Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
4efc1137
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4efc1137
编写于
10月 02, 2019
作者:
S
shippingwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
plane debug
上级
dbd0b9af
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
726 addition
and
0 deletion
+726
-0
PaddleCV/PaddleVideo/plane/reader.py
PaddleCV/PaddleVideo/plane/reader.py
+271
-0
PaddleCV/PaddleVideo/plane/train.py
PaddleCV/PaddleVideo/plane/train.py
+455
-0
未找到文件。
PaddleCV/PaddleVideo/plane/reader.py
0 → 100644
浏览文件 @
4efc1137
import
os
import
sys
import
cPickle
import
random
import
numpy
as
np
import
math
import
paddle
import
paddle.fluid
as
fluid
import
functools
import
pdb
random
.
seed
(
0
)
THREAD
=
8
BUF_SIZE
=
1024
'''
calculate temporal intersection over union
'''
def
calculate_IoU
(
i0
,
i1
):
union
=
(
min
(
i0
[
0
],
i1
[
0
]),
max
(
i0
[
1
],
i1
[
1
]))
inter
=
(
max
(
i0
[
0
],
i1
[
0
]),
min
(
i0
[
1
],
i1
[
1
]))
iou
=
1.0
*
(
inter
[
1
]
-
inter
[
0
])
/
(
union
[
1
]
-
union
[
0
])
return
iou
'''
calculate the non Intersection part over Length ratia, make sure the input IoU is larger than 0
'''
#[(x1_max-x1_min)-overlap]/(x1_max-x1_min)
def
calculate_nIoL
(
base
,
sliding_clip
):
inter
=
(
max
(
base
[
0
],
sliding_clip
[
0
]),
min
(
base
[
1
],
sliding_clip
[
1
]))
inter_l
=
inter
[
1
]
-
inter
[
0
]
length
=
sliding_clip
[
1
]
-
sliding_clip
[
0
]
nIoL
=
1.0
*
(
length
-
inter_l
)
/
length
return
nIoL
def
get_context_window
(
sliding_clip_path
,
clip_name
,
win_length
,
context_size
,
feats_dimen
):
# compute left (pre) and right (post) context features based on read_unit_level_feats().
movie_name
=
clip_name
.
split
(
"_"
)[
0
]
start
=
int
(
clip_name
.
split
(
"_"
)[
1
])
end
=
int
(
clip_name
.
split
(
"_"
)[
2
].
split
(
"."
)[
0
])
clip_length
=
context_size
left_context_feats
=
np
.
zeros
([
win_length
,
feats_dimen
],
dtype
=
np
.
float32
)
right_context_feats
=
np
.
zeros
([
win_length
,
feats_dimen
],
dtype
=
np
.
float32
)
last_left_feat
=
np
.
load
(
sliding_clip_path
+
clip_name
)
last_right_feat
=
np
.
load
(
sliding_clip_path
+
clip_name
)
for
k
in
range
(
win_length
):
left_context_start
=
start
-
clip_length
*
(
k
+
1
)
left_context_end
=
start
-
clip_length
*
k
right_context_start
=
end
+
clip_length
*
k
right_context_end
=
end
+
clip_length
*
(
k
+
1
)
left_context_name
=
movie_name
+
"_"
+
str
(
left_context_start
)
+
"_"
+
str
(
left_context_end
)
+
".npy"
right_context_name
=
movie_name
+
"_"
+
str
(
right_context_start
)
+
"_"
+
str
(
right_context_end
)
+
".npy"
if
os
.
path
.
exists
(
sliding_clip_path
+
left_context_name
):
left_context_feat
=
np
.
load
(
sliding_clip_path
+
left_context_name
)
last_left_feat
=
left_context_feat
else
:
left_context_feat
=
last_left_feat
if
os
.
path
.
exists
(
sliding_clip_path
+
right_context_name
):
right_context_feat
=
np
.
load
(
sliding_clip_path
+
right_context_name
)
last_right_feat
=
right_context_feat
else
:
right_context_feat
=
last_right_feat
left_context_feats
[
k
]
=
left_context_feat
right_context_feats
[
k
]
=
right_context_feat
return
np
.
mean
(
left_context_feats
,
axis
=
0
),
np
.
mean
(
right_context_feats
,
axis
=
0
)
def
process_data
(
sample
,
is_train
):
clip_sentence_pair
,
sliding_clip_path
,
context_num
,
context_size
,
feats_dimen
,
sent_vec_dim
=
sample
if
is_train
:
offset
=
np
.
zeros
(
2
,
dtype
=
np
.
float32
)
clip_name
=
clip_sentence_pair
[
0
]
feat_path
=
sliding_clip_path
+
clip_sentence_pair
[
2
]
featmap
=
np
.
load
(
feat_path
)
left_context_feat
,
right_context_feat
=
get_context_window
(
sliding_clip_path
,
clip_sentence_pair
[
2
],
context_num
,
context_size
,
feats_dimen
)
image
=
np
.
hstack
((
left_context_feat
,
featmap
,
right_context_feat
))
sentence
=
clip_sentence_pair
[
1
][:
sent_vec_dim
]
p_offset
=
clip_sentence_pair
[
3
]
l_offset
=
clip_sentence_pair
[
4
]
offset
[
0
]
=
p_offset
offset
[
1
]
=
l_offset
return
image
,
sentence
,
offset
else
:
pass
def
make_train_reader
(
cfg
,
clip_sentence_pairs_iou
,
shuffle
=
False
,
is_train
=
True
):
sliding_clip_path
=
cfg
.
TRAIN
.
sliding_clip_path
context_num
=
cfg
.
TRAIN
.
context_num
context_size
=
cfg
.
TRAIN
.
context_size
feats_dimen
=
cfg
.
TRAIN
.
feats_dimen
sent_vec_dim
=
cfg
.
TRAIN
.
sent_vec_dim
def
reader
():
if
shuffle
:
random
.
shuffle
(
clip_sentence_pairs_iou
)
for
clip_sentence_pair
in
clip_sentence_pairs_iou
:
yield
[
clip_sentence_pair
,
sliding_clip_path
,
context_num
,
context_size
,
feats_dimen
,
sent_vec_dim
]
mapper
=
functools
.
partial
(
process_data
,
is_train
=
is_train
)
return
paddle
.
reader
.
xmap_readers
(
mapper
,
reader
,
THREAD
,
BUF_SIZE
)
def
train
(
cfg
):
## TALL
feats_dimen
=
cfg
.
TRAIN
.
feats_dimen
context_num
=
cfg
.
TRAIN
.
context_num
context_size
=
cfg
.
TRAIN
.
context_size
visual_feature_dim
=
cfg
.
TRAIN
.
visual_feature_dim
sent_vec_dim
=
cfg
.
TRAIN
.
sent_vec_dim
sliding_clip_path
=
cfg
.
TRAIN
.
sliding_clip_path
cs
=
cPickle
.
load
(
open
(
cfg
.
TRAIN
.
train_clip_sentvec
))
movie_length_info
=
cPickle
.
load
(
open
(
cfg
.
TRAIN
.
movie_length_info
))
clip_sentence_pairs
=
[]
for
l
in
cs
:
clip_name
=
l
[
0
]
sent_vecs
=
l
[
1
]
for
sent_vec
in
sent_vecs
:
clip_sentence_pairs
.
append
((
clip_name
,
sent_vec
))
#10146
print
"TRAIN: "
+
str
(
len
(
clip_sentence_pairs
))
+
" clip-sentence pairs are readed"
movie_names_set
=
set
()
movie_clip_names
=
{}
# read groundtruth sentence-clip pairs
for
k
in
range
(
len
(
clip_sentence_pairs
)):
clip_name
=
clip_sentence_pairs
[
k
][
0
]
movie_name
=
clip_name
.
split
(
"_"
)[
0
]
if
not
movie_name
in
movie_names_set
:
movie_names_set
.
add
(
movie_name
)
movie_clip_names
[
movie_name
]
=
[]
movie_clip_names
[
movie_name
].
append
(
k
)
movie_names
=
list
(
movie_names_set
)
num_samples
=
len
(
clip_sentence_pairs
)
print
"TRAIN: "
+
str
(
len
(
movie_names
))
+
" movies."
# read sliding windows, and match them with the groundtruths to make training samples
sliding_clips_tmp
=
os
.
listdir
(
sliding_clip_path
)
#161396
clip_sentence_pairs_iou
=
[]
#count = 0
for
clip_name
in
sliding_clips_tmp
:
if
clip_name
.
split
(
"."
)[
2
]
==
"npy"
:
movie_name
=
clip_name
.
split
(
"_"
)[
0
]
for
clip_sentence
in
clip_sentence_pairs
:
original_clip_name
=
clip_sentence
[
0
]
original_movie_name
=
original_clip_name
.
split
(
"_"
)[
0
]
if
original_movie_name
==
movie_name
:
start
=
int
(
clip_name
.
split
(
"_"
)[
1
])
end
=
int
(
clip_name
.
split
(
"_"
)[
2
].
split
(
"."
)[
0
])
o_start
=
int
(
original_clip_name
.
split
(
"_"
)[
1
])
o_end
=
int
(
original_clip_name
.
split
(
"_"
)[
2
].
split
(
"."
)[
0
])
iou
=
calculate_IoU
((
start
,
end
),
(
o_start
,
o_end
))
if
iou
>
0.5
:
nIoL
=
calculate_nIoL
((
o_start
,
o_end
),
(
start
,
end
))
if
nIoL
<
0.15
:
movie_length
=
movie_length_info
[
movie_name
.
split
(
"."
)[
0
]]
start_offset
=
o_start
-
start
end_offset
=
o_end
-
end
clip_sentence_pairs_iou
.
append
((
clip_sentence
[
0
],
clip_sentence
[
1
],
clip_name
,
start_offset
,
end_offset
))
# count += 1
# if count > 200:
# break
num_samples_iou
=
len
(
clip_sentence_pairs_iou
)
print
"TRAIN: "
+
str
(
len
(
clip_sentence_pairs_iou
))
+
" iou clip-sentence pairs are readed"
return
make_train_reader
(
cfg
,
clip_sentence_pairs_iou
,
shuffle
=
True
,
is_train
=
True
)
class
TACoS_Test_dataset
():
'''
'''
def
__init__
(
self
,
cfg
):
self
.
context_num
=
cfg
.
TEST
.
context_num
self
.
visual_feature_dim
=
cfg
.
TEST
.
visual_feature_dim
self
.
feats_dimen
=
cfg
.
TEST
.
feats_dimen
self
.
context_size
=
cfg
.
TEST
.
context_size
self
.
semantic_size
=
cfg
.
TEST
.
semantic_size
self
.
sliding_clip_path
=
cfg
.
TEST
.
sliding_clip_path
self
.
sent_vec_dim
=
cfg
.
TEST
.
sent_vec_dim
self
.
cs
=
cPickle
.
load
(
open
(
cfg
.
TEST
.
test_clip_sentvec
))
self
.
clip_sentence_pairs
=
[]
for
l
in
self
.
cs
:
clip_name
=
l
[
0
]
sent_vecs
=
l
[
1
]
for
sent_vec
in
sent_vecs
:
self
.
clip_sentence_pairs
.
append
((
clip_name
,
sent_vec
))
print
"TEST: "
+
str
(
len
(
self
.
clip_sentence_pairs
))
+
" pairs are readed"
movie_names_set
=
set
()
self
.
movie_clip_names
=
{}
for
k
in
range
(
len
(
self
.
clip_sentence_pairs
)):
clip_name
=
self
.
clip_sentence_pairs
[
k
][
0
]
movie_name
=
clip_name
.
split
(
"_"
)[
0
]
if
not
movie_name
in
movie_names_set
:
movie_names_set
.
add
(
movie_name
)
self
.
movie_clip_names
[
movie_name
]
=
[]
self
.
movie_clip_names
[
movie_name
].
append
(
k
)
self
.
movie_names
=
list
(
movie_names_set
)
print
"TEST: "
+
str
(
len
(
self
.
movie_names
))
+
" movies."
self
.
clip_num_per_movie_max
=
0
for
movie_name
in
self
.
movie_clip_names
:
if
len
(
self
.
movie_clip_names
[
movie_name
])
>
self
.
clip_num_per_movie_max
:
self
.
clip_num_per_movie_max
=
len
(
self
.
movie_clip_names
[
movie_name
])
print
"TEST: "
+
"Max number of clips in a movie is "
+
str
(
self
.
clip_num_per_movie_max
)
sliding_clips_tmp
=
os
.
listdir
(
self
.
sliding_clip_path
)
# 62741
self
.
sliding_clip_names
=
[]
for
clip_name
in
sliding_clips_tmp
:
if
clip_name
.
split
(
"."
)[
2
]
==
"npy"
:
movie_name
=
clip_name
.
split
(
"_"
)[
0
]
if
movie_name
in
self
.
movie_clip_names
:
self
.
sliding_clip_names
.
append
(
clip_name
.
split
(
"."
)[
0
]
+
"."
+
clip_name
.
split
(
"."
)[
1
])
self
.
num_samples
=
len
(
self
.
clip_sentence_pairs
)
print
"TEST: "
+
"sliding clips number: "
+
str
(
len
(
self
.
sliding_clip_names
))
def
get_test_context_window
(
self
,
clip_name
,
win_length
):
# compute left (pre) and right (post) context features based on read_unit_level_feats().
movie_name
=
clip_name
.
split
(
"_"
)[
0
]
start
=
int
(
clip_name
.
split
(
"_"
)[
1
])
end
=
int
(
clip_name
.
split
(
"_"
)[
2
].
split
(
"."
)[
0
])
clip_length
=
self
.
context_size
#128
left_context_feats
=
np
.
zeros
([
win_length
,
self
.
feats_dimen
],
dtype
=
np
.
float32
)
#(1,4096)
right_context_feats
=
np
.
zeros
([
win_length
,
self
.
feats_dimen
],
dtype
=
np
.
float32
)
#(1,4096)
last_left_feat
=
np
.
load
(
self
.
sliding_clip_path
+
clip_name
)
last_right_feat
=
np
.
load
(
self
.
sliding_clip_path
+
clip_name
)
for
k
in
range
(
win_length
):
left_context_start
=
start
-
clip_length
*
(
k
+
1
)
left_context_end
=
start
-
clip_length
*
k
right_context_start
=
end
+
clip_length
*
k
right_context_end
=
end
+
clip_length
*
(
k
+
1
)
left_context_name
=
movie_name
+
"_"
+
str
(
left_context_start
)
+
"_"
+
str
(
left_context_end
)
+
".npy"
right_context_name
=
movie_name
+
"_"
+
str
(
right_context_start
)
+
"_"
+
str
(
right_context_end
)
+
".npy"
if
os
.
path
.
exists
(
self
.
sliding_clip_path
+
left_context_name
):
left_context_feat
=
np
.
load
(
self
.
sliding_clip_path
+
left_context_name
)
last_left_feat
=
left_context_feat
else
:
left_context_feat
=
last_left_feat
if
os
.
path
.
exists
(
self
.
sliding_clip_path
+
right_context_name
):
right_context_feat
=
np
.
load
(
self
.
sliding_clip_path
+
right_context_name
)
last_right_feat
=
right_context_feat
else
:
right_context_feat
=
last_right_feat
left_context_feats
[
k
]
=
left_context_feat
right_context_feats
[
k
]
=
right_context_feat
return
np
.
mean
(
left_context_feats
,
axis
=
0
),
np
.
mean
(
right_context_feats
,
axis
=
0
)
def
load_movie_slidingclip
(
self
,
movie_name
,
sample_num
):
# load unit level feats and sentence vector
movie_clip_sentences
=
[]
movie_clip_featmap
=
[]
clip_set
=
set
()
for
k
in
range
(
len
(
self
.
clip_sentence_pairs
)):
if
movie_name
in
self
.
clip_sentence_pairs
[
k
][
0
]:
movie_clip_sentences
.
append
((
self
.
clip_sentence_pairs
[
k
][
0
],
self
.
clip_sentence_pairs
[
k
][
1
][:
self
.
semantic_size
]))
for
k
in
range
(
len
(
self
.
sliding_clip_names
)):
if
movie_name
in
self
.
sliding_clip_names
[
k
]:
# print str(k)+"/"+str(len(self.movie_clip_names[movie_name]))
visual_feature_path
=
self
.
sliding_clip_path
+
self
.
sliding_clip_names
[
k
]
+
".npy"
#context_feat=self.get_context(self.sliding_clip_names[k]+".npy")
left_context_feat
,
right_context_feat
=
self
.
get_test_context_window
(
self
.
sliding_clip_names
[
k
]
+
".npy"
,
1
)
feature_data
=
np
.
load
(
visual_feature_path
)
#comb_feat=np.hstack((context_feat,feature_data))
comb_feat
=
np
.
hstack
((
left_context_feat
,
feature_data
,
right_context_feat
))
movie_clip_featmap
.
append
((
self
.
sliding_clip_names
[
k
],
comb_feat
))
return
movie_clip_featmap
,
movie_clip_sentences
PaddleCV/PaddleVideo/plane/train.py
0 → 100644
浏览文件 @
4efc1137
import
os
import
sys
import
time
import
numpy
as
np
import
shutil
import
json
import
argparse
import
logging
from
config
import
*
from
accuracy_metrics
import
*
import
reader
import
paddle
import
paddle.fluid
as
fluid
import
pdb
logging
.
root
.
handlers
=
[]
FORMAT
=
'[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
,
stream
=
sys
.
stdout
)
logger
=
logging
.
getLogger
(
__name__
)
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"Paddle Video train script"
)
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
'TALL'
,
help
=
'name of model to train.'
)
parser
.
add_argument
(
'--dataset'
,
type
=
str
,
default
=
'TACoS'
,
help
=
'name of dataset to train.'
)
args
=
parser
.
parse_args
()
return
args
args
=
parse_args
()
logger
.
info
(
args
)
config_path
=
"tall.yaml"
config
=
parse_config
(
config_path
)
print_configs
(
config
,
'MODEL'
)
#MODEL
visual_feature_dim
=
config
.
MODEL
.
visual_feature_dim
semantic_size
=
config
.
MODEL
.
semantic_size
sentence_embedding_size
=
config
.
MODEL
.
sentence_embedding_size
hidden_size
=
config
.
MODEL
.
hidden_size
output_size
=
config
.
MODEL
.
output_size
pretrained_model
=
None
#pretrained_model = "output/20/"
#TRAIN
epochs
=
config
.
TRAIN
.
epoch
train_batch_size
=
config
.
TRAIN
.
batch_size
context_size
=
config
.
TRAIN
.
context_size
context_num
=
config
.
TRAIN
.
context_num
feats_dimen
=
config
.
TRAIN
.
feats_dimen
sent_vec_dim
=
config
.
TRAIN
.
sent_vec_dim
off_size
=
config
.
TRAIN
.
off_size
train_sliding_clip_path
=
config
.
TRAIN
.
sliding_clip_path
train_clip_sentvec
=
config
.
TRAIN
.
train_clip_sentvec
movie_length_info
=
config
.
TRAIN
.
movie_length_info
#TEST
test_batch_size
=
config
.
TEST
.
batch_size
test_sliding_clip_path
=
config
.
TEST
.
sliding_clip_path
test_clip_sentvec
=
config
.
TEST
.
test_clip_sentvec
#OUTPUT
model_save_dir
=
"output"
bias_attr
=
fluid
.
ParamAttr
(
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.0
),
initializer
=
fluid
.
initializer
.
NormalInitializer
(
scale
=
0.0
))
def
TALLModel
():
visual_shape
=
visual_feature_dim
sentence_shape
=
sentence_embedding_size
offset_shape
=
off_size
images
=
fluid
.
layers
.
data
(
name
=
'train_visual'
,
shape
=
[
visual_shape
],
dtype
=
'float32'
,
lod_level
=
0
)
sentences
=
fluid
.
layers
.
data
(
name
=
'train_sentences'
,
shape
=
[
sentence_shape
],
dtype
=
'float32'
,
lod_level
=
0
)
offsets
=
fluid
.
layers
.
data
(
name
=
'train_offsets'
,
shape
=
[
offset_shape
],
dtype
=
'float32'
)
# visual2semantic
transformed_clip_train
=
fluid
.
layers
.
fc
(
input
=
images
,
size
=
semantic_size
,
act
=
None
,
name
=
'v2s_lt'
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'v2s_lt_weights'
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
)),
bias_attr
=
False
)
#l2_normalize
transformed_clip_train
=
fluid
.
layers
.
l2_normalize
(
x
=
transformed_clip_train
,
axis
=
1
)
# sentenct2semantic
transformed_sentence_train
=
fluid
.
layers
.
fc
(
input
=
sentences
,
size
=
semantic_size
,
act
=
None
,
name
=
's2s_lt'
,
param_attr
=
fluid
.
ParamAttr
(
name
=
's2s_lt_weights'
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
)),
bias_attr
=
False
)
#l2_normalize
transformed_sentence_train
=
fluid
.
layers
.
l2_normalize
(
x
=
transformed_sentence_train
,
axis
=
1
)
def
cross_modal_comb
(
visual_feat
,
sentence_embed
):
#batch_size = visual_feat.size(0)
visual_feat
=
fluid
.
layers
.
reshape
(
visual_feat
,
[
1
,
-
1
,
semantic_size
])
vv_feature
=
fluid
.
layers
.
expand
(
visual_feat
,
[
train_batch_size
,
1
,
1
])
#vv_feature[0,:,:] == vv_feature[1,:,:]
sentence_embed
=
fluid
.
layers
.
reshape
(
sentence_embed
,
[
-
1
,
1
,
semantic_size
])
ss_feature
=
fluid
.
layers
.
expand
(
sentence_embed
,
[
1
,
train_batch_size
,
1
])
#ss_feature[:,0,:] == ss_feature[:,1,:]
concat_feature
=
fluid
.
layers
.
concat
([
vv_feature
,
ss_feature
],
axis
=
2
)
#1,1,2048
#vv_feature = fluid.layers.Print(vv_feature, message='vv_feature',
# summarize=10)
#ss_feature = fluid.layers.Print(ss_feature, message='ss_feature',
# summarize=10)
mul_feature
=
vv_feature
*
ss_feature
# B,B,1024
add_feature
=
vv_feature
+
ss_feature
# B,B,1024
comb_feature
=
fluid
.
layers
.
concat
([
mul_feature
,
add_feature
,
concat_feature
],
axis
=
2
)
return
comb_feature
cross_modal_vec_train
=
cross_modal_comb
(
transformed_clip_train
,
transformed_sentence_train
)
cross_modal_vec_train
=
fluid
.
layers
.
unsqueeze
(
input
=
cross_modal_vec_train
,
axes
=
[
0
])
cross_modal_vec_train
=
fluid
.
layers
.
transpose
(
cross_modal_vec_train
,
perm
=
[
0
,
3
,
1
,
2
])
mid_output
=
fluid
.
layers
.
conv2d
(
input
=
cross_modal_vec_train
,
num_filters
=
hidden_size
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
"mid_out_weights"
),
bias_attr
=
False
)
sim_score_mat_train
=
fluid
.
layers
.
conv2d
(
input
=
mid_output
,
num_filters
=
output_size
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
"sim_mat_weights"
),
bias_attr
=
False
)
sim_score_mat_train
=
fluid
.
layers
.
squeeze
(
input
=
sim_score_mat_train
,
axes
=
[
0
])
return
sim_score_mat_train
,
offsets
def
train_model
():
outs
,
offs
=
TALLModel
()
sim_score_mat
=
outs
[
0
]
p_reg_mat
=
outs
[
1
]
l_reg_mat
=
outs
[
2
]
# loss cls, not considering iou
input_size
=
outs
.
shape
[
1
]
I
=
fluid
.
layers
.
diag
(
np
.
array
([
1
]
*
input_size
).
astype
(
'float32'
))
I_2
=
-
2
*
I
all1
=
fluid
.
layers
.
ones
(
shape
=
[
input_size
,
input_size
],
dtype
=
"float32"
)
mask_mat
=
I_2
+
all1
# | -1 1 1... |
# mask_mat = | 1 -1 1... |
# | 1 1 -1 ... |
alpha
=
1.0
/
input_size
lambda_regression
=
0.01
batch_para_mat
=
alpha
*
all1
para_mat
=
I
+
batch_para_mat
sim_mask_mat
=
fluid
.
layers
.
exp
(
mask_mat
*
sim_score_mat
)
loss_mat
=
fluid
.
layers
.
log
(
all1
+
sim_mask_mat
)
loss_mat
=
loss_mat
*
para_mat
loss_align
=
fluid
.
layers
.
mean
(
loss_mat
)
# regression loss
reg_ones
=
fluid
.
layers
.
ones
(
shape
=
[
input_size
,
1
],
dtype
=
"float32"
)
l_reg_diag
=
fluid
.
layers
.
matmul
(
l_reg_mat
*
I
,
reg_ones
,
transpose_x
=
True
,
transpose_y
=
False
)
p_reg_diag
=
fluid
.
layers
.
matmul
(
p_reg_mat
*
I
,
reg_ones
,
transpose_x
=
True
,
transpose_y
=
False
)
#l_reg_diag = (l_reg_mat*I) * reg_ones
#p_reg_diag = (p_reg_mat*I) * reg_ones
offset_pred
=
fluid
.
layers
.
concat
(
input
=
[
p_reg_diag
,
l_reg_diag
],
axis
=
1
)
loss_reg
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
abs
(
offset_pred
-
offs
))
# L1 loss
loss
=
lambda_regression
*
loss_reg
+
loss_align
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
return
avg_loss
def
optimizer_func
():
fluid
.
clip
.
set_gradient_clip
(
clip
=
fluid
.
clip
.
GradientClipByGlobalNorm
(
clip_norm
=
5.0
))
#lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(hidden_size, 1000)
return
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
#regularization=fluid.regularizer.L2DecayRegularizer(
# regularization_coeff=1e-3))
def
train
():
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
avg_cost
=
train_model
()
optimizer
=
optimizer_func
()
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
train_exe
=
fluid
.
ParallelExecutor
(
main_program
=
train_prog
,
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
train_reader
=
paddle
.
batch
(
reader
.
train
(
config
),
batch_size
=
train_batch_size
,
drop_last
=
True
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
program
=
train_prog
,
feed_list
=
[
'train_visual'
,
'train_sentences'
,
'train_offsets'
])
train_fetch_list
=
[
avg_cost
.
name
]
def
save_model
(
postfix
):
model_path
=
os
.
path
.
join
(
model_save_dir
,
postfix
)
if
os
.
path
.
isdir
(
model_path
):
shutil
.
rmtree
(
model_path
)
print
(
'save models to %s'
%
(
model_path
))
fluid
.
io
.
save_persistables
(
exe
,
model_path
,
main_program
=
train_prog
)
for
pass_id
in
range
(
epochs
):
for
iter_id
,
data
in
enumerate
(
train_reader
()):
t1
=
time
.
time
()
loss
=
train_exe
.
run
(
fetch_list
=
train_fetch_list
,
feed
=
feeder
.
feed
(
data
),
return_numpy
=
True
)
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
[
0
]))
str_time
=
time
.
strftime
(
'%m-%d_%H:%M:%S'
,
time
.
localtime
())
if
iter_id
%
10
==
0
:
print
(
'['
+
str_time
+
'] [TRAIN] Pass: {0}
\t
trainbatch: {1}
\t
loss: {2}
\t
time: {3}'
.
format
(
pass_id
,
iter_id
,
'%.6f'
%
loss
,
'%2.2f sec'
%
period
))
save_model
(
str
(
pass_id
))
if
pass_id
%
20
==
0
and
pass_id
>
0
:
test
(
"{}/{}"
.
format
(
model_save_dir
,
pass_id
))
def
test_model
():
visual_shape
=
visual_feature_dim
sentence_shape
=
sentence_embedding_size
images
=
fluid
.
layers
.
data
(
name
=
'test_visual'
,
shape
=
[
visual_shape
],
dtype
=
'float32'
,
lod_level
=
0
)
sentences
=
fluid
.
layers
.
data
(
name
=
'test_sentences'
,
shape
=
[
sentence_shape
],
dtype
=
'float32'
,
lod_level
=
0
)
# visual2semantic
transformed_clip_test
=
fluid
.
layers
.
fc
(
input
=
images
,
size
=
semantic_size
,
act
=
None
,
name
=
'v2s_lt'
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'v2s_lt_weights'
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
)),
bias_attr
=
False
)
#l2_normalize
transformed_clip_test
=
fluid
.
layers
.
l2_normalize
(
x
=
transformed_clip_test
,
axis
=
1
)
# sentenct2semantic
transformed_sentence_test
=
fluid
.
layers
.
fc
(
input
=
sentences
,
size
=
semantic_size
,
act
=
None
,
name
=
's2s_lt'
,
param_attr
=
fluid
.
ParamAttr
(
name
=
's2s_lt_weights'
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
1.0
,
seed
=
0
)),
bias_attr
=
False
)
#l2_normalize
transformed_sentence_test
=
fluid
.
layers
.
l2_normalize
(
x
=
transformed_sentence_test
,
axis
=
1
)
def
cross_modal_comb
(
visual_feat
,
sentence_embed
):
#batch_size = visual_feat.size(0)
visual_feat
=
fluid
.
layers
.
reshape
(
visual_feat
,
[
1
,
-
1
,
semantic_size
])
vv_feature
=
fluid
.
layers
.
expand
(
visual_feat
,
[
test_batch_size
,
1
,
1
])
#vv_feature[0,:,:] == vv_feature[1,:,:]
sentence_embed
=
fluid
.
layers
.
reshape
(
sentence_embed
,
[
-
1
,
1
,
semantic_size
])
ss_feature
=
fluid
.
layers
.
expand
(
sentence_embed
,
[
1
,
test_batch_size
,
1
])
#ss_feature[:,0,:] == ss_feature[:,1,:]
concat_feature
=
fluid
.
layers
.
concat
([
vv_feature
,
ss_feature
],
axis
=
2
)
#1,1,2048
#vv_feature = fluid.layers.Print(vv_feature, message='vv_feature',
# summarize=10)
#ss_feature = fluid.layers.Print(ss_feature, message='ss_feature',
# summarize=10)
mul_feature
=
vv_feature
*
ss_feature
# B,B,1024
add_feature
=
vv_feature
+
ss_feature
# B,B,1024
comb_feature
=
fluid
.
layers
.
concat
([
mul_feature
,
add_feature
,
concat_feature
],
axis
=
2
)
return
comb_feature
cross_modal_vec_test
=
cross_modal_comb
(
transformed_clip_test
,
transformed_sentence_test
)
cross_modal_vec_test
=
fluid
.
layers
.
unsqueeze
(
input
=
cross_modal_vec_test
,
axes
=
[
0
])
cross_modal_vec_test
=
fluid
.
layers
.
transpose
(
cross_modal_vec_test
,
perm
=
[
0
,
3
,
1
,
2
])
mid_output
=
fluid
.
layers
.
conv2d
(
input
=
cross_modal_vec_test
,
num_filters
=
hidden_size
,
filter_size
=
1
,
stride
=
1
,
act
=
"relu"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
"mid_out_weights"
),
bias_attr
=
False
)
sim_score_mat_test
=
fluid
.
layers
.
conv2d
(
input
=
mid_output
,
num_filters
=
output_size
,
filter_size
=
1
,
stride
=
1
,
act
=
None
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
"sim_mat_weights"
),
bias_attr
=
False
)
sim_score_mat_test
=
fluid
.
layers
.
squeeze
(
input
=
sim_score_mat_test
,
axes
=
[
0
])
return
sim_score_mat_test
def
test
(
model_best
):
global
best_R1_IOU5
global
best_R5_IOU5
global
best_R1_IOU5_epoch
global
best_R5_IOU5_epoch
IoU_thresh
=
[
0.1
,
0.3
,
0.5
,
0.7
]
all_correct_num_10
=
[
0.0
]
*
5
all_correct_num_5
=
[
0.0
]
*
5
all_correct_num_1
=
[
0.0
]
*
5
all_retrievd
=
0.0
test_dataset
=
reader
.
TACoS_Test_dataset
(
config
)
all_number
=
len
(
test_dataset
.
movie_names
)
test_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
test_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
outputs
=
test_model
()
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
if
model_best
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
#fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)
fluid
.
io
.
load_params
(
exe
,
model_best
,
main_program
=
test_prog
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
program
=
test_prog
,
feed_list
=
[
'test_visual'
,
'test_sentences'
])
test_fetch_list
=
[
outputs
.
name
]
idx
=
0
for
movie_name
in
test_dataset
.
movie_names
:
idx
+=
1
print
(
"%d/%d"
%
(
idx
,
all_number
))
movie_clip_featmaps
,
movie_clip_sentences
=
test_dataset
.
load_movie_slidingclip
(
movie_name
,
16
)
print
(
"sentences: "
+
str
(
len
(
movie_clip_sentences
)))
print
(
"clips: "
+
str
(
len
(
movie_clip_featmaps
)))
# candidate clips)
sentence_image_mat
=
np
.
zeros
([
len
(
movie_clip_sentences
),
len
(
movie_clip_featmaps
)])
sentence_image_reg_mat
=
np
.
zeros
([
len
(
movie_clip_sentences
),
len
(
movie_clip_featmaps
),
2
])
for
k
in
range
(
len
(
movie_clip_sentences
)):
sent_vec
=
movie_clip_sentences
[
k
][
1
]
sent_vec
=
np
.
reshape
(
sent_vec
,
[
1
,
sent_vec
.
shape
[
0
]])
# 1,4800
#sent_vec = torch.from_numpy(sent_vec).cuda()
for
t
in
range
(
len
(
movie_clip_featmaps
)):
featmap
=
movie_clip_featmaps
[
t
][
1
]
visual_clip_name
=
movie_clip_featmaps
[
t
][
0
]
start
=
float
(
visual_clip_name
.
split
(
"_"
)[
1
])
end
=
float
(
visual_clip_name
.
split
(
"_"
)[
2
].
split
(
"_"
)[
0
])
featmap
=
np
.
reshape
(
featmap
,
[
1
,
featmap
.
shape
[
0
]])
feed_data
=
[[
featmap
,
sent_vec
]]
# forward
outputs
=
exe
.
run
(
test_prog
,
feed
=
feeder
.
feed
(
feed_data
),
fetch_list
=
test_fetch_list
,
return_numpy
=
True
)
outputs
=
np
.
squeeze
(
outputs
)
# TALL network
sentence_image_mat
[
k
,
t
]
=
outputs
[
0
]
# sentence_image_mat[k, t] = expit(outputs[0]) * conf_score
reg_end
=
end
+
outputs
[
2
]
reg_start
=
start
+
outputs
[
1
]
sentence_image_reg_mat
[
k
,
t
,
0
]
=
reg_start
sentence_image_reg_mat
[
k
,
t
,
1
]
=
reg_end
iclips
=
[
b
[
0
]
for
b
in
movie_clip_featmaps
]
sclips
=
[
b
[
0
]
for
b
in
movie_clip_sentences
]
# calculate Recall@m, IoU=n
for
k
in
range
(
len
(
IoU_thresh
)):
IoU
=
IoU_thresh
[
k
]
correct_num_10
=
compute_IoU_recall_top_n_forreg
(
10
,
IoU
,
sentence_image_mat
,
sentence_image_reg_mat
,
sclips
,
iclips
)
correct_num_5
=
compute_IoU_recall_top_n_forreg
(
5
,
IoU
,
sentence_image_mat
,
sentence_image_reg_mat
,
sclips
,
iclips
)
correct_num_1
=
compute_IoU_recall_top_n_forreg
(
1
,
IoU
,
sentence_image_mat
,
sentence_image_reg_mat
,
sclips
,
iclips
)
print
(
movie_name
+
" IoU="
+
str
(
IoU
)
+
", R@10: "
+
str
(
correct_num_10
/
len
(
sclips
))
+
"; IoU="
+
str
(
IoU
)
+
", R@5: "
+
str
(
correct_num_5
/
len
(
sclips
))
+
"; IoU="
+
str
(
IoU
)
+
", R@1: "
+
str
(
correct_num_1
/
len
(
sclips
)))
all_correct_num_10
[
k
]
+=
correct_num_10
all_correct_num_5
[
k
]
+=
correct_num_5
all_correct_num_1
[
k
]
+=
correct_num_1
all_retrievd
+=
len
(
sclips
)
for
k
in
range
(
len
(
IoU_thresh
)):
print
(
" IoU="
+
str
(
IoU_thresh
[
k
])
+
", R@10: "
+
str
(
all_correct_num_10
[
k
]
/
all_retrievd
)
+
"; IoU="
+
str
(
IoU_thresh
[
k
])
+
", R@5: "
+
str
(
all_correct_num_5
[
k
]
/
all_retrievd
)
+
"; IoU="
+
str
(
IoU_thresh
[
k
])
+
", R@1: "
+
str
(
all_correct_num_1
[
k
]
/
all_retrievd
))
R1_IOU5
=
all_correct_num_1
[
2
]
/
all_retrievd
R5_IOU5
=
all_correct_num_5
[
2
]
/
all_retrievd
print
"{}
\n
"
.
format
(
"best_R1_IOU5: %0.3f"
%
R1_IOU5
)
print
"{}
\n
"
.
format
(
"best_R5_IOU5: %0.3f"
%
R5_IOU5
)
def
main
():
train
()
test
(
"checkpoints/20/"
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录