Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
47b706cc
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47b706cc
编写于
5月 25, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add infererence and add SortaGrad for only first pass.
上级
9ae22c34
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
248 addition
and
114 deletion
+248
-114
deep_speech_2/README.md
deep_speech_2/README.md
+2
-0
deep_speech_2/audio_data_utils.py
deep_speech_2/audio_data_utils.py
+4
-0
deep_speech_2/infer.py
deep_speech_2/infer.py
+94
-0
deep_speech_2/librispeech.py
deep_speech_2/librispeech.py
+1
-1
deep_speech_2/model.py
deep_speech_2/model.py
+106
-0
deep_speech_2/requirements.sh
deep_speech_2/requirements.sh
+1
-1
deep_speech_2/train.py
deep_speech_2/train.py
+40
-112
未找到文件。
deep_speech_2/README.md
浏览文件 @
47b706cc
...
...
@@ -5,3 +5,5 @@ sh requirements.sh
python librispeech.py
python train.py
```
Please add warp-ctc library path (usually $PADDLE_INSTALL_DIR/Paddle/third_party/install/warpctc/lib) to LD_LIBRARY_PATH.
deep_speech_2/audio_data_utils.py
浏览文件 @
47b706cc
...
...
@@ -90,6 +90,10 @@ def get_vocabulary_size():
return
len
(
vocab_dict
)
def
get_vocabulary
():
return
vocabulary_from_file
(
ENGLISH_CHAR_VOCAB_FILEPATH
)
def
parse_transcript
(
text
,
vocabulary
):
"""
Convert the transcript text string to list of token index integers..
...
...
deep_speech_2/infer.py
0 → 100644
浏览文件 @
47b706cc
import
paddle.v2
as
paddle
import
audio_data_utils
import
argparse
from
model
import
deep_speech2
import
gzip
from
itertools
import
groupby
parser
=
argparse
.
ArgumentParser
(
description
=
'Simpled version of DeepSpeech2 inference.'
)
parser
.
add_argument
(
"--num_samples"
,
default
=
10
,
type
=
int
,
help
=
"Number of inference samples."
)
parser
.
add_argument
(
"--num_conv_layers"
,
default
=
2
,
type
=
int
,
help
=
"Convolution layer number."
)
parser
.
add_argument
(
"--num_rnn_layers"
,
default
=
3
,
type
=
int
,
help
=
"RNN layer number."
)
parser
.
add_argument
(
"--rnn_layer_size"
,
default
=
512
,
type
=
int
,
help
=
"RNN layer cell number."
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
True
,
type
=
bool
,
help
=
"Use gpu or not."
)
args
=
parser
.
parse_args
()
def
remove_duplicate_and_blank
(
id_list
,
blank_id
):
# remove consecutive duplicate tokens
id_list
=
[
x
[
0
]
for
x
in
groupby
(
id_list
)]
# remove blank
return
[
id
for
id
in
id_list
if
id
!=
blank_id
]
def
max_infer
():
# create network config
_
,
vocab_list
=
audio_data_utils
.
get_vocabulary
()
dict_size
=
len
(
vocab_list
)
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
height
=
161
,
width
=
1000
,
type
=
paddle
.
data_type
.
dense_vector
(
161000
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
_
,
max_id
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
dict_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
"params.tar.gz"
))
# prepare infer data
feeding
=
{
"audio_spectrogram"
:
0
,
"transcript_text"
:
1
,
}
test_batch_reader
=
audio_data_utils
.
padding_batch_reader
(
paddle
.
batch
(
audio_data_utils
.
reader_creator
(
manifest_path
=
"./libri.manifest.test"
,
sort_by_duration
=
False
),
batch_size
=
args
.
num_samples
),
padding
=
[
-
1
,
1000
])
infer_data
=
test_batch_reader
().
next
()
# run inference
max_id_results
=
paddle
.
infer
(
output_layer
=
max_id
,
parameters
=
parameters
,
input
=
infer_data
,
field
=
[
'id'
])
# postprocess
instance_length
=
len
(
max_id_results
)
/
args
.
num_samples
instance_list
=
[
max_id_results
[
i
:
i
+
instance_length
]
for
i
in
xrange
(
0
,
args
.
num_samples
)
]
for
i
,
instance
in
enumerate
(
instance_list
):
id_list
=
remove_duplicate_and_blank
(
instance
,
dict_size
)
output_transcript
=
''
.
join
([
vocab_list
[
id
]
for
id
in
id_list
])
target_transcript
=
''
.
join
([
vocab_list
[
id
]
for
id
in
infer_data
[
i
][
1
]])
print
(
"Target Transcript: %s
\n
Output Transcript: %s
\n
"
%
(
target_transcript
,
output_transcript
))
def
main
():
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
max_infer
()
if
__name__
==
'__main__'
:
main
()
deep_speech_2/librispeech.py
浏览文件 @
47b706cc
...
...
@@ -23,7 +23,7 @@ parser.add_argument(
"--manifest"
,
default
=
"./libri.manifest"
,
type
=
str
,
help
=
"Filepath prefix
of
output manifests."
)
help
=
"Filepath prefix
for
output manifests."
)
args
=
parser
.
parse_args
()
...
...
deep_speech_2/model.py
0 → 100644
浏览文件 @
47b706cc
import
paddle.v2
as
paddle
def
conv_bn_layer
(
input
,
filter_size
,
num_channels_in
,
num_channels_out
,
stride
,
padding
,
act
):
conv_layer
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
num_channels_in
,
num_filters
=
num_channels_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
)
def
bidirectonal_simple_rnn_bn_layer
(
name
,
input
,
size
,
act
):
def
__simple_rnn_step__
(
input
):
last_state
=
paddle
.
layer
.
memory
(
name
=
name
+
"_state"
,
size
=
size
)
input_fc
=
paddle
.
layer
.
fc
(
input
=
input
,
size
=
size
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
input_fc_bn
=
paddle
.
layer
.
batch_norm
(
input
=
input_fc
,
act
=
paddle
.
activation
.
Linear
())
state_fc
=
paddle
.
layer
.
fc
(
input
=
last_state
,
size
=
size
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
addto
(
name
=
name
+
"_state"
,
input
=
[
input_fc_bn
,
state_fc
],
act
=
act
)
forward
=
paddle
.
layer
.
recurrent_group
(
step
=
__simple_rnn_step__
,
input
=
input
)
return
forward
# argument reverse is not exposed in V2 recurrent_group
#backward = paddle.layer.recurrent_group(
#step=__simple_rnn_step__,
#input=input,
#reverse=True)
#return paddle.layer.concat(input=[forward, backward])
def
conv_group
(
input
,
num_stacks
):
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
(
11
,
41
),
num_channels_in
=
1
,
num_channels_out
=
32
,
stride
=
(
3
,
2
),
padding
=
(
5
,
20
),
act
=
paddle
.
activation
.
BRelu
())
for
i
in
xrange
(
num_stacks
-
1
):
conv
=
conv_bn_layer
(
input
=
conv
,
filter_size
=
(
11
,
21
),
num_channels_in
=
32
,
num_channels_out
=
32
,
stride
=
(
1
,
2
),
padding
=
(
5
,
10
),
act
=
paddle
.
activation
.
BRelu
())
return
conv
def
rnn_group
(
input
,
size
,
num_stacks
):
output
=
input
for
i
in
xrange
(
num_stacks
):
output
=
bidirectonal_simple_rnn_bn_layer
(
name
=
str
(
i
),
input
=
output
,
size
=
size
,
act
=
paddle
.
activation
.
BRelu
())
return
output
def
deep_speech2
(
audio_data
,
text_data
,
dict_size
,
num_conv_layers
=
2
,
num_rnn_layers
=
3
,
rnn_size
=
256
):
conv_group_output
=
conv_group
(
input
=
audio_data
,
num_stacks
=
num_conv_layers
)
conv2seq
=
paddle
.
layer
.
block_expand
(
input
=
conv_group_output
,
num_channels
=
32
,
stride_x
=
1
,
stride_y
=
1
,
block_x
=
1
,
block_y
=
21
)
rnn_group_output
=
rnn_group
(
input
=
conv2seq
,
size
=
rnn_size
,
num_stacks
=
num_rnn_layers
)
fc
=
paddle
.
layer
.
fc
(
input
=
rnn_group_output
,
size
=
dict_size
+
1
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
True
)
cost
=
paddle
.
layer
.
warp_ctc
(
input
=
fc
,
label
=
text_data
,
size
=
dict_size
+
1
,
blank
=
dict_size
,
norm_by_times
=
True
)
max_id
=
paddle
.
layer
.
max_id
(
input
=
fc
)
return
cost
,
max_id
deep_speech_2/requirements.sh
浏览文件 @
47b706cc
pip
install
wget
pip
install
soundfile
# For
Linux
only
# For
Ubuntu
only
apt-get
install
libsndfile1
deep_speech_2/train.py
浏览文件 @
47b706cc
import
paddle.v2
as
paddle
import
audio_data_utils
import
argparse
from
model
import
deep_speech2
import
gzip
parser
=
argparse
.
ArgumentParser
(
description
=
'Simpled version of DeepSpeech2 trainer.'
)
...
...
@@ -9,114 +11,19 @@ parser.add_argument(
parser
.
add_argument
(
"--trainer"
,
default
=
1
,
type
=
int
,
help
=
"Trainer number."
)
parser
.
add_argument
(
"--num_passes"
,
default
=
20
,
type
=
int
,
help
=
"Training pass number."
)
parser
.
add_argument
(
"--num_conv_layers"
,
default
=
2
,
type
=
int
,
help
=
"Convolution layer number."
)
parser
.
add_argument
(
"--num_rnn_layers"
,
default
=
3
,
type
=
int
,
help
=
"RNN layer number."
)
parser
.
add_argument
(
"--rnn_layer_size"
,
default
=
256
,
type
=
int
,
help
=
"RNN layer cell number."
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
True
,
type
=
bool
,
help
=
"Use gpu or not."
)
parser
.
add_argument
(
"--trainer_count"
,
default
=
8
,
type
=
int
,
help
=
"Trainer number."
)
args
=
parser
.
parse_args
()
def
conv_bn_layer
(
input
,
filter_size
,
num_channels_in
,
num_channels_out
,
stride
,
padding
,
act
):
conv_layer
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
num_channels_in
,
num_filters
=
num_channels_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
conv_layer
,
act
=
act
)
def
bidirectonal_simple_rnn_bn_layer
(
name
,
input
,
size
,
act
):
def
__simple_rnn_step__
(
input
):
last_state
=
paddle
.
layer
.
memory
(
name
=
name
+
"_state"
,
size
=
size
)
input_fc
=
paddle
.
layer
.
fc
(
input
=
input
,
size
=
size
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
input_fc_bn
=
paddle
.
layer
.
batch_norm
(
input
=
input_fc
,
act
=
paddle
.
activation
.
Linear
())
state_fc
=
paddle
.
layer
.
fc
(
input
=
last_state
,
size
=
size
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
addto
(
name
=
name
+
"_state"
,
input
=
[
input_fc_bn
,
state_fc
],
act
=
act
)
forward
=
paddle
.
layer
.
recurrent_group
(
step
=
__simple_rnn_step__
,
input
=
input
)
return
forward
# argument reverse is not exposed in V2 recurrent_group
#backward = paddle.layer.recurrent_group(
#step=__simple_rnn_step__,
#input=input,
#reverse=True)
#return paddle.layer.concat(input=[forward, backward])
def
conv_group
(
input
):
conv1
=
conv_bn_layer
(
input
=
input
,
filter_size
=
(
11
,
41
),
num_channels_in
=
1
,
num_channels_out
=
32
,
stride
=
(
3
,
2
),
padding
=
(
5
,
20
),
act
=
paddle
.
activation
.
BRelu
())
conv2
=
conv_bn_layer
(
input
=
conv1
,
filter_size
=
(
11
,
21
),
num_channels_in
=
32
,
num_channels_out
=
32
,
stride
=
(
1
,
2
),
padding
=
(
5
,
10
),
act
=
paddle
.
activation
.
BRelu
())
conv3
=
conv_bn_layer
(
input
=
conv2
,
filter_size
=
(
11
,
21
),
num_channels_in
=
32
,
num_channels_out
=
32
,
stride
=
(
1
,
2
),
padding
=
(
5
,
10
),
act
=
paddle
.
activation
.
BRelu
())
return
conv3
def
rnn_group
(
input
,
size
,
num_stacks
):
output
=
input
for
i
in
xrange
(
num_stacks
):
output
=
bidirectonal_simple_rnn_bn_layer
(
name
=
str
(
i
),
input
=
output
,
size
=
size
,
act
=
paddle
.
activation
.
BRelu
())
return
output
def
deep_speech2
(
audio_data
,
text_data
,
dict_size
):
conv_group_output
=
conv_group
(
input
=
audio_data
)
conv2seq
=
paddle
.
layer
.
block_expand
(
input
=
conv_group_output
,
num_channels
=
32
,
stride_x
=
1
,
stride_y
=
1
,
block_x
=
1
,
block_y
=
21
)
rnn_group_output
=
rnn_group
(
input
=
conv2seq
,
size
=
256
,
num_stacks
=
5
)
fc
=
paddle
.
layer
.
fc
(
input
=
rnn_group_output
,
size
=
dict_size
+
1
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
True
)
cost
=
paddle
.
layer
.
warp_ctc
(
input
=
fc
,
label
=
text_data
,
size
=
dict_size
+
1
,
blank
=
dict_size
,
norm_by_times
=
True
)
return
cost
def
train
():
# create network config
dict_size
=
audio_data_utils
.
get_vocabulary_size
()
...
...
@@ -128,7 +35,13 @@ def train():
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
cost
=
deep_speech2
(
audio_data
,
text_data
,
dict_size
)
cost
,
_
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
dict_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
)
# create parameters and optimizer
parameters
=
paddle
.
parameters
.
create
(
cost
)
...
...
@@ -138,21 +51,30 @@ def train():
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
))
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
optimizer
)
return
# create data readers
feeding
=
{
"audio_spectrogram"
:
0
,
"transcript_text"
:
1
,
}
train_batch_reader
=
audio_data_utils
.
padding_batch_reader
(
train_batch_reader
_with_sortagrad
=
audio_data_utils
.
padding_batch_reader
(
paddle
.
batch
(
audio_data_utils
.
reader_creator
(
"./libri.manifest.dev"
),
audio_data_utils
.
reader_creator
(
manifest_path
=
"./libri.manifest.dev"
,
sort_by_duration
=
True
),
batch_size
=
args
.
batch_size
//
args
.
trainer
),
padding
=
[
-
1
,
1000
])
train_batch_reader_without_sortagrad
=
audio_data_utils
.
padding_batch_reader
(
paddle
.
batch
(
audio_data_utils
.
reader_creator
(
manifest_path
=
"./libri.manifest.dev"
,
sort_by_duration
=
False
,
shuffle
=
True
),
batch_size
=
args
.
batch_size
//
args
.
trainer
),
padding
=
[
-
1
,
1000
])
test_batch_reader
=
audio_data_utils
.
padding_batch_reader
(
paddle
.
batch
(
audio_data_utils
.
reader_creator
(
"./libri.manifest.test"
),
audio_data_utils
.
reader_creator
(
manifest_path
=
"./libri.manifest.test"
,
sort_by_duration
=
False
),
batch_size
=
args
.
batch_size
//
args
.
trainer
),
padding
=
[
-
1
,
1000
])
...
...
@@ -174,13 +96,19 @@ def train():
# run train
trainer
.
train
(
reader
=
train_batch_reader
,
reader
=
train_batch_reader_with_sortagrad
,
event_handler
=
event_handler
,
num_passes
=
1
,
feeding
=
feeding
)
trainer
.
train
(
reader
=
train_batch_reader_without_sortagrad
,
event_handler
=
event_handler
,
num_passes
=
10
,
num_passes
=
self
.
num_passes
-
1
,
feeding
=
feeding
)
def
main
():
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
args
.
trainer_count
)
train
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录