提交 44f66a45 编写于 作者: M minqiyang

Fix the random difference between python2 and python3

上级 597bae24
...@@ -7,6 +7,7 @@ import paddle ...@@ -7,6 +7,7 @@ import paddle
from PIL import Image, ImageEnhance from PIL import Image, ImageEnhance
random.seed(0) random.seed(0)
np.random.seed(0)
DATA_DIM = 224 DATA_DIM = 224
...@@ -36,8 +37,8 @@ def crop_image(img, target_size, center): ...@@ -36,8 +37,8 @@ def crop_image(img, target_size, center):
w_start = (width - size) / 2 w_start = (width - size) / 2
h_start = (height - size) / 2 h_start = (height - size) / 2
else: else:
w_start = random.randint(0, width - size) w_start = np.random.randint(0, width - size)
h_start = random.randint(0, height - size) h_start = np.random.randint(0, height - size)
w_end = w_start + size w_end = w_start + size
h_end = h_start + size h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end)) img = img.crop((w_start, h_start, w_end, h_end))
...@@ -45,7 +46,7 @@ def crop_image(img, target_size, center): ...@@ -45,7 +46,7 @@ def crop_image(img, target_size, center):
def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]): def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
aspect_ratio = math.sqrt(random.uniform(*ratio)) aspect_ratio = math.sqrt(np.random.uniform(*ratio))
w = 1. * aspect_ratio w = 1. * aspect_ratio
h = 1. / aspect_ratio h = 1. / aspect_ratio
...@@ -54,14 +55,14 @@ def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]): ...@@ -54,14 +55,14 @@ def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
scale_max = min(scale[1], bound) scale_max = min(scale[1], bound)
scale_min = min(scale[0], bound) scale_min = min(scale[0], bound)
target_area = img.size[0] * img.size[1] * random.uniform(scale_min, target_area = img.size[0] * img.size[1] * np.random.uniform(scale_min,
scale_max) scale_max)
target_size = math.sqrt(target_area) target_size = math.sqrt(target_area)
w = int(target_size * w) w = int(target_size * w)
h = int(target_size * h) h = int(target_size * h)
i = random.randint(0, img.size[0] - w) i = np.random.randint(0, img.size[0] - w)
j = random.randint(0, img.size[1] - h) j = np.random.randint(0, img.size[1] - h)
img = img.crop((i, j, i + w, j + h)) img = img.crop((i, j, i + w, j + h))
img = img.resize((size, size), Image.LANCZOS) img = img.resize((size, size), Image.LANCZOS)
...@@ -69,26 +70,26 @@ def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]): ...@@ -69,26 +70,26 @@ def random_crop(img, size, scale=[0.08, 1.0], ratio=[3. / 4., 4. / 3.]):
def rotate_image(img): def rotate_image(img):
angle = random.randint(-10, 10) angle = np.random.randint(-10, 10)
img = img.rotate(angle) img = img.rotate(angle)
return img return img
def distort_color(img): def distort_color(img):
def random_brightness(img, lower=0.5, upper=1.5): def random_brightness(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper) e = np.random.uniform(lower, upper)
return ImageEnhance.Brightness(img).enhance(e) return ImageEnhance.Brightness(img).enhance(e)
def random_contrast(img, lower=0.5, upper=1.5): def random_contrast(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper) e = np.random.uniform(lower, upper)
return ImageEnhance.Contrast(img).enhance(e) return ImageEnhance.Contrast(img).enhance(e)
def random_color(img, lower=0.5, upper=1.5): def random_color(img, lower=0.5, upper=1.5):
e = random.uniform(lower, upper) e = np.random.uniform(lower, upper)
return ImageEnhance.Color(img).enhance(e) return ImageEnhance.Color(img).enhance(e)
ops = [random_brightness, random_contrast, random_color] ops = [random_brightness, random_contrast, random_color]
random.shuffle(ops) np.random.shuffle(ops)
img = ops[0](img) img = ops[0](img)
img = ops[1](img) img = ops[1](img)
...@@ -110,7 +111,7 @@ def process_image(sample, mode, color_jitter, rotate): ...@@ -110,7 +111,7 @@ def process_image(sample, mode, color_jitter, rotate):
if mode == 'train': if mode == 'train':
if color_jitter: if color_jitter:
img = distort_color(img) img = distort_color(img)
if random.randint(0, 1) == 1: if np.random.randint(0, 1) == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT) img = img.transpose(Image.FLIP_LEFT_RIGHT)
if img.mode != 'RGB': if img.mode != 'RGB':
...@@ -135,7 +136,7 @@ def _reader_creator(file_list, ...@@ -135,7 +136,7 @@ def _reader_creator(file_list,
with open(file_list) as flist: with open(file_list) as flist:
lines = [line.strip() for line in flist] lines = [line.strip() for line in flist]
if shuffle: if shuffle:
random.shuffle(lines) np.random.shuffle(lines)
for line in lines: for line in lines:
if mode == 'train' or mode == 'val': if mode == 'train' or mode == 'val':
img_path, label = line.split() img_path, label = line.split()
......
...@@ -172,6 +172,7 @@ def train(args): ...@@ -172,6 +172,7 @@ def train(args):
# but it is time consuming. For faster speed, need another dataset. # but it is time consuming. For faster speed, need another dataset.
import random import random
random.seed(0) random.seed(0)
np.random.seed(0)
train_reader = paddle.batch( train_reader = paddle.batch(
flowers.train(use_xmap=False), batch_size=train_batch_size) flowers.train(use_xmap=False), batch_size=train_batch_size)
test_reader = paddle.batch( test_reader = paddle.batch(
......
...@@ -36,8 +36,8 @@ def bbox_area(src_bbox): ...@@ -36,8 +36,8 @@ def bbox_area(src_bbox):
def generate_sample(sampler): def generate_sample(sampler):
scale = random.uniform(sampler.min_scale, sampler.max_scale) scale = np.random.uniform(sampler.min_scale, sampler.max_scale)
aspect_ratio = random.uniform(sampler.min_aspect_ratio, aspect_ratio = np.random.uniform(sampler.min_aspect_ratio,
sampler.max_aspect_ratio) sampler.max_aspect_ratio)
aspect_ratio = max(aspect_ratio, (scale**2.0)) aspect_ratio = max(aspect_ratio, (scale**2.0))
aspect_ratio = min(aspect_ratio, 1 / (scale**2.0)) aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))
...@@ -46,8 +46,8 @@ def generate_sample(sampler): ...@@ -46,8 +46,8 @@ def generate_sample(sampler):
bbox_height = scale / (aspect_ratio**0.5) bbox_height = scale / (aspect_ratio**0.5)
xmin_bound = 1 - bbox_width xmin_bound = 1 - bbox_width
ymin_bound = 1 - bbox_height ymin_bound = 1 - bbox_height
xmin = random.uniform(0, xmin_bound) xmin = np.random.uniform(0, xmin_bound)
ymin = random.uniform(0, ymin_bound) ymin = np.random.uniform(0, ymin_bound)
xmax = xmin + bbox_width xmax = xmin + bbox_width
ymax = ymin + bbox_height ymax = ymin + bbox_height
sampled_bbox = bbox(xmin, ymin, xmax, ymax) sampled_bbox = bbox(xmin, ymin, xmax, ymax)
...@@ -167,36 +167,36 @@ def crop_image(img, bbox_labels, sample_bbox, image_width, image_height): ...@@ -167,36 +167,36 @@ def crop_image(img, bbox_labels, sample_bbox, image_width, image_height):
def random_brightness(img, settings): def random_brightness(img, settings):
prob = random.uniform(0, 1) prob = np.random.uniform(0, 1)
if prob < settings._brightness_prob: if prob < settings._brightness_prob:
delta = random.uniform(-settings._brightness_delta, delta = np.random.uniform(-settings._brightness_delta,
settings._brightness_delta) + 1 settings._brightness_delta) + 1
img = ImageEnhance.Brightness(img).enhance(delta) img = ImageEnhance.Brightness(img).enhance(delta)
return img return img
def random_contrast(img, settings): def random_contrast(img, settings):
prob = random.uniform(0, 1) prob = np.random.uniform(0, 1)
if prob < settings._contrast_prob: if prob < settings._contrast_prob:
delta = random.uniform(-settings._contrast_delta, delta = np.random.uniform(-settings._contrast_delta,
settings._contrast_delta) + 1 settings._contrast_delta) + 1
img = ImageEnhance.Contrast(img).enhance(delta) img = ImageEnhance.Contrast(img).enhance(delta)
return img return img
def random_saturation(img, settings): def random_saturation(img, settings):
prob = random.uniform(0, 1) prob = np.random.uniform(0, 1)
if prob < settings._saturation_prob: if prob < settings._saturation_prob:
delta = random.uniform(-settings._saturation_delta, delta = np.random.uniform(-settings._saturation_delta,
settings._saturation_delta) + 1 settings._saturation_delta) + 1
img = ImageEnhance.Color(img).enhance(delta) img = ImageEnhance.Color(img).enhance(delta)
return img return img
def random_hue(img, settings): def random_hue(img, settings):
prob = random.uniform(0, 1) prob = np.random.uniform(0, 1)
if prob < settings._hue_prob: if prob < settings._hue_prob:
delta = random.uniform(-settings._hue_delta, settings._hue_delta) delta = np.random.uniform(-settings._hue_delta, settings._hue_delta)
img_hsv = np.array(img.convert('HSV')) img_hsv = np.array(img.convert('HSV'))
img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
img = Image.fromarray(img_hsv, mode='HSV').convert('RGB') img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
...@@ -204,30 +204,30 @@ def random_hue(img, settings): ...@@ -204,30 +204,30 @@ def random_hue(img, settings):
def distort_image(img, settings): def distort_image(img, settings):
prob = random.uniform(0, 1) prob = np.random.uniform(0, 1)
# Apply different distort order # Apply different distort order
if prob > 0.5: if prob > 0.5:
img = random_brightness(img, settings) img = np.random_brightness(img, settings)
img = random_contrast(img, settings) img = np.random_contrast(img, settings)
img = random_saturation(img, settings) img = np.random_saturation(img, settings)
img = random_hue(img, settings) img = np.random_hue(img, settings)
else: else:
img = random_brightness(img, settings) img = np.random_brightness(img, settings)
img = random_saturation(img, settings) img = np.random_saturation(img, settings)
img = random_hue(img, settings) img = np.random_hue(img, settings)
img = random_contrast(img, settings) img = np.random_contrast(img, settings)
return img return img
def expand_image(img, bbox_labels, img_width, img_height, settings): def expand_image(img, bbox_labels, img_width, img_height, settings):
prob = random.uniform(0, 1) prob = np.random.uniform(0, 1)
if prob < settings._expand_prob: if prob < settings._expand_prob:
if settings._expand_max_ratio - 1 >= 0.01: if settings._expand_max_ratio - 1 >= 0.01:
expand_ratio = random.uniform(1, settings._expand_max_ratio) expand_ratio = np.random.uniform(1, settings._expand_max_ratio)
height = int(img_height * expand_ratio) height = int(img_height * expand_ratio)
width = int(img_width * expand_ratio) width = int(img_width * expand_ratio)
h_off = math.floor(random.uniform(0, height - img_height)) h_off = math.floor(np.random.uniform(0, height - img_height))
w_off = math.floor(random.uniform(0, width - img_width)) w_off = math.floor(np.random.uniform(0, width - img_width))
expand_bbox = bbox(-w_off / img_width, -h_off / img_height, expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
(width - w_off) / img_width, (width - w_off) / img_width,
(height - h_off) / img_height) (height - h_off) / img_height)
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
import image_util import image_util
from paddle.utils.image_util import * from paddle.utils.image_util import *
import random
from PIL import Image from PIL import Image
from PIL import ImageDraw from PIL import ImageDraw
import numpy as np import numpy as np
...@@ -140,7 +139,7 @@ def preprocess(img, bbox_labels, mode, settings): ...@@ -140,7 +139,7 @@ def preprocess(img, bbox_labels, mode, settings):
img = np.array(img) img = np.array(img)
if len(sampled_bbox) > 0: if len(sampled_bbox) > 0:
idx = int(random.uniform(0, len(sampled_bbox))) idx = int(np.random.uniform(0, len(sampled_bbox)))
img, sampled_labels = image_util.crop_image( img, sampled_labels = image_util.crop_image(
img, bbox_labels, sampled_bbox[idx], img_width, img_height) img, bbox_labels, sampled_bbox[idx], img_width, img_height)
...@@ -149,7 +148,7 @@ def preprocess(img, bbox_labels, mode, settings): ...@@ -149,7 +148,7 @@ def preprocess(img, bbox_labels, mode, settings):
img = np.array(img) img = np.array(img)
if mode == 'train': if mode == 'train':
mirror = int(random.uniform(0, 2)) mirror = int(np.random.uniform(0, 2))
if mirror == 1: if mirror == 1:
img = img[:, ::-1, :] img = img[:, ::-1, :]
for i in six.moves.xrange(len(sampled_labels)): for i in six.moves.xrange(len(sampled_labels)):
...@@ -185,7 +184,7 @@ def coco(settings, file_list, mode, shuffle): ...@@ -185,7 +184,7 @@ def coco(settings, file_list, mode, shuffle):
def reader(): def reader():
if mode == 'train' and shuffle: if mode == 'train' and shuffle:
random.shuffle(images) np.random.shuffle(images)
for image in images: for image in images:
image_name = image['file_name'] image_name = image['file_name']
image_path = os.path.join(settings.data_dir, image_name) image_path = os.path.join(settings.data_dir, image_name)
...@@ -240,7 +239,7 @@ def pascalvoc(settings, file_list, mode, shuffle): ...@@ -240,7 +239,7 @@ def pascalvoc(settings, file_list, mode, shuffle):
def reader(): def reader():
if mode == 'train' and shuffle: if mode == 'train' and shuffle:
random.shuffle(images) np.random.shuffle(images)
for image in images: for image in images:
image_path, label_path = image.split() image_path, label_path = image.split()
image_path = os.path.join(settings.data_dir, image_path) image_path = os.path.join(settings.data_dir, image_path)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册