Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
4eda2803
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
4eda2803
编写于
6月 26, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Code clean for fast_decoder of Transformer
上级
3cbf0f73
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
111 addition
and
161 deletion
+111
-161
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+3
-3
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+74
-91
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+31
-65
fluid/neural_machine_translation/transformer/reader.py
fluid/neural_machine_translation/transformer/reader.py
+3
-2
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
4eda2803
...
...
@@ -33,9 +33,9 @@ class TrainTaskConfig(object):
class
InferTaskConfig
(
object
):
use_gpu
=
Fals
e
use_gpu
=
Tru
e
# the number of examples in one run for sequence generation.
batch_size
=
2
batch_size
=
10
# the parameters for beam search.
beam_size
=
5
max_out_len
=
256
...
...
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
4eda2803
...
...
@@ -88,7 +88,8 @@ def translate_batch(exe,
output_unk
=
True
):
"""
Run the encoder program once and run the decoder program multiple times to
implement beam search externally.
implement beam search externally. This is deprecated since a faster beam
search decoder based solely on Fluid operators has been added.
"""
# Prepare data for encoder and run the encoder.
enc_in_data
=
pad_batch_data
(
...
...
@@ -255,8 +256,6 @@ def translate_batch(exe,
predict_all
=
exe
.
run
(
decoder
,
feed
=
dict
(
zip
(
dec_in_names
,
dec_in_data
)),
fetch_list
=
dec_out_names
)[
0
]
print
predict_all
.
reshape
(
[
len
(
beam_inst_map
)
*
beam_size
,
i
+
1
,
-
1
])[:,
-
1
,
:]
predict_all
=
np
.
log
(
predict_all
.
reshape
([
len
(
beam_inst_map
)
*
beam_size
,
i
+
1
,
-
1
])
[:,
-
1
,
:])
...
...
@@ -275,19 +274,11 @@ def translate_batch(exe,
top_k_indice
=
np
.
argpartition
(
predict
,
-
beam_size
)[
-
beam_size
:]
top_scores_ids
=
top_k_indice
[
np
.
argsort
(
predict
[
top_k_indice
])[::
-
1
]]
# top_scores_ids = np.asarray(
# sorted(
# top_scores_ids,
# lambda x, y: x / predict_all.shape[-1] - y / predict_all.shape[-1]
# )) # sort by pre_branch and score to compare with fast_infer
top_scores
=
predict
[
top_scores_ids
]
scores
[
beam_idx
]
=
top_scores
prev_branchs
[
beam_idx
].
append
(
top_scores_ids
/
predict_all
.
shape
[
-
1
])
next_ids
[
beam_idx
].
append
(
top_scores_ids
%
predict_all
.
shape
[
-
1
])
print
prev_branchs
[
beam_idx
][
-
1
]
print
next_ids
[
beam_idx
][
-
1
]
print
top_scores
if
next_ids
[
beam_idx
][
-
1
][
0
]
!=
eos_idx
:
active_beams
.
append
(
beam_idx
)
if
len
(
active_beams
)
==
0
:
...
...
@@ -308,7 +299,32 @@ def translate_batch(exe,
return
seqs
,
scores
[:,
:
n_best
].
tolist
()
def
infer
(
args
):
def
post_process_seq
(
seq
,
bos_idx
=
ModelHyperParams
.
bos_idx
,
eos_idx
=
ModelHyperParams
.
eos_idx
,
output_bos
=
InferTaskConfig
.
output_bos
,
output_eos
=
InferTaskConfig
.
output_eos
):
"""
Post-process the beam-search decoded sequence. Truncate from the first
<eos> and remove the <bos> and <eos> tokens currently.
"""
eos_pos
=
len
(
seq
)
-
1
for
i
,
idx
in
enumerate
(
seq
):
if
idx
==
eos_idx
:
eos_pos
=
i
break
seq
=
seq
[:
eos_pos
+
1
]
return
filter
(
lambda
idx
:
(
output_bos
or
idx
!=
bos_idx
)
and
\
(
output_eos
or
idx
!=
eos_idx
),
seq
)
def
py_infer
(
test_data
,
trg_idx2word
):
"""
Inference by beam search implented by python, while the calculations from
symbols to probilities execute by Fluid operators.
"""
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
...
...
@@ -355,48 +371,7 @@ def infer(args):
encoder_program
=
encoder_program
.
inference_optimize
()
decoder_program
=
decoder_program
.
inference_optimize
()
test_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
trg_vocab_fpath
=
args
.
trg_vocab_fpath
,
fpattern
=
args
.
test_file_pattern
,
batch_size
=
args
.
batch_size
,
use_token_batch
=
False
,
pool_size
=
args
.
pool_size
,
sort_type
=
reader
.
SortType
.
NONE
,
shuffle
=
False
,
shuffle_batch
=
False
,
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
trg_idx2word
=
test_data
.
load_dict
(
dict_path
=
args
.
trg_vocab_fpath
,
reverse
=
True
)
def
post_process_seq
(
seq
,
bos_idx
=
ModelHyperParams
.
bos_idx
,
eos_idx
=
ModelHyperParams
.
eos_idx
,
output_bos
=
InferTaskConfig
.
output_bos
,
output_eos
=
InferTaskConfig
.
output_eos
):
"""
Post-process the beam-search decoded sequence. Truncate from the first
<eos> and remove the <bos> and <eos> tokens currently.
"""
eos_pos
=
len
(
seq
)
-
1
for
i
,
idx
in
enumerate
(
seq
):
if
idx
==
eos_idx
:
eos_pos
=
i
break
seq
=
seq
[:
eos_pos
+
1
]
return
filter
(
lambda
idx
:
(
output_bos
or
idx
!=
bos_idx
)
and
\
(
output_eos
or
idx
!=
eos_idx
),
seq
)
for
batch_id
,
data
in
enumerate
(
test_data
.
batch_generator
()):
if
batch_id
!=
0
:
continue
batch_seqs
,
batch_scores
=
translate_batch
(
exe
,
[
item
[
0
]
for
item
in
data
],
...
...
@@ -425,14 +400,12 @@ def infer(args):
scores
=
batch_scores
[
i
]
for
seq
in
seqs
:
print
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
seq
]))
print
scores
exit
(
0
)
def
prepare_batch_input
(
insts
,
data_input_names
,
util_input_names
,
src_pad_idx
,
bos_idx
,
n_head
,
d_model
,
place
):
"""
Put all padded data needed by
inference
into a dict.
Put all padded data needed by
beam search decoder
into a dict.
"""
src_word
,
src_pos
,
src_slf_attn_bias
,
src_max_len
=
pad_batch_data
(
[
inst
[
0
]
for
inst
in
insts
],
src_pad_idx
,
n_head
,
is_target
=
False
)
...
...
@@ -492,18 +465,21 @@ def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
return
input_dict
def
fast_infer
(
args
):
def
fast_infer
(
test_data
,
trg_idx2word
):
"""
Inference by beam search decoder based solely on Fluid operators.
"""
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
ids
,
scores
=
fast_decoder
(
out_ids
,
out_
scores
=
fast_decoder
(
ModelHyperParams
.
src_vocab_size
,
ModelHyperParams
.
trg_vocab_size
,
ModelHyperParams
.
max_length
+
1
,
ModelHyperParams
.
n_layer
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_key
,
ModelHyperParams
.
d_value
,
ModelHyperParams
.
d_model
,
ModelHyperParams
.
d_inner_hid
,
ModelHyperParams
.
dropout
,
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_out_len
,
ModelHyperParams
.
eos_idx
)
ModelHyperParams
.
weight_sharing
,
InferTaskConfig
.
beam_size
,
InferTaskConfig
.
max_out_len
,
ModelHyperParams
.
eos_idx
)
fluid
.
io
.
load_vars
(
exe
,
...
...
@@ -514,28 +490,7 @@ def fast_infer(args):
# This is used here to set dropout to the test mode.
infer_program
=
fluid
.
default_main_program
().
inference_optimize
()
test_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
trg_vocab_fpath
=
args
.
trg_vocab_fpath
,
fpattern
=
args
.
test_file_pattern
,
batch_size
=
args
.
batch_size
,
use_token_batch
=
False
,
pool_size
=
args
.
pool_size
,
sort_type
=
reader
.
SortType
.
NONE
,
shuffle
=
False
,
shuffle_batch
=
False
,
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
trg_idx2word
=
test_data
.
load_dict
(
dict_path
=
args
.
trg_vocab_fpath
,
reverse
=
True
)
for
batch_id
,
data
in
enumerate
(
test_data
.
batch_generator
()):
if
batch_id
!=
0
:
continue
data_input
=
prepare_batch_input
(
data
,
encoder_data_input_fields
+
fast_decoder_data_input_fields
,
encoder_util_input_fields
+
fast_decoder_util_input_fields
,
...
...
@@ -543,10 +498,16 @@ def fast_infer(args):
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
,
place
)
seq_ids
,
seq_scores
=
exe
.
run
(
infer_program
,
feed
=
data_input
,
fetch_list
=
[
ids
,
scores
],
fetch_list
=
[
out_ids
,
out_
scores
],
return_numpy
=
False
)
# print np.array(seq_ids)#, np.array(seq_scores)
# print seq_ids.lod()#, seq_scores.lod()
# How to parse the results:
# Suppose the lod of seq_ids is:
# [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
# then from lod[0]:
# there are 2 source sentences, beam width is 3.
# from lod[1]:
# the first source sentence has 3 hyps; the lengths are 12, 12, 16
# the second source sentence has 3 hyps; the lengths are 14, 13, 15
hyps
=
[[]
for
i
in
range
(
len
(
data
))]
scores
=
[[]
for
i
in
range
(
len
(
data
))]
for
i
in
range
(
len
(
seq_ids
.
lod
()[
0
])
-
1
):
# for each source sentence
...
...
@@ -557,16 +518,38 @@ def fast_infer(args):
sub_end
=
seq_ids
.
lod
()[
1
][
start
+
j
+
1
]
hyps
[
i
].
append
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
np
.
array
(
seq_ids
)[
sub_start
:
sub_end
]
for
idx
in
post_process_seq
(
np
.
array
(
seq_ids
)[
sub_start
:
sub_end
])
]))
scores
[
i
].
append
(
np
.
array
(
seq_scores
)[
sub_end
-
1
])
print
hyps
[
i
]
print
scores
[
i
]
print
len
(
hyps
[
i
]),
[
len
(
hyp
.
split
())
for
hyp
in
hyps
[
i
]]
exit
(
0
)
print
hyps
[
i
][
-
1
]
if
len
(
hyps
[
i
])
>=
InferTaskConfig
.
n_best
:
break
def
infer
(
args
,
inferencer
=
fast_infer
):
place
=
fluid
.
CUDAPlace
(
0
)
if
InferTaskConfig
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
test_data
=
reader
.
DataReader
(
src_vocab_fpath
=
args
.
src_vocab_fpath
,
trg_vocab_fpath
=
args
.
trg_vocab_fpath
,
fpattern
=
args
.
test_file_pattern
,
batch_size
=
args
.
batch_size
,
use_token_batch
=
False
,
pool_size
=
args
.
pool_size
,
sort_type
=
reader
.
SortType
.
NONE
,
shuffle
=
False
,
shuffle_batch
=
False
,
start_mark
=
args
.
special_token
[
0
],
end_mark
=
args
.
special_token
[
1
],
unk_mark
=
args
.
special_token
[
2
],
max_length
=
ModelHyperParams
.
max_length
,
clip_last_batch
=
False
)
trg_idx2word
=
test_data
.
load_dict
(
dict_path
=
args
.
trg_vocab_fpath
,
reverse
=
True
)
inferencer
(
test_data
,
trg_idx2word
)
if
__name__
==
"__main__"
:
args
=
parse_args
()
fast_infer
(
args
)
# infer(args)
infer
(
args
)
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
4eda2803
...
...
@@ -6,8 +6,6 @@ import paddle.fluid.layers as layers
from
config
import
*
FLAG
=
False
def
position_encoding_init
(
n_position
,
d_pos_vec
):
"""
...
...
@@ -103,12 +101,6 @@ def multi_head_attention(queries,
"""
scaled_q
=
layers
.
scale
(
x
=
q
,
scale
=
d_model
**-
0.5
)
product
=
layers
.
matmul
(
x
=
scaled_q
,
y
=
k
,
transpose_y
=
True
)
# global FLAG
# if FLAG and attn_bias:
# print "hehehehehe"
# layers.Print(product, message="product")
# layers.Print(attn_bias, message="bias")
# FLAG = False
weights
=
layers
.
reshape
(
x
=
layers
.
elementwise_add
(
x
=
product
,
y
=
attn_bias
)
if
attn_bias
else
product
,
...
...
@@ -117,19 +109,9 @@ def multi_head_attention(queries,
act
=
"softmax"
)
weights
=
layers
.
reshape
(
x
=
weights
,
shape
=
product
.
shape
,
actual_shape
=
post_softmax_shape
)
# global FLAG
# if FLAG:
# print "hehehehehe"
# layers.Print(scaled_q)
# layers.Print(k)
# layers.Print(v)
# layers.Print(product)
# layers.Print(weights)
# FLAG = False
if
dropout_rate
:
weights
=
layers
.
dropout
(
weights
,
dropout_prob
=
dropout_rate
,
is_test
=
False
)
out
=
layers
.
matmul
(
weights
,
v
)
return
out
...
...
@@ -138,13 +120,7 @@ def multi_head_attention(queries,
if
cache
is
not
None
:
# use cache and concat time steps
k
=
cache
[
"k"
]
=
layers
.
concat
([
cache
[
"k"
],
k
],
axis
=
1
)
v
=
cache
[
"v"
]
=
layers
.
concat
([
cache
[
"v"
],
v
],
axis
=
1
)
# global FLAG
# if FLAG:
# print "hehehehehe"
# layers.Print(q)
# layers.Print(k)
# layers.Print(v)
# FLAG = False
q
=
__split_heads
(
q
,
n_head
)
k
=
__split_heads
(
k
,
n_head
)
v
=
__split_heads
(
v
,
n_head
)
...
...
@@ -153,16 +129,12 @@ def multi_head_attention(queries,
dropout_rate
)
out
=
__combine_heads
(
ctx_multiheads
)
# Project back to the model size.
proj_out
=
layers
.
fc
(
input
=
out
,
size
=
d_model
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
# global FLAG
# if FLAG:
# print "hehehehehe"
# layers.Print(proj_out)
# FLAG = False
return
proj_out
...
...
@@ -391,15 +363,22 @@ def decoder(dec_input,
The decoder is composed of a stack of identical decoder_layer layers.
"""
for
i
in
range
(
n_layer
):
if
i
==
0
:
#n_layer-1:
global
FLAG
FLAG
=
True
dec_output
=
decoder_layer
(
dec_input
,
enc_output
,
dec_slf_attn_bias
,
dec_enc_attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
None
if
caches
is
None
else
caches
[
i
])
dec_input
,
enc_output
,
dec_slf_attn_bias
,
dec_enc_attn_bias
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
None
if
caches
is
None
else
caches
[
i
],
)
dec_input
=
dec_output
return
dec_output
...
...
@@ -625,12 +604,17 @@ def fast_decode(
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
,
beam_size
,
max_out_len
,
eos_idx
,
):
"""
Use beam search to decode. Caches will be used to store states of history
steps which can make the decoding faster.
"""
enc_output
=
wrap_encoder
(
src_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
)
dropout_rate
,
weight_sharing
)
start_tokens
,
init_scores
,
trg_src_attn_bias
,
trg_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
\
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
\
...
...
@@ -643,16 +627,14 @@ def fast_decode(
shape
=
[
1
],
dtype
=
start_tokens
.
dtype
,
value
=
max_out_len
)
step_idx
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
start_tokens
.
dtype
,
value
=
0
)
# cond = layers.fill_constant(
# shape=[1], dtype='bool', value=1, force_cpu=True)
cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
while_op
=
layers
.
While
(
cond
)
# init_scores = layers.fill_constant_batch_size_like(
# input=start_tokens, shape=[-1, 1], dtype="float32", value=0)
# array states
# array states will be stored for each step.
ids
=
layers
.
array_write
(
start_tokens
,
step_idx
)
scores
=
layers
.
array_write
(
init_scores
,
step_idx
)
# cell states (can be overwrited)
# cell states will be overwrited at each step.
# caches contains states of history steps to reduce redundant
# computation in decoder.
caches
=
[{
"k"
:
layers
.
fill_constant_batch_size_like
(
input
=
start_tokens
,
...
...
@@ -668,9 +650,10 @@ def fast_decode(
with
while_op
.
block
():
pre_ids
=
layers
.
array_read
(
array
=
ids
,
i
=
step_idx
)
pre_scores
=
layers
.
array_read
(
array
=
scores
,
i
=
step_idx
)
# sequence_expand can gather sequences according to lod thus can be
# used in beam search to sift states corresponding to selected ids.
pre_src_attn_bias
=
layers
.
sequence_expand
(
x
=
trg_src_attn_bias
,
y
=
pre_scores
)
# layers.Print(pre_src_attn_bias)
pre_enc_output
=
layers
.
sequence_expand
(
x
=
enc_output
,
y
=
pre_scores
)
pre_caches
=
[{
"k"
:
layers
.
sequence_expand
(
...
...
@@ -687,13 +670,6 @@ def fast_decode(
y
=
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
False
),
axis
=
0
)
# layers.Print(pre_ids, summarize=10)
# layers.Print(pre_pos, summarize=10)
# layers.Print(pre_enc_output, summarize=10)
# layers.Print(pre_src_attn_bias, summarize=10)
# layers.Print(pre_caches[0]["k"], summarize=10)
# layers.Print(pre_caches[0]["v"], summarize=10)
# layers.Print(slf_attn_post_softmax_shape)
logits
=
wrap_decoder
(
trg_vocab_size
,
max_in_len
,
...
...
@@ -704,19 +680,16 @@ def fast_decode(
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
,
dec_inputs
=
(
pre_ids
,
pre_pos
,
None
,
pre_src_attn_bias
,
trg_data_shape
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
),
enc_output
=
pre_enc_output
,
caches
=
pre_caches
)
# layers.Print(logits)
topk_scores
,
topk_indices
=
layers
.
topk
(
input
=
layers
.
softmax
(
logits
),
k
=
beam_size
)
# layers.Print(topk_scores)
# layers.Print(topk_indices)
accu_scores
=
layers
.
elementwise_add
(
# x=layers.log(x=layers.softmax(topk_scores)),
x
=
layers
.
log
(
topk_scores
),
y
=
layers
.
reshape
(
pre_scores
,
shape
=
[
-
1
]),
...
...
@@ -739,9 +712,6 @@ def fast_decode(
for
i
in
range
(
n_layer
):
layers
.
assign
(
pre_caches
[
i
][
"k"
],
caches
[
i
][
"k"
])
layers
.
assign
(
pre_caches
[
i
][
"v"
],
caches
[
i
][
"v"
])
layers
.
Print
(
selected_ids
)
layers
.
Print
(
selected_scores
)
# layers.Print(caches[-1]["k"])
layers
.
assign
(
layers
.
elementwise_add
(
x
=
slf_attn_pre_softmax_shape
,
...
...
@@ -755,12 +725,8 @@ def fast_decode(
length_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
finish_cond
=
layers
.
logical_not
(
layers
.
is_empty
(
x
=
selected_ids
))
# layers.Print(length_cond)
# layers.Print(finish_cond)
layers
.
logical_and
(
x
=
length_cond
,
y
=
finish_cond
,
out
=
cond
)
layers
.
Print
(
step_idx
)
# finished_ids, finished_scores = layers.beam_search_decode(ids, scores,
# eos_idx)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
return
finished_ids
,
finished_scores
...
...
fluid/neural_machine_translation/transformer/reader.py
浏览文件 @
4eda2803
...
...
@@ -198,7 +198,8 @@ class DataReader(object):
for
line
in
f_obj
:
fields
=
line
.
strip
().
split
(
self
.
_delimiter
)
if
len
(
fields
)
!=
2
or
(
self
.
_only_src
and
len
(
fields
)
!=
1
):
if
(
not
self
.
_only_src
and
len
(
fields
)
!=
2
)
or
(
self
.
_only_src
and
len
(
fields
)
!=
1
):
continue
sample_words
=
[]
...
...
@@ -275,7 +276,7 @@ class DataReader(object):
for
sample_idx
in
self
.
_sample_idxs
:
if
self
.
_only_src
:
yield
(
self
.
_src_seq_ids
[
sample_idx
])
yield
(
self
.
_src_seq_ids
[
sample_idx
]
,
)
else
:
yield
(
self
.
_src_seq_ids
[
sample_idx
],
self
.
_trg_seq_ids
[
sample_idx
][:
-
1
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录