = os.path.dirname(__file__) - -# Add project path to PYTHONPATH -proj_path = os.path.join(this_dir, '..') -add_path(proj_path) diff --git a/deep_speech_2/tools/build_vocab.py b/deep_speech_2/tools/build_vocab.py deleted file mode 100644 index e167e92a..00000000 --- a/deep_speech_2/tools/build_vocab.py +++ /dev/null @@ -1,58 +0,0 @@ -"""Build vocabulary from manifest files. - -Each item in vocabulary file is a character. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import functools -import codecs -import json -from collections import Counter -import os.path -import _init_paths -from data_utils.utility import read_manifest -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('count_threshold', int, 0, "Truncation threshold for char counts.") -add_arg('vocab_path', str, - 'data/librispeech/vocab.txt', - "Filepath to write the vocabulary.") -add_arg('manifest_paths', str, - None, - "Filepaths of manifests for building vocabulary. " - "You can provide multiple manifest files.", - nargs='+', - required=True) -# yapf: disable -args = parser.parse_args() - - -def count_manifest(counter, manifest_path): - manifest_jsons = read_manifest(manifest_path) - for line_json in manifest_jsons: - for char in line_json['text']: - counter.update(char) - - -def main(): - print_arguments(args) - - counter = Counter() - for manifest_path in args.manifest_paths: - count_manifest(counter, manifest_path) - - count_sorted = sorted(counter.items(), key=lambda x: x[1], reverse=True) - with codecs.open(args.vocab_path, 'w', 'utf-8') as fout: - for char, count in count_sorted: - if count < args.count_threshold: break - fout.write(char + '\n') - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/tools/compute_mean_std.py b/deep_speech_2/tools/compute_mean_std.py deleted file mode 100644 index 11aa856d..00000000 --- a/deep_speech_2/tools/compute_mean_std.py +++ /dev/null @@ -1,51 +0,0 @@ -"""Compute mean and std for feature normalizer, and save to file.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import functools -import _init_paths -from data_utils.normalizer import FeatureNormalizer -from data_utils.augmentor.augmentation import AugmentationPipeline -from data_utils.featurizer.audio_featurizer import AudioFeaturizer -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('num_samples', int, 2000, "# of samples to for statistics.") -add_arg('specgram_type', str, - 'linear', - "Audio feature type. Options: linear, mfcc.", - choices=['linear', 'mfcc']) -add_arg('manifest_path', str, - 'data/librispeech/manifest.train', - "Filepath of manifest to compute normalizer's mean and stddev.") -add_arg('output_path', str, - 'data/librispeech/mean_std.npz', - "Filepath of write mean and stddev to (.npz).") -# yapf: disable -args = parser.parse_args() - - -def main(): - print_arguments(args) - - augmentation_pipeline = AugmentationPipeline('{}') - audio_featurizer = AudioFeaturizer(specgram_type=args.specgram_type) - - def augment_and_featurize(audio_segment): - augmentation_pipeline.transform_audio(audio_segment) - return audio_featurizer.featurize(audio_segment) - - normalizer = FeatureNormalizer( - mean_std_filepath=None, - manifest_path=args.manifest_path, - featurize_func=augment_and_featurize, - num_samples=args.num_samples) - normalizer.write_to_file(args.output_path) - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/tools/profile.sh b/deep_speech_2/tools/profile.sh deleted file mode 100644 index 19abe7ed..00000000 --- a/deep_speech_2/tools/profile.sh +++ /dev/null @@ -1,30 +0,0 @@ -#! /usr/bin/env bash - -BATCH_SIZE_PER_GPU=64 -MIN_DURATION=6.0 -MAX_DURATION=7.0 - -function join_by { local IFS="$1"; shift; echo "$*"; } - -for NUM_GPUS in 16 8 4 2 1 -do - DEVICES=$(join_by , $(seq 0 $(($NUM_GPUS-1)))) - BATCH_SIZE=$(($BATCH_SIZE_PER_GPU * $NUM_GPUS)) - - CUDA_VISIBLE_DEVICES=$DEVICES \ - python train.py \ - --batch_size=$BATCH_SIZE \ - --num_passes=1 \ - --test_off=True \ - --trainer_count=$NUM_GPUS \ - --min_duration=$MIN_DURATION \ - --max_duration=$MAX_DURATION > tmp.log 2>&1 - - if [ $? -ne 0 ];then - exit 1 - fi - - cat tmp.log | grep "Time" | awk '{print "GPU Num: " "'"$NUM_GPUS"'" " Time: "$3}' - - rm tmp.log -done diff --git a/deep_speech_2/tools/tune.py b/deep_speech_2/tools/tune.py deleted file mode 100644 index 47abf141..00000000 --- a/deep_speech_2/tools/tune.py +++ /dev/null @@ -1,244 +0,0 @@ -"""Beam search parameters tuning for DeepSpeech2 model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import sys -import os -import numpy as np -import argparse -import functools -import gzip -import logging -import paddle.v2 as paddle -import _init_paths -from data_utils.data import DataGenerator -from decoders.swig_wrapper import Scorer -from decoders.swig_wrapper import ctc_beam_search_decoder_batch -from model_utils.model import deep_speech_v2_network -from utils.error_rate import wer, cer -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('num_batches', int, -1, "# of batches tuning on. " - "Default -1, on whole dev set.") -add_arg('batch_size', int, 256, "# of samples per batch.") -add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") -add_arg('beam_size', int, 500, "Beam search width.") -add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.") -add_arg('num_proc_data', int, 8, "# of CPUs for data preprocessing.") -add_arg('num_conv_layers', int, 2, "# of convolution layers.") -add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") -add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") -add_arg('num_alphas', int, 45, "# of alpha candidates for tuning.") -add_arg('num_betas', int, 8, "# of beta candidates for tuning.") -add_arg('alpha_from', float, 1.0, "Where alpha starts tuning from.") -add_arg('alpha_to', float, 3.2, "Where alpha ends tuning with.") -add_arg('beta_from', float, 0.1, "Where beta starts tuning from.") -add_arg('beta_to', float, 0.45, "Where beta ends tuning with.") -add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.") -add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.") -add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") -add_arg('use_gpu', bool, True, "Use GPU or not.") -add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " - "bi-directional RNNs. Not for GRU.") -add_arg('tune_manifest', str, - 'data/librispeech/manifest.dev-clean', - "Filepath of manifest to tune.") -add_arg('mean_std_path', str, - 'data/librispeech/mean_std.npz', - "Filepath of normalizer's mean & std.") -add_arg('vocab_path', str, - 'data/librispeech/vocab.txt', - "Filepath of vocabulary.") -add_arg('lang_model_path', str, - 'models/lm/common_crawl_00.prune01111.trie.klm', - "Filepath for language model.") -add_arg('model_path', str, - './checkpoints/libri/params.latest.tar.gz', - "If None, the training starts from scratch, " - "otherwise, it resumes from the pre-trained model.") -add_arg('error_rate_type', str, - 'wer', - "Error rate type for evaluation.", - choices=['wer', 'cer']) -add_arg('specgram_type', str, - 'linear', - "Audio feature type. Options: linear, mfcc.", - choices=['linear', 'mfcc']) -# yapf: disable -args = parser.parse_args() - - -logging.basicConfig( - format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s') - -def tune(): - """Tune parameters alpha and beta incrementally.""" - if not args.num_alphas >= 0: - raise ValueError("num_alphas must be non-negative!") - if not args.num_betas >= 0: - raise ValueError("num_betas must be non-negative!") - - data_generator = DataGenerator( - vocab_filepath=args.vocab_path, - mean_std_filepath=args.mean_std_path, - augmentation_config='{}', - specgram_type=args.specgram_type, - num_threads=args.num_proc_data, - keep_transcription_text=True, - num_conv_layers=args.num_conv_layers) - - audio_data = paddle.layer.data( - name="audio_spectrogram", - type=paddle.data_type.dense_array(161 * 161)) - text_data = paddle.layer.data( - name="transcript_text", - type=paddle.data_type.integer_value_sequence(data_generator.vocab_size)) - seq_offset_data = paddle.layer.data( - name='sequence_offset', - type=paddle.data_type.integer_value_sequence(1)) - seq_len_data = paddle.layer.data( - name='sequence_length', - type=paddle.data_type.integer_value_sequence(1)) - index_range_datas = [] - for i in xrange(args.num_rnn_layers): - index_range_datas.append( - paddle.layer.data( - name='conv%d_index_range' % i, - type=paddle.data_type.dense_vector(6))) - - output_probs, _ = deep_speech_v2_network( - audio_data=audio_data, - text_data=text_data, - seq_offset_data=seq_offset_data, - seq_len_data=seq_len_data, - index_range_datas=index_range_datas, - dict_size=data_generator.vocab_size, - num_conv_layers=args.num_conv_layers, - num_rnn_layers=args.num_rnn_layers, - rnn_size=args.rnn_layer_size, - use_gru=args.use_gru, - share_rnn_weights=args.share_rnn_weights) - - batch_reader = data_generator.batch_reader_creator( - manifest_path=args.tune_manifest, - batch_size=args.batch_size, - sortagrad=False, - shuffle_method=None) - - # load parameters - if not os.path.isfile(args.model_path): - raise IOError("Invaid model path: %s" % args.model_path) - parameters = paddle.parameters.Parameters.from_tar( - gzip.open(args.model_path)) - - inferer = paddle.inference.Inference( - output_layer=output_probs, parameters=parameters) - # decoders only accept string encoded in utf-8 - vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list] - - # init logger - logger = logging.getLogger("") - logger.setLevel(level=logging.INFO) - # init external scorer - logger.info("begin to initialize the external scorer for tuning") - if not os.path.isfile(args.lang_model_path): - raise IOError("Invaid language model path: %s" % args.lang_model_path) - ext_scorer = Scorer( - alpha=args.alpha_from, - beta=args.beta_from, - model_path=args.lang_model_path, - vocabulary=vocab_list) - logger.info("language model: " - "is_character_based = %d," % ext_scorer.is_character_based() + - " max_order = %d," % ext_scorer.get_max_order() + - " dict_size = %d" % ext_scorer.get_dict_size()) - logger.info("end initializing scorer. Start tuning ...") - - error_rate_func = cer if args.error_rate_type == 'cer' else wer - # create grid for search - cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas) - cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas) - params_grid = [(alpha, beta) for alpha in cand_alphas - for beta in cand_betas] - - err_sum = [0.0 for i in xrange(len(params_grid))] - err_ave = [0.0 for i in xrange(len(params_grid))] - num_ins, cur_batch = 0, 0 - ## incremental tuning parameters over multiple batches - for infer_data in batch_reader(): - if (args.num_batches >= 0) and (cur_batch >= args.num_batches): - break - infer_results = inferer.infer(input=infer_data, - feeding=data_generator.feeding) - start_pos = [0] * (len(infer_data) + 1) - for i in xrange(len(infer_data)): - start_pos[i + 1] = start_pos[i] + infer_data[i][3][0] - probs_split = [ - infer_results[start_pos[i]:start_pos[i + 1]] - for i in xrange(0, len(infer_data)) - ] - - target_transcripts = [ data[1] for data in infer_data ] - - num_ins += len(target_transcripts) - # grid search - for index, (alpha, beta) in enumerate(params_grid): - # reset alpha & beta - ext_scorer.reset_params(alpha, beta) - beam_search_results = ctc_beam_search_decoder_batch( - probs_split=probs_split, - vocabulary=vocab_list, - beam_size=args.beam_size, - num_processes=args.num_proc_bsearch, - cutoff_prob=args.cutoff_prob, - cutoff_top_n=args.cutoff_top_n, - ext_scoring_func=ext_scorer, ) - - result_transcripts = [res[0][1] for res in beam_search_results] - for target, result in zip(target_transcripts, result_transcripts): - err_sum[index] += error_rate_func(target, result) - err_ave[index] = err_sum[index] / num_ins - if index % 2 == 0: - sys.stdout.write('.') - sys.stdout.flush() - - # output on-line tuning result at the end of current batch - err_ave_min = min(err_ave) - min_index = err_ave.index(err_ave_min) - print("\nBatch %d [%d/?], current opt (alpha, beta) = (%s, %s), " - " min [%s] = %f" %(cur_batch, num_ins, - "%.3f" % params_grid[min_index][0], - "%.3f" % params_grid[min_index][1], - args.error_rate_type, err_ave_min)) - cur_batch += 1 - - # output WER/CER at every (alpha, beta) - print("\nFinal %s:\n" % args.error_rate_type) - for index in xrange(len(params_grid)): - print("(alpha, beta) = (%s, %s), [%s] = %f" - % ("%.3f" % params_grid[index][0], "%.3f" % params_grid[index][1], - args.error_rate_type, err_ave[index])) - - err_ave_min = min(err_ave) - min_index = err_ave.index(err_ave_min) - print("\nFinish tuning on %d batches, final opt (alpha, beta) = (%s, %s)" - % (args.num_batches, "%.3f" % params_grid[min_index][0], - "%.3f" % params_grid[min_index][1])) - - logger.info("finish tuning") - - -def main(): - print_arguments(args) - paddle.init(use_gpu=args.use_gpu, - rnn_use_batch=True, - trainer_count=args.trainer_count) - tune() - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/train.py b/deep_speech_2/train.py deleted file mode 100644 index 562fb462..00000000 --- a/deep_speech_2/train.py +++ /dev/null @@ -1,131 +0,0 @@ -"""Trainer for DeepSpeech2 model.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import argparse -import functools -import paddle.v2 as paddle -from model_utils.model import DeepSpeech2Model -from data_utils.data import DataGenerator -from utils.utility import add_arguments, print_arguments - -parser = argparse.ArgumentParser(description=__doc__) -add_arg = functools.partial(add_arguments, argparser=parser) -# yapf: disable -add_arg('batch_size', int, 256, "Minibatch size.") -add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).") -add_arg('num_passes', int, 200, "# of training epochs.") -add_arg('num_proc_data', int, 16, "# of CPUs for data preprocessing.") -add_arg('num_conv_layers', int, 2, "# of convolution layers.") -add_arg('num_rnn_layers', int, 3, "# of recurrent layers.") -add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.") -add_arg('num_iter_print', int, 100, "Every # iterations for printing " - "train cost.") -add_arg('learning_rate', float, 5e-4, "Learning rate.") -add_arg('max_duration', float, 27.0, "Longest audio duration allowed.") -add_arg('min_duration', float, 0.0, "Shortest audio duration allowed.") -add_arg('test_off', bool, False, "Turn off testing.") -add_arg('use_sortagrad', bool, True, "Use SortaGrad or not.") -add_arg('use_gpu', bool, True, "Use GPU or not.") -add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.") -add_arg('is_local', bool, True, "Use pserver or not.") -add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across " - "bi-directional RNNs. Not for GRU.") -add_arg('train_manifest', str, - 'data/librispeech/manifest.train', - "Filepath of train manifest.") -add_arg('dev_manifest', str, - 'data/librispeech/manifest.dev-clean', - "Filepath of validation manifest.") -add_arg('mean_std_path', str, - 'data/librispeech/mean_std.npz', - "Filepath of normalizer's mean & std.") -add_arg('vocab_path', str, - 'data/librispeech/vocab.txt', - "Filepath of vocabulary.") -add_arg('init_model_path', str, - None, - "If None, the training starts from scratch, " - "otherwise, it resumes from the pre-trained model.") -add_arg('output_model_dir', str, - "./checkpoints/libri", - "Directory for saving checkpoints.") -add_arg('augment_conf_path',str, - 'conf/augmentation.config', - "Filepath of augmentation configuration file (json-format).") -add_arg('specgram_type', str, - 'linear', - "Audio feature type. Options: linear, mfcc.", - choices=['linear', 'mfcc']) -add_arg('shuffle_method', str, - 'batch_shuffle_clipped', - "Shuffle method.", - choices=['instance_shuffle', 'batch_shuffle', 'batch_shuffle_clipped']) -# yapf: disable -args = parser.parse_args() - - -def train(): - """DeepSpeech2 training.""" - train_generator = DataGenerator( - vocab_filepath=args.vocab_path, - mean_std_filepath=args.mean_std_path, - augmentation_config=open(args.augment_conf_path, 'r').read(), - max_duration=args.max_duration, - min_duration=args.min_duration, - specgram_type=args.specgram_type, - num_threads=args.num_proc_data, - num_conv_layers=args.num_conv_layers) - dev_generator = DataGenerator( - vocab_filepath=args.vocab_path, - mean_std_filepath=args.mean_std_path, - augmentation_config="{}", - specgram_type=args.specgram_type, - num_threads=args.num_proc_data, - num_conv_layers=args.num_conv_layers) - train_batch_reader = train_generator.batch_reader_creator( - manifest_path=args.train_manifest, - batch_size=args.batch_size, - min_batch_size=args.trainer_count, - sortagrad=args.use_sortagrad if args.init_model_path is None else False, - shuffle_method=args.shuffle_method) - dev_batch_reader = dev_generator.batch_reader_creator( - manifest_path=args.dev_manifest, - batch_size=args.batch_size, - min_batch_size=1, # must be 1, but will have errors. - sortagrad=False, - shuffle_method=None) - - ds2_model = DeepSpeech2Model( - vocab_size=train_generator.vocab_size, - num_conv_layers=args.num_conv_layers, - num_rnn_layers=args.num_rnn_layers, - rnn_layer_size=args.rnn_layer_size, - use_gru=args.use_gru, - pretrained_model_path=args.init_model_path, - share_rnn_weights=args.share_rnn_weights) - ds2_model.train( - train_batch_reader=train_batch_reader, - dev_batch_reader=dev_batch_reader, - feeding_dict=train_generator.feeding, - learning_rate=args.learning_rate, - gradient_clipping=400, - num_passes=args.num_passes, - num_iterations_print=args.num_iter_print, - output_model_dir=args.output_model_dir, - is_local=args.is_local, - test_off=args.test_off) - - -def main(): - print_arguments(args) - paddle.init(use_gpu=args.use_gpu, - rnn_use_batch=True, - trainer_count=args.trainer_count, - log_clipping=True) - train() - - -if __name__ == '__main__': - main() diff --git a/deep_speech_2/utils/__init__.py b/deep_speech_2/utils/__init__.py deleted file mode 100644 index e69de29b..00000000 diff --git a/deep_speech_2/utils/error_rate.py b/deep_speech_2/utils/error_rate.py deleted file mode 100644 index ea829f47..00000000 --- a/deep_speech_2/utils/error_rate.py +++ /dev/null @@ -1,154 +0,0 @@ -# -*- coding: utf-8 -*- -"""This module provides functions to calculate error rate in different level. -e.g. wer for word-level, cer for char-level. -""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import numpy as np - - -def _levenshtein_distance(ref, hyp): - """Levenshtein distance is a string metric for measuring the difference - between two sequences. Informally, the levenshtein disctance is defined as - the minimum number of single-character edits (substitutions, insertions or - deletions) required to change one word into the other. We can naturally - extend the edits to word level when calculate levenshtein disctance for - two sentences. - """ - m = len(ref) - n = len(hyp) - - # special case - if ref == hyp: - return 0 - if m == 0: - return n - if n == 0: - return m - - if m < n: - ref, hyp = hyp, ref - m, n = n, m - - # use O(min(m, n)) space - distance = np.zeros((2, n + 1), dtype=np.int32) - - # initialize distance matrix - for j in xrange(n + 1): - distance[0][j] = j - - # calculate levenshtein distance - for i in xrange(1, m + 1): - prev_row_idx = (i - 1) % 2 - cur_row_idx = i % 2 - distance[cur_row_idx][0] = i - for j in xrange(1, n + 1): - if ref[i - 1] == hyp[j - 1]: - distance[cur_row_idx][j] = distance[prev_row_idx][j - 1] - else: - s_num = distance[prev_row_idx][j - 1] + 1 - i_num = distance[cur_row_idx][j - 1] + 1 - d_num = distance[prev_row_idx][j] + 1 - distance[cur_row_idx][j] = min(s_num, i_num, d_num) - - return distance[m % 2][n] - - -def wer(reference, hypothesis, ignore_case=False, delimiter=' '): - """Calculate word error rate (WER). WER compares reference text and - hypothesis text in word-level. WER is defined as: - - .. math:: - WER = (Sw + Dw + Iw) / Nw - - where - - .. code-block:: text - - Sw is the number of words subsituted, - Dw is the number of words deleted, - Iw is the number of words inserted, - Nw is the number of words in the reference - - We can use levenshtein distance to calculate WER. Please draw an attention - that empty items will be removed when splitting sentences by delimiter. - - :param reference: The reference sentence. - :type reference: basestring - :param hypothesis: The hypothesis sentence. - :type hypothesis: basestring - :param ignore_case: Whether case-sensitive or not. - :type ignore_case: bool - :param delimiter: Delimiter of input sentences. - :type delimiter: char - :return: Word error rate. - :rtype: float - :raises ValueError: If the reference length is zero. - """ - if ignore_case == True: - reference = reference.lower() - hypothesis = hypothesis.lower() - - ref_words = filter(None, reference.split(delimiter)) - hyp_words = filter(None, hypothesis.split(delimiter)) - - if len(ref_words) == 0: - raise ValueError("Reference's word number should be greater than 0.") - - edit_distance = _levenshtein_distance(ref_words, hyp_words) - wer = float(edit_distance) / len(ref_words) - return wer - - -def cer(reference, hypothesis, ignore_case=False, remove_space=False): - """Calculate charactor error rate (CER). CER compares reference text and - hypothesis text in char-level. CER is defined as: - - .. math:: - CER = (Sc + Dc + Ic) / Nc - - where - - .. code-block:: text - - Sc is the number of characters substituted, - Dc is the number of characters deleted, - Ic is the number of characters inserted - Nc is the number of characters in the reference - - We can use levenshtein distance to calculate CER. Chinese input should be - encoded to unicode. Please draw an attention that the leading and tailing - space characters will be truncated and multiple consecutive space - characters in a sentence will be replaced by one space character. - - :param reference: The reference sentence. - :type reference: basestring - :param hypothesis: The hypothesis sentence. - :type hypothesis: basestring - :param ignore_case: Whether case-sensitive or not. - :type ignore_case: bool - :param remove_space: Whether remove internal space characters - :type remove_space: bool - :return: Character error rate. - :rtype: float - :raises ValueError: If the reference length is zero. - """ - if ignore_case == True: - reference = reference.lower() - hypothesis = hypothesis.lower() - - join_char = ' ' - if remove_space == True: - join_char = '' - - reference = join_char.join(filter(None, reference.split(' '))) - hypothesis = join_char.join(filter(None, hypothesis.split(' '))) - - if len(reference) == 0: - raise ValueError("Length of reference should be greater than 0.") - - edit_distance = _levenshtein_distance(reference, hypothesis) - cer = float(edit_distance) / len(reference) - return cer diff --git a/deep_speech_2/utils/tests/test_error_rate.py b/deep_speech_2/utils/tests/test_error_rate.py deleted file mode 100644 index d6bc7442..00000000 --- a/deep_speech_2/utils/tests/test_error_rate.py +++ /dev/null @@ -1,115 +0,0 @@ -# -*- coding: utf-8 -*- -"""Test error rate.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import unittest -from utils import error_rate - - -class TestParse(unittest.TestCase): - def test_wer_1(self): - ref = 'i UM the PHONE IS i LEFT THE portable PHONE UPSTAIRS last night' - hyp = 'i GOT IT TO the FULLEST i LOVE TO portable FROM OF STORES last '\ - 'night' - word_error_rate = error_rate.wer(ref, hyp) - self.assertTrue(abs(word_error_rate - 0.769230769231) < 1e-6) - - def test_wer_2(self): - ref = 'as any in england i would say said gamewell proudly that is '\ - 'in his day' - hyp = 'as any in england i would say said came well proudly that is '\ - 'in his day' - word_error_rate = error_rate.wer(ref, hyp) - self.assertTrue(abs(word_error_rate - 0.1333333) < 1e-6) - - def test_wer_3(self): - ref = 'the lieutenant governor lilburn w boggs afterward governor '\ - 'was a pronounced mormon hater and throughout the period of '\ - 'the troubles he manifested sympathy with the persecutors' - hyp = 'the lieutenant governor little bit how bags afterward '\ - 'governor was a pronounced warman hater and throughout the '\ - 'period of th troubles he manifests sympathy with the '\ - 'persecutors' - word_error_rate = error_rate.wer(ref, hyp) - self.assertTrue(abs(word_error_rate - 0.2692307692) < 1e-6) - - def test_wer_4(self): - ref = 'the wood flamed up splendidly under the large brewing copper '\ - 'and it sighed so deeply' - hyp = 'the wood flame do splendidly under the large brewing copper '\ - 'and its side so deeply' - word_error_rate = error_rate.wer(ref, hyp) - self.assertTrue(abs(word_error_rate - 0.2666666667) < 1e-6) - - def test_wer_5(self): - ref = 'all the morning they trudged up the mountain path and at noon '\ - 'unc and ojo sat on a fallen tree trunk and ate the last of '\ - 'the bread which the old munchkin had placed in his pocket' - hyp = 'all the morning they trudged up the mountain path and at noon '\ - 'unc in ojo sat on a fallen tree trunk and ate the last of '\ - 'the bread which the old munchkin had placed in his pocket' - word_error_rate = error_rate.wer(ref, hyp) - self.assertTrue(abs(word_error_rate - 0.027027027) < 1e-6) - - def test_wer_6(self): - ref = 'i UM the PHONE IS i LEFT THE portable PHONE UPSTAIRS last night' - word_error_rate = error_rate.wer(ref, ref) - self.assertEqual(word_error_rate, 0.0) - - def test_wer_7(self): - ref = ' ' - hyp = 'Hypothesis sentence' - with self.assertRaises(ValueError): - word_error_rate = error_rate.wer(ref, hyp) - - def test_cer_1(self): - ref = 'werewolf' - hyp = 'weae wolf' - char_error_rate = error_rate.cer(ref, hyp) - self.assertTrue(abs(char_error_rate - 0.25) < 1e-6) - - def test_cer_2(self): - ref = 'werewolf' - hyp = 'weae wolf' - char_error_rate = error_rate.cer(ref, hyp, remove_space=True) - self.assertTrue(abs(char_error_rate - 0.125) < 1e-6) - - def test_cer_3(self): - ref = 'were wolf' - hyp = 'were wolf' - char_error_rate = error_rate.cer(ref, hyp) - self.assertTrue(abs(char_error_rate - 0.0) < 1e-6) - - def test_cer_4(self): - ref = 'werewolf' - char_error_rate = error_rate.cer(ref, ref) - self.assertEqual(char_error_rate, 0.0) - - def test_cer_5(self): - ref = u'我是中国人' - hyp = u'我是 美洲人' - char_error_rate = error_rate.cer(ref, hyp) - self.assertTrue(abs(char_error_rate - 0.6) < 1e-6) - - def test_cer_6(self): - ref = u'我 是 中 国 人' - hyp = u'我 是 美 洲 人' - char_error_rate = error_rate.cer(ref, hyp, remove_space=True) - self.assertTrue(abs(char_error_rate - 0.4) < 1e-6) - - def test_cer_7(self): - ref = u'我是中国人' - char_error_rate = error_rate.cer(ref, ref) - self.assertFalse(char_error_rate, 0.0) - - def test_cer_8(self): - ref = '' - hyp = 'Hypothesis' - with self.assertRaises(ValueError): - char_error_rate = error_rate.cer(ref, hyp) - - -if __name__ == '__main__': - unittest.main() diff --git a/deep_speech_2/utils/utility.py b/deep_speech_2/utils/utility.py deleted file mode 100644 index 2e489ade..00000000 --- a/deep_speech_2/utils/utility.py +++ /dev/null @@ -1,47 +0,0 @@ -"""Contains common utility functions.""" -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import distutils.util - - -def print_arguments(args): - """Print argparse's arguments. - - Usage: - - .. code-block:: python - - parser = argparse.ArgumentParser() - parser.add_argument("name", default="Jonh", type=str, help="User name.") - args = parser.parse_args() - print_arguments(args) - - :param args: Input argparse.Namespace for printing. - :type args: argparse.Namespace - """ - print("----------- Configuration Arguments -----------") - for arg, value in sorted(vars(args).iteritems()): - print("%s: %s" % (arg, value)) - print("------------------------------------------------") - - -def add_arguments(argname, type, default, help, argparser, **kwargs): - """Add argparse's argument. - - Usage: - - .. code-block:: python - - parser = argparse.ArgumentParser() - add_argument("name", str, "Jonh", "User name.", parser) - args = parser.parse_args() - """ - type = distutils.util.strtobool if type == bool else type - argparser.add_argument( - "--" + argname, - default=default, - type=type, - help=help + ' Default: %(default)s.', - **kwargs) diff --git a/deep_speech_2/utils/utility.sh b/deep_speech_2/utils/utility.sh deleted file mode 100644 index baae0474..00000000 --- a/deep_speech_2/utils/utility.sh +++ /dev/null @@ -1,23 +0,0 @@ -download() { - URL=$1 - MD5=$2 - TARGET=$3 - - if [ -e $TARGET ]; then - md5_result=`md5sum $TARGET | awk -F[' '] '{print $1}'` - if [ $MD5 == $md5_result ]; then - echo "$TARGET already exists, download skipped." - return 0 - fi - fi - - wget -c $URL -O "$TARGET" - if [ $? -ne 0 ]; then - return 1 - fi - - md5_result=`md5sum $TARGET | awk -F[' '] '{print $1}'` - if [ ! $MD5 == $md5_result ]; then - return 1 - fi -} diff --git a/deep_speech_2/data_utils/__init__.py b/fluid/README.md similarity index 100% rename from deep_speech_2/data_utils/__init__.py rename to fluid/README.md -- GitLab