diff --git a/fluid/DeepQNetwork/README.md b/fluid/DeepQNetwork/README.md index 2a2db7cb76c26227d640cfc4f5972771f8c53ac0..46cdb899102281f92e13ce261e1db82e38f935d5 100644 --- a/fluid/DeepQNetwork/README.md +++ b/fluid/DeepQNetwork/README.md @@ -16,7 +16,7 @@ Based on PaddlePaddle's next-generation API Fluid, the DQN model of deep reinfor ![DQN result](assets/dqn.png) # How to use -+ Dependencies: +### Dependencies: + python2.7 + gym + tqdm @@ -24,7 +24,7 @@ Based on PaddlePaddle's next-generation API Fluid, the DQN model of deep reinfor + paddlepaddle-gpu>=0.12.0 + ale_python_interface -+ Install Dependencies: +### Install Dependencies: + Install PaddlePaddle: recommended to compile and install PaddlePaddle from source code + Install other dependencies: @@ -35,7 +35,7 @@ Based on PaddlePaddle's next-generation API Fluid, the DQN model of deep reinfor Install ale_python_interface, can reference:https://github.com/mgbellemare/Arcade-Learning-Environment -+ Start Training: +### Start Training: ``` # To train a model for Pong game with gpu (use DQN model as default) python train.py --rom ./rom_files/pong.bin --use_cuda @@ -49,7 +49,7 @@ Based on PaddlePaddle's next-generation API Fluid, the DQN model of deep reinfor To train more games, can install more rom files from [here](https://github.com/openai/atari-py/tree/master/atari_py/atari_roms) -+ Start Testing: +### Start Testing: ``` # Play the game with saved best model and calculate the average rewards python play.py --rom ./rom_files/pong.bin --use_cuda --model_path ./saved_model/DQN-pong diff --git a/fluid/DeepQNetwork/README_cn.md b/fluid/DeepQNetwork/README_cn.md index 87eb61238aa6b81d83b23cb6ea3a18bccff9618e..c1573fe9d75d9aaef578ce95518b0e03191c892b 100644 --- a/fluid/DeepQNetwork/README_cn.md +++ b/fluid/DeepQNetwork/README_cn.md @@ -14,7 +14,7 @@ ![DQN result](assets/dqn.png) # 使用教程 -+ 依赖: +### 依赖: + python2.7 + gym + tqdm @@ -22,7 +22,7 @@ + paddlepaddle-gpu>=0.12.0 + ale_python_interface -+ 下载依赖: +### 下载依赖: + 安装PaddlePaddle: 建议通过PaddlePaddle源码进行编译安装 + 下载其它依赖: @@ -32,7 +32,7 @@ ``` 安装ale_python_interface可以参考:https://github.com/mgbellemare/Arcade-Learning-Environment -+ 训练模型: +### 训练模型: ``` # 使用GPU训练Pong游戏(默认使用DQN模型) python train.py --rom ./rom_files/pong.bin --use_cuda @@ -46,7 +46,7 @@ 训练更多游戏,可以下载游戏rom从[这里](https://github.com/openai/atari-py/tree/master/atari_py/atari_roms) -+ 测试模型: +### 测试模型: ``` # Play the game with saved model and calculate the average rewards # 使用训练过程中保存的最好模型玩游戏,以及计算平均奖励(rewards)